uu.seUppsala University Publications
Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Adjan, V. V.
    et al.
    Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
    Hauser, K. F.
    Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, USA.
    Bakalkin, Georgy
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Yakovleva, T.
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Gharibyan, A.
    Experimental Alcohol and Drug Addiction Research Section, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
    Scheff, S. W.
    Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0298, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0298, USA.
    Knapp, P. E.
    Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0298, USA.
    Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 148, no 3, 724-36 p.Article in journal (Refereed)
    Abstract [en]

    Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.

  • 2.
    Agosti, F.
    et al.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Cordisco Gonzalez, S.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Martinez Damonte, V.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Tolosa, M. J.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Di Siervi, N.
    Univ Buenos Aires, CONICET, ININFA, Inst Invest Farmacol, Buenos Aires, DF, Argentina..
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Davio, C.
    Univ Buenos Aires, CONICET, ININFA, Inst Invest Farmacol, Buenos Aires, DF, Argentina..
    Perello, M.
    CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina.;Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol, IMBICE,Neurophysiol Lab, La Plata, Buenos Aires, Argentina..
    Raingo, J.
    Univ La Plata, CONICET, Multidisciplinary Inst Cell Biol IMBICE, Electrophysiol Lab, La Plata, Buenos Aires, Argentina.;CIC, Comis Invest Prov Buenos Aires, La Plata, Buenos Aires, Argentina..
    Melanocortin 4 Receptor Constitutive Activity Inhibits L-Type Voltage-Gated Calcium Channels In Neurons2017In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 346, 102-112 p.Article in journal (Refereed)
    Abstract [en]

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (Ca(V)2.2) are inhibited by MC4R agonist-dependent activation, while the Ca-V subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect Ca-V, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, Ca(V)1.2/1.3) and neurotransmitter release (N- and P/Q-type, Ca(V)2.2 and Ca(V)2.1). We found that MC4R constitutive activity inhibits specifically Ca(V)1.2/1.3 and Ca(V)2.1 subtypes of Ca-V. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through G(s) and G(i/o) pathways to impact on different Ca-V subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes Ca-V inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  • 3.
    Alsiö, Johan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Norbäck, A. H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Gunnarsson, Z. E. A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Levine, A. S.
    Pickering, Chris
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi Birgir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 171, no 3, 779-787 p.Article in journal (Refereed)
    Abstract [en]

    The nucleus accumbens (NAcc) mediates feeding reward; its activity reflects tastants' hedonic value. NAcc dopamine guides immediate responses to reward, however, its involvement in establishing long-term responses after a period of exposure to palatable foods has not been defined. Furthermore, reward-driven overeating propels weight increase, but the scale of weight gain depends on animals' obesity-prone (OP) or -resistant (OR) phenotype. It is unclear whether the NAcc dopamine response to palatable food depends on obesity susceptibility. We investigated the effect of unrestricted extended access to high-fat high-sugar (HFHS) diet on expression of genes encoding dopamine receptors in the NAcc of OP and OR rats. We examined persistence of HFHS diet-induced changes in D(1) and D(2) gene expression in OP and OR rats subjected to HFHS withdrawal (bland chow for 18 days). Effects of restricted access to HFHS by pair-feeding were also studied. Using reverse transcriptase PCR (RT-PCR), we found that NAcc D(1) mRNA was downregulated after long-term HFHS access in OP vs. OR animals. The effect was also observed after 18 days of HFHS withdrawal. Furthermore, restricted HFHS led to downregulation of D(1) as well as of D(2) mRNA levels compared to chow-fed controls. A difference in the expression of mu opioid receptor in the NAcc was also detected between the OP and OR rats during access to palatable food but not after withdrawal. We conclude that exposure to HFHS diets has lasting consequences for the NAcc dopamine system, perhaps modifying the motivation to search for food reward. The fact that the NAcc D(1) expression changes in OP animals after long-term exposure to palatable food and that this effect extends well into the reward discontinuation phase, implicates the D(1) receptor in the propensity to overeat and, in effect, gain weight in obesity prone individuals.

  • 4.
    Brocki, Karin
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology.
    Clerkin, S. M.
    Guise, K. G.
    Fan, Jin
    Fossella, J. A.
    Assessing the molecular genetics of the development of executive attention in children: focus on genetic pathways related to the anterior cingulate cortex and dopamine2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 164, no 1, 241-246 p.Article, review/survey (Refereed)
    Abstract [en]

    It is well known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and frontostriatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to date that employs both adult and child-friendly versions of the attention network task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention.

  • 5.
    Carlini, V. P.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Ghersi, M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Gabach, L.
    Schioth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Perez, M. F.
    Ramirez, O. A.
    Fiol de Cuneo, M.
    de Barioglio, S. R.
    Hippocampal effects of neuronostatin on memory, anxiety-like behavior and food intake in rats2011In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 197, 145-152 p.Article in journal (Refereed)
    Abstract [en]

    A 13-amino acid peptide named neuronostatin (NST) encoded in the somatostatin pro-hormone has been recently reported. It is produced throughout the body, particularly in brain areas that have significant actions over the metabolic and autonomic regulation. The present study was performed in order to elucidate the functional role of NST on memory, anxiety-like behavior and food intake and the hippocampal participation in these effects. When the peptide was intra-hippocampally administered at 3.0 nmol/mu l, it impaired memory retention in both, object recognition and step-down test. Also, this dose blocked the hippocampal long-term potentiation (LTP) generation. When NST was intra-hippocampally administered at 0.3 nmol/mu l and 3.0 nmol/mu l, anxiolytic effects were observed. Also, the administration in the third ventricle at the higher dose (3.0 nmol/mu l) induced similar effects, and both doses reduced food intake. The main result of the present study is the relevance of the hippocampal formation in the behavioral effects induced by NST, and these effects could be associated to a reduced hippocampal synaptic plasticity.

  • 6.
    Carlini, V P
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Martini, A C
    Schiöth, H B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Ruiz, R D
    Fiol de Cuneo, M
    de Barioglio, S R
    Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 153, no 4, 929-34 p.Article in journal (Refereed)
    Abstract [en]

    It has been demonstrated, in normal and aged rats and mice, that acute i.c.v. ghrelin (Ghr) administration increases memory retention. In order to evaluate if this treatment, restores memory retention in animals exhibiting impaired memory, in the present work we selected a chronic food restriction mouse model (since undernutrition prejudices higher nervous functions). We employed adult female mice with 28 days of 50% food restriction and evaluated: a) behavioral performance using novel object recognition test for memory, and plus maze for anxiety-like behavior, b) some morphometric parameters as body and hepatic weights and c) plasma Ghr levels. The animals with 50% food restriction showed an increase in plasma Ghr levels and a decrease in morphometric parameters and in the percentage of novel object recognition time. When the peptide was i.c.v. injected in food-restricted animals (0.03, 0.3 or 3.0 nmol/microl), memory increases in relation to food-restricted mice injected with vehicle, reaching a performance similar to controls.

  • 7. Cenci, M A
    et al.
    Tranberg, A
    Andersson, M
    Hilbertson, A
    Changes in the regional and compartmental distribution of FosB- and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment.1999In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 94, no 2, 515-27 p.Article in journal (Refereed)
    Abstract [en]

    This study was carried out in order to examine the effects of acute or chronic L-DOPA treatment on striatally expressed FosB- and JunB-like proteins in a rat model of Parkinson's disease. Rats with a unilateral, near-total 6-hydroxydopamine lesion of the ascending mesostriatal projection received either an acute challenge or a one-week treatment with 10 mg/kg/day methyl L-DOPA (combined with 15 mg/mg benserazide), and were killed at either 3 h or two days post-injection. Both acute and chronic L-DOPA treatment caused a pronounced, persistent increase in the number of FosB-like immunoreactive cells in the dopamine-denervated striata (five- and seven-fold increase, respectively, above the levels found in lesioned but non-drug-treated controls), but the two treatment groups differed markedly with respect to both the average amount of staining per cell, which was two-fold larger in the chronic L-DOPA cases, and the anatomical distribution of the labeled cells. After an acute injection of L-DOPA, FosB-positive cells were distributed rather uniformly across all striatal subregions, whereas chronic L-DOPA treatment induced discrete clusters of strongly FosB-like immunoreactive cells within medial and central striatal subregions, as well as in a large, yet sharply defined portion of the lateral caudate-putamen. Strongly labeled cell clusters that appeared in the medial and central caudate-putamen were preferentially located within calbindin-poor, mu-opioid receptor-rich striosomes, whereas the lateral area displaying FosB activation encompassed both striosomal and matrix domains. In both the medial and the lateral striatum a near-total overlap was found between strongly FosB-like immunoreactive cell groups and areas showing pronounced dynorphin expression. NADPH-diaphorase-positive striatal interneurons did not express FosB-like immunoreactivity after a 6-hydroxydopamine lesion alone, a negligible proportion of them did after an acute L-DOPA challenge, but about 8% of these interneurons were FosB positive following chronic L-DOPA treatment. Like FosB, JunB was induced in the DA-denervated striatum by both acute and chronic L-DOPA treatment, and exhibited similar distribution patterns. However, JunB did not exhibit prolonged expression kinetics, and was somewhat down-regulated in the chronically compared with the acutely L-DOPA-treated rats. The present results show that L-DOPA administration produces a long-lasting increase in the levels of FosB-, but not JunB-like immunoreactivity in the dopamine-denervated striatum. More importantly, these data show that striatal induction of FosB- and JunB-like proteins by chronic L-DOPA treatment exhibits both regional and compartmental specificity.

  • 8.
    Cocco, Arianna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Rönnberg, A. M. Carolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Jin, Zhe
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    André, Goncalo Igreja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Univ Western Australia, Ctr Evolutionary Biol, 35 Stirling Hwy, Crawley, WA 6009, Australia..
    Vossen, Laura E.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Bhandage, Amol K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Thörnqvist, Per-Ove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Birnir, Bryndis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Winberg, Svante
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Characterization of the gamma-aminobutyric acid signaling system in the zebrafish (danio rerio hamilton) central nervous system by reverse transcription-quantitative polymerase chain reaction2017In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 343, 300-321 p.Article in journal (Refereed)
    Abstract [en]

    In the vertebrate brain, inhibition is largely mediated by raminobutyric acid (GABA). This neurotransmitter comprises a signaling machinery of GABA(A), GABA(B) receptors, transporters, glutamate decarboxylases (gads) and 4-aminobutyrate aminotransferase (abat), and associated proteins. Chloride is intimately related to GABAA receptor conductance, GABA uptake, and GADs activity. The response of target neurons to GABA stimuli is shaped by chloride-cation co-transporters (CCCs), which strictly control Cl- gradient across plasma membranes. This research profiled the expression of forty genes involved in GABA signaling in the zebrafish (Danio rerio) brain, grouped brain regions and retinas. Primer pairs were developed for reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The mRNA levels of the zebrafish GABA system share similarities with that of mammals, and confirm previous studies in non-mammalian species. Proposed GABAA receptors are alpha(1)beta(2)gamma(2), alpha(1)beta(2)delta, alpha(2b)beta(3), alpha(2b)beta(3)delta, alpha(4)beta(2)gamma(2), alpha(4)beta(2)gamma, alpha(6b)beta(2)gamma(2) and alpha(6b)beta(2)delta. Regional brain differences were documented. Retinal hetero- or homomeric rho-composed GABAA receptors could exist, accompanying alpha(1)beta(y)gamma(2), alpha(1)beta(y)delta, alpha(6a)beta(y)gamma(2,) alpha(6a)beta(y)delta. Expression patterns of alpha(6a) and alpha(6b) were opposite, with the former being more abundant in retinas, the latter in brains. Given the stoichiometry alpha(6w)beta(y)gamma(z), alpha(6a-) or alpha(6b)-containing receptors likely have different regulatory mechanisms. Different gene isoforms could originate after the rounds of genome duplication during teleost evolution. This research depicts that one isoform is generally more abundantly expressed than the other. Such observations also apply to GABAB receptors, GABA transporters, GABA-related enzymes, CCCs and GABAA receptor associated proteins, whose presence further strengthens the proof of a GABA system in zebrafish.

  • 9.
    Gustafsson, Lisa
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Zhou, Qin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nylander, Ingrid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ethanol-induced effects on opioid peptides in adult male Wistar rats are dependent on early environmental factors2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 146, no 3, 1137-1149 p.Article in journal (Refereed)
    Abstract [en]

    The vulnerability to develop alcoholism is dependent on both genetic and environmental factors. The neurobiological mechanisms underlying these factors are not fully understood but individual divergence in the endogenous opioid peptide system may contribute. We have previously reported that early-life experiences can affect endogenous opioids and also adult voluntary ethanol intake. In the present study, this line of research was continued and the effects of long-term voluntary ethanol drinking on the opioid system are described in animals reared in different environmental settings. Rat pups were subjected to 15 min (MS15) or 360 min (MS360) of daily maternal separation during postnatal days 1–21. At 10 weeks of age, male rats were exposed to voluntary ethanol drinking in a four-bottle paradigm with 5%, 10% and 20% ethanol solution in addition to water for 2 months. Age-matched controls received water during the same period. Immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels were thereafter measured in the pituitary gland and several brain areas. In water-drinking animals, lower ir MEAP levels were observed in the MS360 rats in the hypothalamus, medial prefrontal cortex, striatum and the periaqueductal gray, whereas no differences were seen in ir DYNB levels. Long-term ethanol drinking induced lower ir MEAP levels in MS15 rats in the medial prefrontal cortex and the periaqueductal gray, whereas higher levels were detected in MS360 rats in the hypothalamus, striatum and the substantia nigra. Chronic voluntary drinking affected ir DYNB levels in the pituitary gland, hypothalamus and the substantia nigra, with minor differences between MS15 and MS360. In conclusion, manipulation of the early environment caused changes in the opioid system and a subsequent altered response to ethanol. The altered sensitivity of the opioid peptides to ethanol may contribute to the previously reported differences in ethanol intake between MS15 and MS360 rats.

  • 10. Hirt, B.
    et al.
    Penkova, Z. H.
    Eckhard, A.
    Liu, Wei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Rask-Andersen, Helge
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Müller, M.
    Löwenheim, H.
    The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 168, no 4, 957-970 p.Article in journal (Refereed)
    Abstract [en]

    Aquaporins are membrane water channel proteins that have also been identified in the cochlea. Auditory function critically depends on the homeostasis of the cochlear fluids perilymph and endolymph. In particular, the ion and water regulation of the endolymph is essential for sensory transduction. Within the cochlear duct the lateral wall epithelium has been proposed to secrete endolymph by an aquaporin-mediated flow of water across its epithelial tight junction barrier. This study identifies interspecies differences in the cellular distribution of aquaporin 5 (AQP5) in the cochlear lateral wall of mice, rats, gerbils and guinea pigs. In addition the cellular expression pattern of AQP5 is described in the human cochlea. Developmental changes in rats demonstrate longitudinal and radial gradients along the cochlear duct. During early postnatal development a pancochlear expression is detected. However a regression to the apical quadrant and limitation to outer sulcus cells (OSCs) is observed in the adult. This developmental loss of AQP5 expression in the basal cochlear segments coincides with a morphological loss of contact between OSCs and the endolymph. At the subcellular level, AQP5 exhibits polarized expression in the apical plasma membrane of the OSCs. Complementary, the basolateral membrane in the root processes of the OSCs exhibits AQP4 expression. This differential localization of AQP5 and AQP4 in the apical and basolateral membranes of the same epithelial cell type suggests a direct aquaporin-mediated transcellular water shunt between the perilymph and endolymph in the OSCs of the cochlear lateral wall. In the human cochlea these findings may have pathophysiological implications attributed to a dysfunctional water regulation by AQP5 such as endolymphatic hydrops (i.e. in Meniere's disease) or sensorineural hearing loss (i.e. in Sjögren's syndrome).

  • 11. Hughes, A S
    et al.
    Averill, S
    King, V R
    Molander, Carl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Rehabilitation Medicine.
    Shortland, P J
    Neurochemical characterization of neuronal populations expressing protein kinase C gamma isoform in the spinal cord and gracile nucleus of the rat2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 153, no 2, 507-517 p.Article in journal (Refereed)
    Abstract [en]

    Protein kinase C gamma (PKCgamma) is widely distributed throughout the CNS and is thought to play a role in long term hyper-excitability in nociceptive neurones. Here, we provide the first report of PKCgamma cells in the dorsal column nuclei of the adult rat. Retrograde labeling of PKCgamma cells from the thalamus with choleragenoid revealed that 25% of the PKCgamma positive gracile cells projected to the thalamus. Further, we have characterized the distribution of PKCgamma within gracile nucleus in terms of colocalization with various neurotransmitter receptors or enzymes and calcium binding proteins, and compared this with PKCgamma colocalization in cells of laminae I-III of the spinal cord. We show that approximately 90% of the PKCgamma cells in the gracile nucleus and 60% in the dorsal horn were immuno-positive for the AMPA receptor subunit glutamate 2/3 (GluR2/3). Little coexpression was seen with neurokinin 1 receptor, nitric oxide synthase (NOS) and the AMPA receptor subunit GluR1, markers of distinct neuronal subpopulations. In the spinal cord, a quarter of PKCgamma cells expressed calbindin, but very few cells did so in the gracile nucleus. Electrical stimulation at c-fiber strength of the normal or injured sciatic nerve was used to induce c-fos as a marker of postsynaptic activation in the spinal cord and gracile nucleus. Quantitative analysis of the number of PKCgamma positive gracile cells that expressed also c-fos increased from none to 24% after injury, indicating an alteration in the sensory activation pattern in these neurones after injury. C-fos was not induced in inner lamina II following c-fiber electrical stimulation of the intact or axotomized sciatic nerve, indicating no such plasticity at the spinal cord level. As dorsal column nuclei cells may contribute to allodynia after peripheral nerve injury, pharmacological modulation of PKCgamma activity may therefore be a possible way to ameliorate neuropathic pain after peripheral nerve injury.

  • 12.
    Jonsson, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fransson, Rebecca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Haramaki, Yutaka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Skogh, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brolin, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Watanabe, Hiroyuki
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nordvall, Gunnar
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sandström, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Small constrained SP1-7 analogues bind to a unique site and promote anti-allodynic effects following systemic injection in mice2015In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 298, 112-119 p.Article in journal (Refereed)
    Abstract [en]

    Previous results have shown that the substance P (SP) N-terminal fragment SP1–7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1–7. The present study was designed to evaluate the pharmacological effect of these compounds using the mouse spared nerve injury (SNI) model of chronic neuropathic pain. Also, as no comprehensive screen with the aim to identify the SP1–7 target has yet been performed we screened our lead compound H-Phe-Phe-NH2 toward a panel of drug targets. The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1–7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect.

  • 13.
    Karlsson, Miriam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Hallböök, Finn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Kainic acid, tetrodotoxin and light modulate expression of brain-derived neurotrophic factor in developing avian retinal ganglion cells and their tectal target1998In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 83, no 1, 137-150 p.Article in journal (Refereed)
    Abstract [en]

    Increasing evidence underlies the importance of neurotrophins as neuron-derived trophic signals in the developing visual system, although their precise roles are still undefined. Here we show that brain-derived neurotrophic factor messenger RNA is simultaneously expressed in a subpopulation of retinal ganglion cells and in their target during late embryogenesis. Moreover, light as well as the excitotoxin; kainic acid, induced an increase of the brain-derived neurotrophic factor messenger RNA, which could be blocked by the sodium-channel blocker; tetrodotoxin. Messenger RNA for trkB, a receptor for brain-derived neurotrophic factor, was found in the retinal ganglion cells expressing brain-derived neurotrophic factor showing that certain retinal ganglion cells express messenger RNA both for brain-derived neurotrophic factor and trkB. Furthermore, trkB messenger RNA was found in tectum, in the same layers as the brain-derived neurotrophic factor messenger RNA. These findings suggest that brain-derived neurotrophic factor expression is regulated in an activity-dependent manner during the phase of development when neuronal activity plays an important role.

  • 14. Kastrup, Ylva
    et al.
    Le Grevès, Madeleine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Blomqvist, Anders
    Distribution of growth hormone receptor mRNA in the brain stem and spinal cord of the rat2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 130, no 2, 419-425 p.Article in journal (Refereed)
    Abstract [en]

    By using in situ hybridization histochemistry the distribution of growth hormone (GH) receptor mRNA was examined in the rat brain stem and spinal cord. Dense labeling was seen in the arcuate nucleus of the hypothalamus, as reported previously, but also in several other areas, including the locus coeruleus, the area postrema, and the commissural part of the nucleus of the solitary tract. Other labeled structures included the superior lateral parabrachial nucleus, the facial, hypoglossal and trigeminal motor nuclei, the nucleus incertus, the dorsal tegmental nucleus, the dorsal raphe nucleus, the nucleus of the trapezoid body, and the superficial layers of the dorsal horn of the spinal cord. These findings provide support for a direct action of GH on brain regions involved in various aspects of homeostatic control. Thus, the distribution of GH receptor mRNA to visceral sensory and motor structures is consonant with a role of GH in the regulation of food intake and energy homeostasis. Its presence in the superficial dorsal horn of the spinal cord indicates a role for GH in the initial processing of fine afferent input, and may help explain the beneficial effects of GH replacement in certain unclear pain conditions.

  • 15.
    Kindlundh, Anna MS
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lindblom, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Bergström, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The anabolic-androgenic steroid nandrolone induces alterations in the density of serotonergic 5HT1B and 5HT2 receptors in the male rat brain2003In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 119, no 1, 113-120 p.Article in journal (Refereed)
    Abstract [en]

    Anabolic-androgenic steroids (AAS) are partly misused by males in order to become brave and intoxicated and these agents are highly associated with psychosis, disinhibition, aggression and acts of violence. Since such behavioral states have been related to an imbalanced serotonergic system and the involvement of the serotonergic 5HT(1B) and the 5HT(2) receptors, it was important to discern the impact of AAS on these receptors. The objective of our study was to investigate the effects of 2 weeks of treatment with the AAS nandrolone decanoate at three different doses (1, 5, 15 mg/kg/day) on the total specific binding of the radioligands [(125)I]-(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (5HT(2) receptors) by autoradiography. All doses caused a significant down-regulation of the 5HT(1B) receptor density in the hippocampal CA(1) and in the medial globus pallidus and a significant up-regulation of the 5HT(2) receptor density in the nucleus accumbens shell. Alterations in receptor density were also observed in the lateral globus pallidus, ventromedial hypothalamus, the amygdala and in the intermediate layers of various cortex regions. In conclusion, serotonergic 5HT(1B) or 5HT(2) receptors are likely to play important roles in mediating observed emotional states and behavioral changes among AAS abusers.

  • 16. Kiyatkin, E. A.
    et al.
    Sharma, Hari Shanker
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Permeability of the blood-brain barrier depends on brain temperature2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 161, no 3, 926-939 p.Article in journal (Refereed)
    Abstract [en]

    Increased permeability of the blood-brain barrier (BBB) has been reported in different conditions accompanied by hyperthermia, but the role of brain temperature per se in modulating brain barrier functions has not been directly examined. To delineate the contribution of this factor, we examined albumin immunoreactivity in several brain structures (cortex, hippocampus, thalamus and hypothalamus) of pentobarbital-anesthetized rats (50 mg/kg i.p.), which were passively warmed to different levels of brain temperature (32-42 degrees C). Similar brain structures were also examined for the expression of glial fibrillary acidic protein (GFAP), an index of astrocytic activation, water and ion content, and morphological cell abnormalities. Data were compared with those obtained from drug-free awake rats with normal brain temperatures (36-37 degrees C). The numbers of albumin- and GFAP-positive cells strongly correlate with brain temperature, gradually increasing from approximately 38.5 degrees C and plateauing at 41-42 degrees C. Brains maintained at hyperthermia also showed larger content of brain water and Na(+), K(+) and Cl(-) as well as structural abnormalities of brain cells, all suggesting acute brain edema. The latter alterations were seen at approximately 39 degrees C, gradually progressed with temperature increase, and peaked at maximum hyperthermia. Temperature-dependent changes in albumin immunoreactivity tightly correlated with GFAP immunoreactivity, brain water, and numbers of abnormal cells; they were found in each tested area, but showed some structural specificity. Notably, a mild BBB leakage, selective glial activation, and specific cellular abnormalities were also found in the hypothalamus and piriform cortex during extreme hypothermia (32-33 degrees C); in contrast to hyperthermia these changes were associated with decreased levels of brain water, Na(+) and K(+), suggesting acute brain dehydration. Therefore, brain temperature per se is an important factor in regulating BBB permeability, alterations in brain water homeostasis, and subsequent structural abnormalities of brain cells.

  • 17. Konradsson-Geuken, A
    et al.
    Wu, H Q
    Gash, C R
    Alexander, K S
    Campbell, A
    Sozeri, Y
    Pellicciari, R
    Schwarcz, R
    Bruno, J P
    Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry.2010In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 169, no 4Article in journal (Refereed)
    Abstract [en]

    Using two in vivo methods, microdialysis and rapid in situ electrochemistry, this study examined the modulation of extracellular glutamate levels by endogenously produced kynurenic acid (KYNA) in the prefrontal cortex (PFC) of awake rats. Measured by microdialysis, i.p. administration of KYNA's bioprecursor L-kynurenine dose-dependently elevated extracellular KYNA and reduced extracellular glutamate (nadir after 50 mg/kg kynurenine: 60% decrease from baseline values). This dose-dependent decrease in glutamate levels was also seen using a glutamate-sensitive microelectrode array (MEA) (31% decrease following 50 mg/kg kynurenine). The kynurenine-induced reduction in glutamate was blocked (microdialysis) or attenuated (MEA) by co-administration of galantamine (3 mg/kg i.p.), a drug that competes with KYNA at an allosteric potentiating site of the alpha 7 nicotinic acetylcholine receptor. In separate experiments, extracellular glutamate levels were measured by MEA following the local perfusion (45 min) of the PFC with kynurenine (2.5 microM) or the selective KYNA biosynthesis inhibitor S-ethylsulfonylbenzoylalanine (S-ESBA; 5 mM). In agreement with previous microdialysis studies, local kynurenine application produced a reversible reduction in glutamate (nadir: -29%), whereas perfusion with S-ESBA increased glutamate levels reversibly (maximum: +38%). Collectively, these results demonstrate that fluctuations in the biosynthesis of KYNA in the PFC bi-directionally modulate extracellular glutamate levels, and that qualitatively very similar data are obtained by microdialysis and MEA. Since KYNA levels are elevated in the PFC of individuals with schizophrenia, and since prefrontal glutamatergic and nicotinic transmission mediate cognitive flexibility, normalization of KYNA levels in the PFC may constitute an effective treatment strategy for alleviating cognitive deficits in schizophrenia.

  • 18.
    Korhonen, L.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Hansson, I.
    Maugras, C.
    Wehrle, R.
    Kairisalo, M.
    Borgkvist, A.
    Jokitalo, E.
    Sotelo, C.
    Fisone, G.
    Dusart, I.
    Lindholm, D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Expression of X-chromosome linked inhibitor of apoptosis protein in mature Purkinje cells and in retinal bipolar cells in transgenic mice induces neurodegeneration2008In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 156, no 3, 515-526 p.Article in journal (Refereed)
    Abstract [en]

    Transgenic mice with overexpression of the caspase-inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP) in Purkinje cell (PC) and in retinal bipolar cells (RBCs) were produced to study the regulation of cell death. Unexpectedly, an increased neurodegeneration was observed in the PCs in these L7-XIAP mice after the third postnatal week with the mice exhibiting severe ataxia. The loss of PCs was independent of Bax as shown by crossing the L7-XIAP mice with Bax gene-deleted mice. Electron microscopy revealed intact organelles in PCs but with the stacking of ER cisterns indicative of cell stress. Immunostaining for cell death proteins showed an increased phosphorylation of c-Jun in the PCs, suggesting an involvement in cell degeneration. Apart from PCs, the number of RBCs was decreased in adult retina in line with the expression pattern for the L7 promoter. The data show that overexpression of the anti-apoptotic protein XIAP in vulnerable neurons leads to enhanced cell death. The mechanisms underlying this neurodegeneration can be related to the effects of XIAP on cell stress and altered cell signaling.

  • 19.
    Liu, Wei
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Edin, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Atturo, Francesca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Rieger, G.
    Lowenheim, H.
    Senn, P.
    Blumer, M.
    Schrott-Fischer, A.
    Rask-Andersen, Helge
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Glueckert, R.
    The Pre- and Post-Somatic Segments of the Human Type I Spiral Ganglion Neurons - Structural and Functional Considerations Related to Cochlear Implantation2015In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 284, 470-482 p.Article in journal (Refereed)
    Abstract [en]

    Human auditory nerve afferents consist of two separate systems; one is represented by the large type I cells innervating the inner hair cells and the other one by the small type II cells innervating the outer hair cells. Type I spiral ganglion neurons (SGNs) constitute 96% of the afferent nerve population and, in contrast to other mammals, their soma and pre- and post-somatic segments are unmyelinated. Type II nerve soma and fibers are unmyelinated. Histopathology and clinical experience imply that human SGNs can persist electrically excitable without dendrites, thus lacking connection to the organ of Corti. The biological background to this phenomenon remains elusive. We analyzed the pre- and post-somatic segments of the type I human SGNs using immunohistochemistry and transmission electron microscopy (TEM) in normal and pathological conditions. These segments were found surrounded by non-myelinated Schwann cells (NMSCs) showing strong intracellular expression of laminin-beta 2/collagen IV. These cells also bordered the perikaryal entry zone and disclosed surface rugosities outlined by a folded basement membrane (BM) expressing laminin-beta 2 and collagen IV. It is presumed that human large SGNs are demarcated by three cell categories: (a) myelinated Schwann cells, (b) NMSCs and (c) satellite glial cells (SGCs). Their BMs express laminin-beta 2/collagen IV and reaches the BM of the sensory epithelium at the habenula perforata. We speculate that the NMSCs protect SGNs from further degeneration following dendrite loss. It may give further explanation why SGNs can persist as electrically excitable monopolar cells even after long-time deafness, a blessing for the deaf treated with cochlear implantation. (C) 2014 The Authors. Published by Elsevier Ltd. on behalf of IBRO. This is an open access article under the CC BY-NC-ND license.

  • 20.
    Marklund, Niklas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Morales, D
    Clausen, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Hånell, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Kiwanuka, Olivia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Pitkänen, A
    Gimbel, D A
    Philipson, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Hillered, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Strittmatter, S M
    McIntosh, Tracy K
    Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice2009In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 163, no 2, 540-551 p.Article in journal (Refereed)
    Abstract [en]

    Increasing age is associated with a poor prognosis following traumatic brain injury (TBI). CNS axons may recover poorly following TBI due to expression of myelin-derived inhibitors to axonal outgrowth such as Nogo-A. To study the role of Nogo-A/B in the pathophysiological response of the elderly to TBI, 1-year-old mice deficient in Nogo-A/B (Nogo-A/B homozygous(-/-) mice), Nogo-A/B heterozygous(-/+) mice, and age-matched wild-type (WT) littermate controls were subjected to a controlled cortical impact (CCI) TBI. Sham-injured WT mice (7 months old) and 12 month old naïve Nogo-A/B(-/-) and Nogo-A/B(-/+) served as controls. Neurological motor function was evaluated up to 3 weeks, and cognitive function, hemispheric tissue loss, myelin staining and hippocampal beta-amyloid (A beta) immunohistochemistry were evaluated at 4 weeks post-injury. In WT littermates, TBI significantly impaired learning ability at 4 weeks and neurological motor function up to 2 weeks post-injury and caused a significant loss of hemispheric tissue. Following TBI, Nogo-A/B(-/-) mice showed significantly less recovery from neurological motor and cognitive deficits compared to brain-injured WT mice. Naïve Nogo-A/B(-/-) and Nogo-A/B(-/+) mice quickly learned the MWM task in contrast to brain-injured Nogo-A/B(-/-) mice who failed to learn the MWM task at 4 weeks post-injury. Hemispheric tissue loss and cortical lesion volume were similar among the brain-injured genotypes. Neither TBI nor the absence of NogoA/B caused an increased A beta expression. Myelin staining showed a reduced area and density in the corpus callosum in brain-injured Nogo-A/B(-/-) animals compared to their littermate controls. These novel and unexpected behavioral results demonstrate that the absence of Nogo-A/B may negatively influence outcome, possibly related to hypomyelination, following TBI in mice and suggest a complex role for this myelin-associated axonal growth inhibitor following TBI.

  • 21. Mulder, J
    et al.
    Wernérus, H
    Shi, T-J
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Hober, S
    Uhlén, M
    Hökfelt, T
    Systematically generated antibodies against human gene products: High throughput screening on sections from the rat nervous system2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 146, no 4, 1689-1703 p.Article in journal (Refereed)
    Abstract [en]

    Completion of the Human Genome Project and recent developments in proteomics make it possible to systematically generate affinity reagents to a large portion of the proteome. Recently an antibody-based human protein atlas covering many organs including four areas of the brain has been released (www.proteinatlas.org). Due to the heterogeneity, size, and availability of tissue a more thorough analysis of the human brain is associated with considerable difficulties. Here we applied 120 antibodies raised against 112 human gene products to the smaller rat brain, a rodent animal model, where a single section represents a ‘superarray’ including many brain areas, and consequently allowing analysis of a huge number of cell types and their neurochemicals. Immunoreactive structures were seen in the investigated brain tissue after incubation with 56 antibodies (46.6%), of which 25 (20.8%) showed a clearly discrete staining pattern that was limited to certain areas, or subsets of brain cells. Bioinformatics, pre-adsorption tests and Western blot analysis were applied to identify non-specific antibodies. Eleven antibodies, including such raised against four ‘ambiguous’ proteins, passed all validation criteria, and the expression pattern and subcellular distribution of these proteins were studied in detail. To further explore the potential of the systematically generated antibodies, all 11 antibodies that passed validation were used to analyze the spinal cord and lumbar dorsal root ganglia after unilateral transection of the sciatic nerve. Discrete staining patterns were observed for four of the proteins, and injury-induced regulation was found for one of them. In conclusion, the study presented here suggests that a significant portion (10%) of the antibodies generated to a human protein can be used to analyze orthologues present in the rodent brain and to produce a protein-based atlas of the rodent brain. It is hoped that this type of antibody-based, high throughput screening of brain tissue from various rodent disease models will provide new information on the brain chemical neuroanatomy and insights in processes underlying neurological pathologies.

  • 22.
    Nylander, Erik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Gröndbladh, Alfhild
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Zelleroth, Sofia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Diwakarla, Shanti
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nyberg, Fred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Growth hormone is protective against acute methadone-induced toxicity by modulating the NMDA receptor complex2016In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 339, 538-547 p.Article in journal (Refereed)
    Abstract [en]

    Human growth hormone (GH) displays promising protective effects in the central nervous system after damage caused by various insults. Current evidence suggests that these effects may involve N-methyl-d-aspartate (NMDA) receptor function, a receptor that also is believed to play a role in opioid-induced neurotoxicity. The aims of the present study were to examine the acute toxic effects of methadone, an opioid receptor agonist and NMDA receptor antagonist, as well as to evaluate the protective properties of recombinant human GH (rhGH) on methadone-induced toxicity. Primary cortical cell cultures from embryonic day 17 rats were grown for 7 days in vitro. Cells were treated with methadone for 24 h and the 50% lethal dose was calculated and later used for protection studies with rhGH. Cellular toxicity was determined by measuring mitochondrial activity, lactate dehydrogenase release, and caspase activation. Furthermore, the mRNA expression levels of NMDA receptor subunits were investigated following methadone and rhGH treatment using quantitative PCR (qPCR) analysis. A significant protective effect was observed with rhGH treatment on methadone-induced mitochondrial dysfunction and in methadone-induced LDH release. Furthermore, methadone significantly increased caspase-3 and -7 activation but rhGH was unable to inhibit this effect. The mRNA expression of the NMDA receptor subunit GluN1, GluN2a, and GluN2b increased following methadone treatment, as assessed by qPCR, and rhGH treatment effectively normalized this expression to control levels. We have demonstrated that rhGH can rescue cells from methadone-induced toxicity by maintaining mitochondrial function, cellular integrity, and NMDA receptor complex expression.

  • 23. Rattay, F.
    et al.
    Paredes, L. P.
    Naves Leao, Richardson
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Strength-duration relationship for intra-versus extracellular stimulation with microelectrodes2012In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 214, 1-13 p.Article in journal (Refereed)
    Abstract [en]

    Chronaxie, a historically introduced excitability time parameter for electrical stimulation, has been assumed to be closely related to the time constant of the cell membrane. Therefore, it is perplexing that significantly larger chronaxies have been found for intracellular than for extracellular stimulation. Using compartmental model analysis, this controversy is explained on the basis that extracellular stimulation also generates hyperpolarized regions of the cell membrane hindering a steady excitation as seen in the intracellular case. The largest inside/outside chronaxie ratio for microelectrode stimulation is found in close vicinity of the cell. In the case of monophasic cathodic stimulation, the length of the primarily excited zone which is situated between the hyperpolarized regions increases with electrode-cell distance. For distant electrodes this results in an excitation process comparable to the temporal behavior of intracellular stimulation. Chronaxie also varies along the neural axis, being small for electrode positions at the nodes of Ranvier and axon initial segment and larger at the soma and dendrites. As spike initiation site can change for short and long pulses, in some cases strength-duration curves have a bimodal shape, and thus, they deviate from a classical monotonic curve as described by the formulas of Lapicque or Weiss. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  • 24. Sandin, J
    et al.
    Nylander, Ingrid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Georgieva, J
    Schött, P A
    Ögren, O
    Terenius, L
    Hippocampal dynorphin B injections impair spatial learning in rats: a kappa-opioid receptor-mediated effect1998In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 85, no 2, 375-382 p.Article in journal (Refereed)
    Abstract [en]

    The hippocampus plays a central role in the acquisition and storage of information. Long-term potentiation in the mossy fibre pathway to the CA3 region in the hippocampus, an animal model of memory acquisition, is modulated by dynorphin peptides. This study investigated the possible role of hippocampal dynorphin in spatial learning. Male rats were trained in the Morris Water Task after microinjection with different doses of dynorphin B (1, 3.3 or 10 nmol/rat) or artificial cerebrospinal fluid (as control) into the CA3 region of the dorsal hippocampus. Dynorphin B was found to impair spatial learning at all tested doses. The synthetic kappa1-selective opiate receptor antagonist nor-binaltorphimine (2 nmol) also given into the hippocampus fully blocked the acquisition impairment caused by dynorphin B (10 nmol), while nor-binaltorphimine alone did not affect learning performance. These findings suggest that dynorphin peptides could play a modulatory role in hippocampal plasticity by acting on hippocampal kappa-receptors and thereby impair spatial learning.

  • 25.
    Scholz, Birger
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Toxicology.
    Kultima, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Toxicology.
    Mattsson, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
    Axelsson, Jeanette
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
    Brunström, Björn
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
    Halldin, Krister
    Stigson, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Toxicology.
    Dencker, Lennart
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences, Toxicology.
    Sex-dependent gene expression in early brain development of chicken embryos2006In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 7, 12- p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Differentiation of the brain during development leads to sexually dimorphic adult reproductive behavior and other neural sex dimorphisms. Genetic mechanisms independent of steroid hormones produced by the gonads have recently been suggested to partly explain these dimorphisms.

    RESULTS:

    Using cDNA microarrays and real-time PCR we found gene expression differences between the male and female embryonic brain (or whole head) that may be independent of morphological differentiation of the gonads. Genes located on the sex chromosomes (ZZ in males and ZW in females) were common among the differentially expressed genes, several of which (WPKCI-8, HINT, MHM non-coding RNA) have previously been implicated in avian sex determination. A majority of the identified genes were more highly expressed in males. Three of these genes (CDK7, CCNH and BTF2-P44) encode subunits of the transcription factor IIH complex, indicating a role for this complex in neuronal differentiation.

    CONCLUSION:

    In conclusion, this study provides novel insights into sexually dimorphic gene expression in the embryonic chicken brain and its possible involvement in sex differentiation of the nervous system in birds.

  • 26. Valastro, B
    et al.
    Andersson, M
    Lund Universitet.
    Lindgren, H S
    Cenci, M A
    Expression pattern of JunD after acute or chronic L-DOPA treatment: comparison with deltaFosB.2007In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 144, no 1, 198-207 p.Article in journal (Refereed)
    Abstract [en]

    In this study, we have used 6-hydroxydopamine-lesioned rats to examine changes in striatal junD and fosB/deltafosB expression induced by acute and chronic treatment with L-DOPA (5 and 15 days). Changes at the protein levels were studied using Western immunoblotting while mRNA changes were compared using in situ hybridization histochemistry. We observed a significant increase in the level of deltaFosB proteins after chronic treatment with L-DOPA, an effect that was not observed for JunD proteins. In addition, the upregulation of deltaFosB was already present after an acute treatment but increased upon chronic treatment. By contrast, junD and deltafosB mRNA were both upregulated significantly above control levels after an acute injection of L-DOPA. In conclusion, this study suggests a differential expression pattern of junD and deltafosB in a rat model of L-DOPA-induced dyskinesia. The upregulation of deltaFosB protein, but not JunD, is likely to reflect an increased stability of the deltaFosB proteins without ongoing enhanced transcription of the encoding genes.

  • 27.
    Wallin-Miller, Kathryn
    et al.
    Univ So Calif, Neurosci Grad Program, Los Angeles, CA 90033 USA..
    Li, Grace
    Univ So Calif, Dept Cell & Neurobiol, Keck Sch Med, 1333 San Pablo St,BMT 408, Los Angeles, CA 90033 USA..
    Kelishani, Diana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. Univ So Calif, Dept Cell & Neurobiol, Keck Sch Med, 1333 San Pablo St,BMT 408, Los Angeles, CA 90033 USA..
    Wood, Ruth I.
    Univ So Calif, Dept Cell & Neurobiol, Keck Sch Med, 1333 San Pablo St,BMT 408, Los Angeles, CA 90033 USA..
    Yanabolic-Androgenic Steroids Decrease Dendritic Spine Density In The Nucleus Accumbens Of Male Rats2016In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 330, 72-78 p.Article in journal (Refereed)
    Abstract [en]

    Recent studies have demonstrated that anabolicandrogenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8 weeks with high-dose testosterone (7.5 mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eight weeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F-1,F-14= 5.455, p < 0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior.

  • 28.
    Wootz, Hanna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Weber, Ekkehard
    Korhonen, Laura
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Lindholm, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Altered distribution and levels of cathepsinD and cystatins in amyotrophic lateral sclerosis transgenic mice: Possible roles in motor neuron survival2006In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 143, no 2, 419-430 p.Article in journal (Refereed)
    Abstract [en]

    In amyotrophic lateral sclerosis (ALS) there is a selective degeneration of motor neurons leading to muscle paralysis and death. The mechanism underlying cell demise in ALS is not fully understood, but involves the activation of different proteolytic enzymes, including the caspase family of cysteine proteases. We have here studied whether other proteases, such as the cathepsins, residing in lysosomes, and the cathepsin inhibitors, cystatinB and -C are changed in ALS. The expression and protein levels of the cathepsinB, -L and -D all increased in the spinal cord in ALS mice, carrying the mutant copper/zinc superoxide dismutase (SOD1) gene. At the cellular level, cathepsinB and -L were present in ventral motor neurons in controls, but in the ALS mice cathepsinB was also expressed by glial fibrillary acidic protein (GFAP) positive astrocytes. The distribution of the aspartic protease, cathepsinD also changed in ALS with a loss of the lysosomal staining in motor neurons. Inhibition of caspases by means of X-chromosome-linked inhibitor of apoptosis protein (XIAP) overexpression did not inhibit cleavage of cathepsinD in ALS mice, suggesting a caspase-independent pathway. Expression of cystatinB and -C increased slightly in the ALS spinal cords. Immunostaining showed that in ALS, cystatinC was present in motor neurons and in GFAP positive astrocytes. CystatinB that is a neuroprotective factor decreased in motor neurons in ALS but was expressed by activated microglial cells. The observed changes in the levels and distributions of cathepsinD and cystatinB and-C indicate a role of these proteins in the degeneration of motor neurons in ALS.

  • 29. You, Z-B
    et al.
    Herrera-Marschitz, M
    Pettersson, E
    Nylander, Ingrid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Goiny, M
    Shou, H.-Z
    Kehr, J
    Godukhin, O
    Hokfelt, T
    Terenius, L
    Ungerstedt, U
    Modulation of neurotransmitter release by cholecystokinin in neostriatum and substantia nigra of the rat: regional and receptor specificity1996In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 74, no 3, 793-804 p.Article in journal (Refereed)
    Abstract [en]

    The effect of cholecystokinin peptides on the release of dynorphin B, aspartate, glutamate, dopamine and GABA in the neostriatum and substantia nigra of the rat was investigated using in vivo microdialysis. Sulphated cholecystokinin-8S in the dialysis perfusate (1-100 microM) induced a concentration-dependent increase in extracellular dynorphin B and aspartate levels, both in the neostriatum and substantia nigra. Striatal dopamine levels were only increased by 100 microM of cholecystokinin-8S, while in the substantia nigra they were increased by 10-100 microM of cholecystokinin-8S. Extracellular GABA and glutamate levels were increased following 100 microM of cholecystokinin-8S only. Striatal cholecystokinin-8S administration also produced a significant increase in nigral dynorphin B levels. Local cholecystokinin-4 (100 microM) produced a moderate, but significant, increase of extracellular dynorphin B and aspartate levels in the neostriatum and substantia nigra. No effect was observed on the other neurotransmitters investigated. A 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway did not affect the increases in dynorphin B and aspartate levels produced by local administration of cholecystokinin-8S. Basal extracellular GABA levels were increased significantly in both the neostriatum and substantia nigra ipsilateral to the lesion. Nigral glutamate and aspartate levels were also increased in the lesioned substantia nigra, but in the lesioned neostriatum aspartate levels were decreased. The cholecystokinin-B antagonist L-365,260 (20 mg/kg, s.c.), but not the cholecystokinin-A antagonist L-364,718 (devazepide; 20 mg/kg, s.c.), significantly inhibited the effect of cholecystokinin-8S on striatal dynorphin B and aspartate levels. In the substantia nigra, however, the effect of cholecystokinin-8S on dynorphin B and aspartate levels was inhibited to a similar extent by both L-365,260 and L-364,718. Pretreatment with L-364,718, but not with L-365.260, prevented the increase in nigral dopamine levels produced by nigral cholecystokinin-8S administration. Taken together, these results suggest that cholecystokinin-8S modulates dynorphin B and aspartate release in the neostriatum and substantia nigra of the rat via different receptor mechanisms. In the neostriatum, the effect of cholecystokinin-8S on dynorphin B and aspartate release is mediated via the cholecystokinin-B receptor subtype, while in the substantia nigra, cholecystokinin-8S modulates dynorphin B and aspartate release via both cholecystokinin-A and cholecystokinin-B receptor subtypes. Cholecystokinin-8S modulates dopamine release mainly in the substantia nigra, via the cholecystokinin-A receptor subtype.

1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf