Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1234567 1 - 50 of 1015
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abazov, V. M.
    et al.
    Abbott, B.
    Aboline, M.
    Acharya, B. S.
    Adams, M.
    Adams, T.
    Aguilo, E.
    Ahn, S. H.
    Ahsan, M.
    Alexeev, G. D.
    Alkhazov, G.
    Alton, A.
    Alverson, G.
    Alves, G. A.
    Anastasoaie, M.
    Ancu, L. S.
    Andeen, T.
    Anderson, S.
    Andrieu, B.
    Anzelc, M. S.
    Arnoud, Y.
    Arov, M.
    Askew, A.
    Åsman, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Assis Jesus, A. C. S.
    Atramentov, O.
    Autermann, C.
    Avila, C.
    Ay, C.
    Badaud, F.
    Baden, A.
    Bagby, L.
    Baldin, B.
    Bandurin, D. V.
    Banerjee, P.
    Banerjee, S.
    Barberis, E.
    Bargassa, P.
    Baringer, P.
    Barnes, C.
    Barreto, J.
    Bartlett, J. F.
    Bassler, U.
    Bauer, D.
    Beale, S.
    Bean, A.
    Begalli, M.
    Begel, M.
    Belanger-Champagne, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Bellantoni, L.
    Bellavance, A.
    Benitez, J. A.
    Beri, S. B.
    Bernardi, G.
    Bernhard, R.
    Berntzon, L.
    Bertram, I.
    Besancon, M.
    Beuselinck, R.
    Bezzubov, V. A.
    Bhat, P. C.
    Bhatnagar, V.
    Binder, M.
    Biscarat, C.
    Blackler, I.
    Blazey, G.
    Blekman, F.
    Blessing, S.
    Bloch, D.
    Bloom, K.
    Boehnlein, A.
    Boline, D.
    Bolton, T. A.
    Borissov, G.
    Bos, K.
    Bose, T.
    Brandt, A.
    Brock, R.
    Brooijmans, G.
    Bross, A.
    Brown, D.
    Buchanan, N. J.
    Buchholz, D.
    Buehler, M.
    Buescher, V.
    Burdin, S.
    Burke, S.
    Burnett, T. H.
    Busato, E.
    Buszello, C. P.
    Butler, J. M.
    Calfayan, P.
    Calvet, S.
    Cammin, J.
    Caron, S.
    Carvalho, W.
    Casey, B. C. K.
    Cason, N. M.
    Castilla-Valdez, H.
    Chakrabarti, S.
    Chakraborty, D.
    Chan, K. M.
    Chandra, A.
    Charles, F.
    Cheu, E.
    Chevallier, F.
    Cho, D. K.
    Choi, S.
    Choudhary, B.
    Christofek, L.
    Claes, D.
    Clement, B.
    Clement, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Coadou, Y.
    Cooke, M.
    Cooper, M.
    Corcoran, M.
    Couderc, F.
    Cousinou, M. -C
    Cox, B.
    Crepe-Renaudin, S
    Cutts, D.
    Cwiok, M.
    da Motta, H.
    Das, A.
    Das, M.
    Davies, B.
    Davies, G.
    De, K.
    de Jong, P.
    de Jong, S.
    De La Cruz-Burelo, E.
    De Olivera Martins, C.
    Degenhardt, J. D.
    Deliot, F.
    Demarteau, M.
    Demina, R.
    Denisov, D.
    Denisov, S. P.
    Desai, S.
    Diehl, H. T.
    Diesburg, M.
    Doidge, M.
    Dominguez, A.
    Dong, H.
    Dudko, L. V.
    Duflot, L.
    Dugad, S. R.
    Duggan, D.
    Duperrin, A.
    Dyer, J.
    Dyshkant, A.
    Eads, M.
    Edmunds, D.
    Ellison, J.
    Elvira, V. D.
    Enari, Y.
    Eno, S.
    Ermolov, P.
    Evans, H.
    Evdokimov, A.
    Feligioni, L.
    Ferapontov, A. V.
    Ferbel, T.
    Fiedler, F.
    Flithaut, F.
    Fisher, W.
    Fisk, H. E.
    Ford, M.
    Fortner, M.
    Fox, H.
    Fu, S.
    Fuess, S.
    Gadfort, T.
    Galea, C. F.
    Gallas, E.
    Galyaev, E.
    Garcia, C.
    Garcia-Bellido, A.
    Gavrilov, V.
    Gay, A.
    Gay, P.
    Geist, W.
    Gele, D.
    Gelhaus, R.
    Gerber, C. E.
    Gershtein, Y.
    Gillberg, D.
    Ginther, G.
    Gollub, N.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Gomez, B.
    Goussiou, A.
    Grannis, P. D.
    Greenlee, H.
    Greenwood, Z. D.
    Gregores, E. M.
    Grenier, G.
    Gris, Ph.
    Grivaz, J. -F
    Grohsjean, A.
    Grunendahl, S.
    Grunewald, M. W.
    Guo, F.
    Guo, J.
    Gutierrez, G.
    Gutierrez, P.
    Haas, A.
    Hadley, N. J.
    Haefner, P.
    Hagopian, S.
    Haley, J.
    Hall, I.
    Hall, R. E.
    Han, L.
    Hanagaki, K.
    Hansson, P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Harder, K.
    Harel, A.
    Harrington, R.
    Hauptman, J. M.
    Hauser, R.
    Hays, J.
    Hebbeker, T.
    Hedin, D.
    Hegeman, J. G.
    Heinmiller, J. M.
    Heinson, A. P.
    Heintz, U.
    Hensel, C.
    Herner, K.
    Hesketh, G.
    Hildreth, M. D.
    Hirosky, R.
    Hobbs, J. D.
    Hoeneisen, B.
    Hoeth, H.
    Hohlfed, M.
    Hong, S. J.
    Hooper, R.
    Houben, P.
    Hu, Y.
    Hubacek, Z.
    Hynek, V.
    Iashvili, I.
    Illingworth, R.
    Ito, A. S.
    Jabeen, S.
    Jaffre, M.
    Jain, S.
    Jakobs, K.
    Jarvis, C.
    Jenkins, A.
    Jesik, R.
    Johns, K.
    Johnson, C.
    Johnson, M.
    Jonckheere, A.
    Jonsson, P.
    Juste, A.
    Kaefer, D.
    Kahn, S.
    Kajfasz, E.
    Kalinin, A. M.
    Kalk, J. M.
    Kalk, J. R.
    Kappler, S.
    Karmanov, D.
    Kasper, D.
    Kasper, P.
    Katsanos, I.
    Kau, D.
    Kaur, R.
    Kehoe, R.
    Kermiche, S.
    Khalatyan, N.
    Khanov, A.
    Kharchilava, A.
    Karzheev, Y. M.
    Khatidze, D.
    Kim, H.
    Kim, T. J.
    Kirby, M. H.
    Klima, B.
    Kohli, J. M.
    Konrath, J. -P
    Kopal, M.
    Korablev, V. M.
    Kotcher, J.
    Kothari, B.
    Koubarovsky, A.
    Kozelov, A. V.
    Krop, D.
    Kryemadhi, A.
    Kuhl, T.
    Kumar, A.
    Kunori, S.
    Kupco, A.
    Kurca, T.
    Kvita, J.
    Lam, D.
    Lammers, S.
    Landsberg, G.
    Lazoflores, J.
    Le Bihan, A. -C
    Lebrun, P.
    Lee, W. M.
    Leflat, A.
    Lehner, F.
    Lesne, V.
    Leveque, J.
    Lewis, P.
    Li, J.
    Li, L.
    Li, Q. Z.
    Lietti, S. M.
    Lima, J. G. R.
    Lincoln, D.
    Linnemann, J.
    Lipaev, V. V.
    Lipton, R.
    Liu, Z.
    Lobo, L.
    Lobodenko, A.
    Lokajicek, M.
    Lounis, A.
    Love, P.
    Lubatti, H. J.
    Lynker, M.
    Lyon, A. L.
    Maciel, A. K. A.
    Madaras, R. J.
    Maettig, P.
    Magass, C.
    Magerkurth, A.
    Makovec, N.
    Mal, P. K.
    Malbouisson, H. B.
    Mailk, S.
    Malyshev, V. L.
    Mao, H. S.
    Maravin, Y.
    McCarthy, R.
    Melnitchouk, A.
    Mendes, A.
    Mendoza, L.
    Mercadante, P. G.
    Merkin, M.
    Merritt, K. W.
    Meyer, A.
    Meyer, J.
    Michaut, M.
    Miettinen, H.
    Millet, T.
    Mitrevski, J.
    Molina, J.
    Mommsen, R. K.
    Mondal, N. K.
    Monk, J.
    Moore, R. W.
    Moulik, T.
    Muanza, G. S.
    Mulders, M.
    Mulhearn, M.
    Mundal, O.
    Mundim, L.
    Nagy, E.
    Naimuddin, M.
    Narain, M.
    Naumann, N. A.
    Neal, H. A.
    Negret, J. P.
    Neustroev, P.
    Noeding, C.
    Nomerotski, A.
    Novaes, S. F.
    Nunnemenn, T.
    O'Dell, V.
    O'Neil, D. C.
    Obrant, G.
    Ochando, C.
    Oguri, V.
    Oliveira, N.
    Onoprienko, D.
    Oshima, N.
    Osta, J.
    Otec, R.
    Otero y Garzon, G. J.
    Owen, M.
    Padely, P.
    Pangilinan, M.
    Parashar, N.
    Park, S. -J
    Park, S. K.
    Parsons, J.
    Partridge, R.
    Parua, N.
    Patwa, A.
    Pawloski, G.
    Perea, P. M.
    Peters, K.
    Peters, Y.
    Petroff, P.
    Petteni, M.
    Piegaia, R.
    Piper, J.
    Pleier, M. -A
    Podesta-Lerma, P. L. M.
    Podstavkov, V. M.
    Pogorelov, Y.
    Pol, M. -E
    Pompos, A.
    Pope, B. G.
    Potter, C.
    Prado da Silva, W. L.
    Prosper, H. B.
    Protopopescu, S.
    Qian, J.
    Quadt, A.
    Quinn, B.
    Rangel, M. S.
    Rani, K. J.
    Ranjan, K.
    Ratoff, P. N.
    Renkel, P.
    Reucroft, S.
    Rijssenbeek, M.
    Ripp-Baudot, I.
    Ritzatdinova, F.
    Robinson, S.
    Rodrigues, R. F.
    Royon, C.
    Rubinov, P.
    Ruchti, R.
    Sajot, G.
    Sanchez-Hernandez, A.
    Sanders, M. P.
    Santoro, A.
    Savage, G.
    Sawyer, L.
    Scanlon, T.
    Schaile, D.
    Schamberger, R. D.
    Scheglov, Y.
    Schellman, H.
    Schieferdecker, P.
    Schmitt, C.
    Schwanenberger, C.
    Schwartzman, A.
    Schwienhorst, R.
    Sekaric, J.
    Sengupta, S.
    Severini, H.
    Shabalina, E.
    Shamim, M.
    Shary, V.
    Shchukin, A. A.
    Shivpuri, R. K.
    Shpakov, D.
    Siccardi, V.
    Sidwell, R. A.
    Simak, V.
    Sirotenko, V.
    Skubic, P.
    Slattery, P.
    Smith, R. P.
    Snow, G. R.
    Snow, J.
    Snyder, S.
    Soeldner-Rembold, S.
    Song, X.
    Sonnenschein, L.
    Sopczak, A.
    Sosebee, M.
    Soustruznik, K.
    Souza, M.
    Spurlock, B.
    Stark, J.
    Steele, J.
    Stolin, V.
    Stone, A.
    Stoyanova, D. A.
    Strandberg, J.
    Strandberg, S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Strang, M. A.
    Strauss, M.
    Stroehmer, R.
    Strom, D.
    Strovink, M.
    Stutte, L.
    Sumowidagdo, S.
    Svoisky, P.
    Szajder, A.
    Talby, M.
    Tamburello, P.
    Taylor, W.
    Telford, P.
    Temple, J.
    Tiller, B.
    Titov, B.
    Tokmenin, V. V.
    Tomoto, M.
    Toole, T.
    Torchiani, I.
    Trefzger, T.
    Trincaz-Duvoid, S.
    Tsybychev, D.
    Tuchming, B.
    Tully, C.
    Tuts, P. M.
    Unalan, R.
    Uvarov, L.
    Uvarov, S.
    Uzunyan, S.
    Vachon, B.
    van den Berg, P. J.
    van Eijk, B.
    van Kooten, R.
    van Leeuwen, W. M.
    Varelas, N.
    Varnes, E. W.
    Vartapetian, E. W.
    Vasilyev, I. A.
    Vaupel, M.
    Verdier, P.
    Vertogradov, L. S.
    Verzocchi, M.
    Villeneuve-Seguier, F.
    Vint, P.
    Vlimat, J. -R
    von Toerne, E.
    Voutilainen, M.
    Vreeswijk, M.
    Wahl, W. D.
    Wang, L.
    Wang, M. H. L. S.
    Warchol, J.
    Watts, G.
    Wayne, M.
    Weber, G.
    Weber, M.
    Weerts, H.
    Wermes, N.
    Wetstein, M.
    White, A.
    Wicke, D.
    Wilson, G. W.
    Wimpenny, S. J.
    Wobisch, M.
    Womersley, J.
    Wood, D. R.
    Wyatt, T. R.
    Xie, Y.
    Yacoob, S.
    Yamada, R.
    Yan, M.
    Yasuda, T.
    Yatsunenko, Y. A.
    Yip, K.
    Yoo, H. D.
    Youn, S. W.
    Yu, C.
    Yu, J.
    Yurkewicz, A.
    Zatserklyaniy, A.
    Zeitnitz, C.
    Zhang, D.
    Zhao, T.
    Zhou, B.
    Zhu, J.
    Zielinsko, M.
    Zieminska, D.
    Zieminski, A.
    Zielinski, M.
    Zieminska, A.
    Zutshi, V.
    Zverev, E. G.
    Measurement of the p(p)over-bar -> t(t)over-bar + X production cross section at root s=1.96 TeV in the fully hadronic decay channel2007In: Physical Review D - Particles, Fields, Gravitation and Cosmology, ISSN 1550-7998, Vol. 76, no 7, p. 072007-Article in journal (Refereed)
    Abstract [en]

    A measurement of the top quark pair production cross section in proton antiproton collisions at an interaction energy of root s=1.96 TeV is presented. This analysis uses 405 +/- 25 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic t (t) over bar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The t (t) over bar cross section is measured as sigma(t (t) over bar)=4.5(-1.9)(+2.0)(stat)(-1.1)(+1.4)(syst)+/- 0.3(lumi) pb for a top quark mass of m(t)=175 GeV/c(2).

  • 2. Abazov, V. M.
    et al.
    Abbott, B.
    Abolins, M.
    Acharya, B. S.
    Adams, M.
    Adams, T.
    Aguilo, E.
    Ahn, S. H.
    Ahsan, M.
    Alexeev, G. D.
    Alkhazov, G.
    Alton, A.
    Alverson, G.
    Alves, G. A.
    Anastasoaie, M.
    Ancu, L. S.
    Andeen, T.
    Anderson, S.
    Andrieu, B.
    Anzelc, M. S.
    Arnoud, Y.
    Arov, M.
    Arthaud, M.
    Askew, A.
    Åsman, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Jesus, A. C. S. Assis
    Atramentov, O.
    Autermann, C.
    Avila, C.
    Ay, C.
    Badaud, F.
    Baden, A.
    Bagby, L.
    Baldin, B.
    Bandurin, D. V.
    Banerjee, P.
    Banerjee, S.
    Barberis, E.
    Barfuss, A. -F
    Bargassa, P.
    Baringer, P.
    Barreto, J.
    Bartlett, J. F.
    Bassler, U.
    Bauer, D.
    Beale, S.
    Bean, A.
    Begalli, M.
    Begel, M.
    Belanger-Champagne, Camille
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Bellantoni, L.
    Bellavance, A.
    Benitez, J. A.
    Beri, S. B.
    Bernardi, G.
    Bernhard, R.
    Berntzon, L.
    Bertram, I.
    Besancon, M.
    Beuselinck, R.
    Bezzubov, V. A.
    Bhat, P. C.
    Bhatnagar, V.
    Biscarat, C.
    Blazey, G.
    Blekman, F.
    Blessing, S.
    Bloch, D.
    Bloom, K.
    Boehnlein, A.
    Boline, D.
    Bolton, T. A.
    Borissov, G.
    Bos, K.
    Bose, T.
    Brandt, A.
    Brock, R.
    Brooijmans, G.
    Bross, A.
    Brown, D.
    Buchanan, N. J.
    Buchholz, D.
    Buehler, M.
    Buescher, V.
    Burdin, S.
    Burke, S.
    Burnett, T. H.
    Buszello, C. P.
    Butler, J. M.
    Calfayan, P.
    Calvet, S.
    Cammin, J.
    Caron, S.
    Carvalho, W.
    Casey, B. C. K.
    Cason, N. M.
    Castilla-Valdez, H.
    Chakrabarti, S.
    Chakraborty, D.
    Chan, K.
    Chan, K. M.
    Chandra, A.
    Charles, F.
    Cheu, E.
    Chevallier, F.
    Cho, D. K.
    Choi, S.
    Choudhary, B.
    Christofek, L.
    Christoudias, T.
    Cihangir, S.
    Claes, D.
    Clement, B.
    Clement, C.
    Coadou, Y.
    Cooke, M.
    Cooper, W. E.
    Corcoran, M.
    Couderc, F.
    Cousinou, M. -C
    Crepe-Renaudin, S.
    Cutts, D.
    Cwiok, M.
    da Motta, H.
    Das, A.
    Davies, G.
    De, K.
    de Jong, P.
    de Jong, S. J.
    De la Cruz-Burelo, E.
    Martins, C. De Oliveira
    Degenhardt, J. D.
    Deliot, F.
    Demarteau, M.
    Demina, R.
    Denisov, D.
    Denisov, S. P.
    Desai, S.
    Diehl, H. T.
    Diesburg, M.
    Dominguez, A.
    Dong, H.
    Dudko, L. V.
    Duflot, L.
    Dugad, S. R.
    Duggan, D.
    Duperrin, A.
    Dyer, J.
    Dyshkant, A.
    Eads, M.
    Edmunds, D.
    Ellison, J.
    Elvira, V. D.
    Enari, Y.
    Eno, S.
    Ermolov, P.
    Evans, H.
    Evdokimov, A.
    Evdokimov, V. N.
    Ferapontov, A. V.
    Ferbel, T.
    Fiedler, F.
    Filthaut, F.
    Fisher, W.
    Fisk, H. E.
    Ford, M.
    Fortner, M.
    Fox, H.
    Fu, S.
    Fuess, S.
    Gadfort, T.
    Galea, C. F.
    Gallas, E.
    Galyaev, E.
    Garcia, C.
    Garcia-Bellido, A.
    Gavrilov, V.
    Gay, P.
    Geist, W.
    Gele, D.
    Gerber, C. E.
    Gershtein, Y.
    Gillberg, D.
    Ginther, G.
    Gollub, N.
    Gomez, B.
    Goussiou, A.
    Grannis, P. D.
    Greenlee, H.
    Greenwood, Z. D.
    Gregores, E. M.
    Grenier, G.
    Gris, Ph.
    Grivaz, J. -F
    Grohsjean, A.
    Grunendahl, S.
    Grunewald, M. W.
    Guo, F.
    Guo, J.
    Gutierrez, G.
    Gutierrez, P.
    Haas, A.
    Hadley, N. J.
    Haefner, P.
    Hagopian, S.
    Haley, J.
    Hall, I.
    Hall, R. E.
    Han, L.
    Hanagaki, K.
    Hansson, P.
    Harder, K.
    Harel, A.
    Harrington, R.
    Hauptman, J. M.
    Hauser, R.
    Hays, J.
    Hebbeker, T.
    Hedin, D.
    Hegeman, J. G.
    Heinmiller, J. M.
    Heinson, A. P.
    Heintz, U.
    Hensel, C.
    Herner, K.
    Hesketh, G.
    Hildreth, M. D.
    Hirosky, R.
    Hobbs, J. D.
    Hoeneisen, B.
    Hoeth, H.
    Hohlfeld, M.
    Hong, S. J.
    Hooper, R.
    Hossain, S.
    Houben, P.
    Hu, Y.
    Hubacek, Z.
    Hynek, V.
    Iashvili, I.
    Illingworth, R.
    Ito, A. S.
    Jabeen, S.
    Jaffre, M.
    Jain, S.
    Jakobs, K.
    Jarvis, C.
    Jesik, R.
    Johns, K.
    Johnson, C.
    Johnson, M.
    Jonckheere, A.
    Jonsson, P.
    Juste, A.
    Kafer, D.
    Kahn, S.
    Kajfasz, E.
    Kalinin, A. M.
    Kalk, J. M.
    Kalk, J. R.
    Kappler, S.
    Karmanov, D.
    Kasper, J.
    Kasper, P.
    Katsanos, I.
    Kau, D.
    Kaur, R.
    Kaushik, V.
    Kehoe, R.
    Kermiche, S.
    Khalatyan, N.
    Khanov, A.
    Kharchilava, A.
    Kharzheev, Y. M.
    Khatidze, D.
    Kim, H.
    Kim, T. J.
    Kirby, M. H.
    Kirsch, M.
    Klima, B.
    Kohli, J. M.
    Konrath, J. -P
    Kopal, M.
    Korablev, V. M.
    Kothari, B.
    Kozelov, A. V.
    Krop, D.
    Kryemadhi, A.
    Kuhl, T.
    Kumar, A.
    Kunori, S.
    Kupco, A.
    Kurca, T.
    Kvita, J.
    Lam, D.
    Lammers, S.
    Landsberg, G.
    Lazoflores, J.
    Lebrun, P.
    Lee, W. M.
    Leflat, A.
    Lehner, F.
    Lellouch, J.
    Lesne, V.
    Leveque, J.
    Lewis, P.
    Li, J.
    Li, L.
    Li, Q. Z.
    Lietti, S. M.
    Lima, J. G. R.
    Lincoln, D.
    Linnemann, J.
    Lipaev, V. V.
    Lipton, R.
    Liu, Y.
    Liu, Z.
    Lobo, L.
    Lobodenko, A.
    Lokajicek, M.
    Lounis, A.
    Love, P.
    Lubatti, H. J.
    Lyon, A. L.
    Maciel, A. K. A.
    Mackin, D.
    Madaras, R. J.
    Mattig, P.
    Magass, C.
    Magerkurth, A.
    Makovec, N.
    Mal, P. K.
    Malbouisson, H. B.
    Malik, S.
    Malyshev, V. L.
    Mao, H. S.
    Maravin, Y.
    Martin, B.
    McCarthy, R.
    Melnitchouk, A.
    Mendes, A.
    Mendoza, L.
    Mercadante, P. G.
    Merkin, M.
    Merritt, K. W.
    Meyer, A.
    Meyer, J.
    Michaut, M.
    Millet, T.
    Mitrevski, J.
    Molina, J.
    Mommsen, R. K.
    Mondal, N. K.
    Moore, R. W.
    Moulik, T.
    Muanza, G. S.
    Mulders, M.
    Mulhearn, M.
    Mundal, O.
    Mundim, L.
    Nagy, E.
    Naimuddin, M.
    Narain, M.
    Naumann, N. A.
    Neal, H. A.
    Negret, J. P.
    Neustroev, P.
    Nilsen, H.
    Noeding, C.
    Nomerotski, A.
    Novaes, S. F.
    Nunnemann, T.
    O'Dell, V.
    O'Neil, D. C.
    Obrant, G.
    Ochando, C.
    Onoprienko, D.
    Oshima, N.
    Osta, J.
    Otec, R.
    Otero Y Garzon, G. J.
    Owen, M.
    Padley, P.
    Pangilinan, M.
    Parashar, N.
    Park, S. -J
    Park, S. K.
    Parsons, J.
    Partridge, R.
    Parua, N.
    Patwa, A.
    Pawloski, G.
    Perea, P. M.
    Peters, K.
    Peters, Y.
    Petroff, P.
    Petteni, M.
    Piegaia, R.
    Piper, J.
    Pleier, M. -A
    Podesta-Lerma, P. L. M.
    Podstavkov, V. M.
    Pogorelov, Y.
    Pol, M. -E
    Pompos, A.
    Pope, B. G.
    Popov, A. V.
    Potter, C.
    da Silva, W. L. Prado
    Prosper, H. B.
    Protopopescu, S.
    Qian, J.
    Quadt, A.
    Quinn, B.
    Rakitine, A.
    Rangel, M. S.
    Rani, K. J.
    Ranjan, K.
    Ratoff, P. N.
    Renkel, P.
    Reucroft, S.
    Rich, P.
    Rijssenbeek, M.
    Ripp-Baudot, I.
    Rizatdinova, F.
    Robinson, S.
    Rodrigues, R. F.
    Royon, C.
    Rubinov, P.
    Ruchti, R.
    Safronov, G.
    Sajot, G.
    Sanchez-Hernandez, A.
    Sanders, M. P.
    Santoro, A.
    Savage, G.
    Sawyer, L.
    Scanlon, T.
    Schaile, D.
    Schamberger, R. D.
    Scheglov, Y.
    Schellman, H.
    Schieferdecker, P.
    Schliephake, T.
    Schmitt, C.
    Schwanenberger, C.
    Schwartzman, A.
    Schwienhorst, R.
    Sekaric, J.
    Sengupta, S.
    Severini, H.
    Shabalina, E.
    Shamim, M.
    Shary, V.
    Shchukin, A. A.
    Shivpuri, R. K.
    Shpakov, D.
    Siccardi, V.
    Simak, V.
    Sirotenko, V.
    Skubic, P.
    Slattery, P.
    Smirnov, D.
    Smith, R. P.
    Snow, G. R.
    Snow, J.
    Snyder, S.
    Soldner-Rembold, S.
    Sonnenschein, L.
    Sopczak, A.
    Sosebee, M.
    Soustruznik, K.
    Souza, M.
    Spurlock, B.
    Stark, J.
    Steele, J.
    Stolin, V.
    Stone, A.
    Stoyanova, D. A.
    Strandberg, J.
    Strandberg, S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Strang, M. A.
    Strauss, M.
    Strohner, R.
    Strom, D.
    Strovink, M.
    Stutte, L.
    Sumowidagdo, S.
    Svoisky, P.
    Sznajder, A.
    Talby, M.
    Tamburello, P.
    Tanasijczuk, A.
    Taylor, W.
    Telford, P.
    Temple, J.
    Tiller, B.
    Tissandier, F.
    Titov, M.
    Tokmenin, V. V.
    Tomoto, M.
    Toole, T.
    Torchiani, I.
    Trefzger, T.
    Tsybychev, D.
    Tuchming, B.
    Tully, C.
    Tuts, P. M.
    Unalan, R.
    Uvarov, L.
    Uvarov, S.
    Uzunyan, S.
    Vachon, B.
    van den Berg, P. J.
    van Eijk, B.
    Van Kooten, R.
    Vertogradov, L. S.
    Verzocchi, M.
    Villeneuve-Seguier, F.
    Vint, P.
    Von Toerne, E.
    Voutilainen, M.
    Vreeswijk, M.
    Wagner, R.
    Wahl, H. D.
    Wang, L.
    Wang, M. H. L. S.
    Warchol, J.
    Watts, G.
    Wayne, M.
    Weber, G.
    Weber, M.
    Weerts, H.
    Wenger, A.
    Wermes, N.
    Wetstein, M.
    White, A.
    Wicke, D.
    Wilson, G. W.
    Wimpenny, S. J.
    Wobisch, M.
    Wood, D. R.
    Wyatt, T. R.
    Xie, Y.
    Yacoob, S.
    Yamada, R.
    Yan, M.
    Yasuda, T.
    Yatsunenko, Y. A.
    Yip, K.
    Yoo, H. D.
    Youn, S. W.
    Yu, C.
    Yu, J.
    Yurkewicz, A.
    Zatserklyaniy, A.
    Zeitnitz, C.
    Zhang, D.
    Zhao, T.
    Zhou, B.
    Zhu, J.
    Zielinski, M.
    Zieminska, D.
    Zieminski, A.
    Zivkovic, L.
    Zutshi, V.
    Zverev, E. G.
    Search for stopped gluinos from p(p)over-bar collisions at root s=1.96 TeV2007In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 99, no 13, p. 131801-Article in journal (Refereed)
    Abstract [en]

    Long-lived, heavy particles are predicted in a number of models beyond the standard model of particle physics. We present the first direct search for such particles' decays, occurring up to 100 h after their production and not synchronized with an accelerator bunch crossing. We apply the analysis to the gluino (g), predicted in split supersymmetry, which after hadronization can become charged and lose enough momentum through ionization to come to rest in dense particle detectors. Approximately 410 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector during Run II of the Fermilab Tevatron collider are analyzed in search of such "stopped gluinos" decaying into a gluon and a neutralino ((chi) over tilde (0)(1)). Limits are placed on the (gluino cross section) x (probability to stop) x [BR((g) over tilde -> g (chi) over tilde (0)(1))] as a function of the gluino and (chi) over tilde (0)(1) masses, for gluino lifetimes from 30 mu s-100 h.

  • 3. Abazov, V. M.
    et al.
    Abbott, B.
    Abolins, M.
    Acharya, B. S.
    Adams, M.
    Adams, T.
    Aguilo, E.
    Ahn, S. H.
    Ahsan, M.
    Alexeev, G. D.
    Alkhazov, G.
    Alton, A.
    Alverson, G.
    Alves, G. A.
    Anastasoaie, M.
    Ancu, L. S.
    Andeen, T.
    Anderson, S.
    Andrieu, B.
    Anzelc, M. S.
    Arnoud, Y.
    Arov, M.
    Arthaud, M.
    Askew, A.
    Åsman, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Jesus, A. C. S. Assis
    Atramentov, O.
    Autermann, C.
    Avila, C.
    Ay, C.
    Badaud, F.
    Baden, A.
    Bagby, L.
    Baldin, B.
    Bandurin, D. V.
    Banerjee, S.
    Banerjee, P.
    Barberis, E.
    Barfuss, A. -F
    Bargassa, P.
    Baringer, P.
    Barreto, J.
    Bartlett, J. F.
    Bassler, U.
    Bauer, D.
    Beale, S.
    Bean, A.
    Begalli, M.
    Begel, M.
    Belanger-Champagne, Camille
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Bellantoni, L.
    Bellavance, A.
    Benitez, J. A.
    Beri, S. B.
    Bernardi, G.
    Bernhard, R.
    Berntzon, L.
    Bertram, I.
    Besancon, M.
    Beuselinck, R.
    Bezzubov, V. A.
    Bhat, P. C.
    Bhatnagar, V.
    Biscarat, C.
    Blazey, G.
    Blekman, F.
    Blessing, S.
    Bloch, D.
    Bloom, K.
    Boehnlein, A.
    Boline, D.
    Bolton, T. A.
    Borissov, G.
    Bos, K.
    Bose, T.
    Brandt, A.
    Brock, R.
    Brooijmans, G.
    Bross, A.
    Brown, D.
    Buchanan, N. J.
    Buchholz, D.
    Buehler, M.
    Buescher, V.
    Burdin, S.
    Burke, S.
    Burnett, T. H.
    Buszello, C. P.
    Butler, J. M.
    Calfayan, P.
    Calvet, S.
    Cammin, J.
    Caron, S.
    Carvalho, W.
    Casey, B. C. K.
    Cason, N. M.
    Castilla-Valdez, H.
    Chakrabarti, S.
    Chakraborty, D.
    Chan, K. M.
    Chan, K.
    Chandra, A.
    Charles, F.
    Cheu, E.
    Chevallier, F.
    Cho, D. K.
    Choi, S.
    Choudhary, B.
    Christofek, L.
    Christoudias, T.
    Cihangir, S.
    Claes, D.
    Clement, C.
    Clement, B.
    Coadou, Y.
    Cooke, M.
    Cooper, W. E.
    Corcoran, M.
    Couderc, F.
    Cousinou, M. -C
    Crepe-Renaudin, S.
    Cutts, D.
    Cwiok, M.
    da Motta, H.
    Das, A.
    Davies, G.
    De, K.
    de Jong, S. J.
    de Jong, P.
    De La Cruz-Burelo, E.
    Martins, C. De Oliveira
    Degenhardt, J. D.
    Deliot, F.
    Demarteau, M.
    Demina, R.
    Denisov, D.
    Denisov, S. P.
    Desai, S.
    Diehl, H. T.
    Diesburg, M.
    Dominguez, A.
    Dong, H.
    Dudko, L. V.
    Duflot, L.
    Dugad, S. R.
    Duggan, D.
    Duperrin, A.
    Dyer, J.
    Dyshkant, A.
    Eads, M.
    Edmunds, D.
    Ellison, J.
    Elvira, V. D.
    Enari, Y.
    Eno, S.
    Ermolov, P.
    Evans, H.
    Evdokimov, A.
    Evdokimov, V. N.
    Ferapontov, A. V.
    Ferbel, T.
    Fiedler, F.
    Filthaut, F.
    Fisher, W.
    Fisk, H. E.
    Ford, M.
    Fortner, M.
    Fox, H.
    Fu, S.
    Fuess, S.
    Gadfort, T.
    Galea, C. F.
    Gallas, E.
    Galyaev, E.
    Garcia, C.
    Garcia-Bellido, A.
    Gavrilov, V.
    Gay, P.
    Geist, W.
    Gele, D.
    Gerber, C. E.
    Gershtein, Y.
    Gillberg, D.
    Ginther, G.
    Gollub, N.
    Gomez, B.
    Goussiou, A.
    Grannis, P. D.
    Greenlee, H.
    Greenwood, Z. D.
    Gregores, E. M.
    Grenier, G.
    Gris, Ph.
    Grivaz, J. -F
    Grohsjean, A.
    Gruenendahl, S.
    Gruenewald, M. W.
    Guo, J.
    Guo, F.
    Gutierrez, P.
    Gutierrez, G.
    Haas, A.
    Hadley, N. J.
    Haefner, P.
    Hagopian, S.
    Haley, J.
    Hall, I.
    Hall, R. E.
    Han, L.
    Hanagaki, K.
    Hansson, P.
    Harder, K.
    Harel, A.
    Harrington, R.
    Hauptman, J. M.
    Hauser, R.
    Hays, J.
    Hebbeker, T.
    Hedin, D.
    Hegeman, J. G.
    Heinmiller, J. M.
    Heinson, A. P.
    Heintz, U.
    Hensel, C.
    Herner, K.
    Hesketh, G.
    Hildreth, M. D.
    Hirosky, R.
    Hobbs, J. D.
    Hoeneisen, B.
    Hoeth, H.
    Hohlfeld, M.
    Hong, S. J.
    Hooper, R.
    Hossain, S.
    Houben, P.
    Hu, Y.
    Hubacek, Z.
    Hynek, V.
    Iashvili, I.
    Illingworth, R.
    Ito, A. S.
    Jabeen, S.
    Jaffre, M.
    Jain, S.
    Jakobs, K.
    Jarvis, C.
    Jesik, R.
    Johns, K.
    Johnson, C.
    Johnson, M.
    Jonckheere, A.
    Jonsson, P.
    Juste, A.
    Kaefer, D.
    Kahn, S.
    Kajfasz, E.
    Kalinin, A. M.
    Kalk, J. R.
    Kalk, J. M.
    Kappler, S.
    Karmanov, D.
    Kasper, J.
    Kasper, P.
    Katsanos, I.
    Kau, D.
    Kaur, R.
    Kaushik, V.
    Kehoe, R.
    Kermiche, S.
    Khalatyan, N.
    Khanov, A.
    Kharchilava, A.
    Kharzheev, Y. M.
    Khatidze, D.
    Kim, H.
    Kim, T. J.
    Kirby, M. H.
    Kirsch, M.
    Klima, B.
    Kohli, J. M.
    Konrath, J. -P
    Kopal, M.
    Korablev, V. M.
    Kothari, B.
    Kozelov, A. V.
    Krop, D.
    Kryemadhi, A.
    Kuhl, T.
    Kumar, A.
    Kunori, S.
    Kupco, A.
    Kurca, T.
    Kvita, J.
    Lacroix, F.
    Lam, D.
    Lammers, S.
    Landsberg, G.
    Lazoflores, J.
    Lebrun, P.
    Lee, W. M.
    Leflat, A.
    Lehner, F.
    Lellouch, J.
    Lesne, V.
    Leveque, J.
    Lewin, M.
    Lewis, P.
    Li, J.
    Li, Q. Z.
    Li, L.
    Lietti, S. M.
    Lima, J. G. R.
    Lincoln, D.
    Linnemann, J.
    Lipaev, V. V.
    Lipton, R.
    Liu, Y.
    Liu, Z.
    Lobo, L.
    Lobodenko, A.
    Lokajicek, M.
    Lounis, A.
    Love, P.
    Lubatti, H. J.
    Lyon, A. L.
    Maciel, A. K. A.
    Mackin, D.
    Madaras, R. J.
    Maettig, P.
    Magass, C.
    Magerkurth, A.
    Makovec, N.
    Mal, P. K.
    Malbouisson, H. B.
    Malik, S.
    Malyshev, V. L.
    Mao, H. S.
    Maravin, Y.
    Martin, B.
    McCarthy, R.
    Melnitchouk, A.
    Mendes, A.
    Mendoza, L.
    Mercadante, P. G.
    Merkin, M.
    Merritt, K. W.
    Meyer, J.
    Meyer, A.
    Michaut, M.
    Millet, T.
    Mitrevski, J.
    Molina, J.
    Mommsen, R. K.
    Mondal, N. K.
    Moore, R. W.
    Moulik, T.
    Muanza, G. S.
    Mulders, M.
    Mulhearn, M.
    Mundal, O.
    Mundim, L.
    Nagy, E.
    Naimuddin, M.
    Narain, M.
    Naumann, N. A.
    Neal, H. A.
    Negret, J. P.
    Neustroev, P.
    Nilsen, H.
    Nomerotski, A.
    Novaes, S. F.
    Nunnemann, T.
    O'Dell, V.
    O'Neil, D. C.
    Obrant, G.
    Ochando, C.
    Onoprienko, D.
    Oshima, N.
    Osta, J.
    Otec, R.
    Otero y Garzon, G. J.
    Owen, M.
    Padley, P.
    Pangilinan, M.
    Parashar, N.
    Park, S. -J
    Park, S. K.
    Parsons, J.
    Partridge, R.
    Parua, N.
    Patwa, A.
    Pawloski, G.
    Penning, B.
    Perea, P. M.
    Peters, K.
    Peters, Y.
    Petroff, P.
    Petteni, M.
    Piegaia, R.
    Piper, J.
    Pleier, M. -A
    Podesta-Lerma, P. L. M.
    Podstavkov, V. M.
    Pogorelov, Y.
    Pol, M. -E
    Polozov, P.
    Pompos, A.
    Pope, B. G.
    Popov, A. V.
    Potter, C.
    Prado da Silva, W. L.
    Prosper, H. B.
    Protopopescu, S.
    Qian, J.
    Quadt, A.
    Quinn, B.
    Rakitine, A.
    Rangel, M. S.
    Rani, K. J.
    Ranjan, K.
    Ratoff, P. N.
    Renkel, P.
    Reucroft, S.
    Rich, P.
    Rijssenbeek, M.
    Ripp-Baudot, I.
    Rizatdinova, F.
    Robinson, S.
    Rodrigues, R. F.
    Royon, C.
    Rubinov, P.
    Ruchti, R.
    Safronov, G.
    Sajot, G.
    Sanchez-Hernandez, A.
    Sanders, M. P.
    Santoro, A.
    Savage, G.
    Sawyer, L.
    Scanlon, T.
    Schaile, D.
    Schamberger, R. D.
    Scheglov, Y.
    Schellman, H.
    Schieferdecker, P.
    Schliephake, T.
    Schmitt, C.
    Schwanenberger, C.
    Schwartzman, A.
    Schwienhorst, R.
    Sekaric, J.
    Sengupta, S.
    Severini, H.
    Shabalina, E.
    Shamim, M.
    Shary, V.
    Shchukin, A. A.
    Shivpuri, R. K.
    Shpakov, D.
    Siccardi, V.
    Simak, V.
    Sirotenko, V.
    Skubic, P.
    Slattery, P.
    Smirnov, D.
    Smith, R. P.
    Snow, J.
    Snow, G. R.
    Snyder, S.
    Soeldner-Rembold, S.
    Sonnenschein, L.
    Sopczak, A.
    Sosebee, M.
    Soustruznik, K.
    Souza, M.
    Spurlock, B.
    Stark, J.
    Steele, J.
    Stolin, V.
    Stone, A.
    Stoyanova, D. A.
    Strandberg, J.
    Strandberg, S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Strang, M. A.
    Strauss, M.
    Strauss, E.
    Stroehmer, R.
    Strom, D.
    Strovink, M.
    Stutte, L.
    Sumowidagdo, S.
    Svoisky, P.
    Sznajder, A.
    Talby, M.
    Tamburello, P.
    Tanasijczuk, A.
    Taylor, W.
    Telford, P.
    Temple, J.
    Tiller, B.
    Tissandier, F.
    Titov, M.
    Tokmenin, V. V.
    Tomoto, M.
    Toole, T.
    Torchiani, I.
    Trefzger, T.
    Tsybychev, D.
    Tuchming, B.
    Tully, C.
    Tuts, P. M.
    Unalan, R.
    Uvarov, S.
    Uvarov, L.
    Uzunyan, S.
    Vachon, B.
    van den Berg, P. J.
    van Eijk, B.
    Van Kooten, R.
    van Leeuwen, W. M.
    Varelas, N.
    Varnes, E. W.
    Vartapetian, A.
    Vasilyev, I. A.
    Vaupel, M.
    Verdier, P.
    Vertogradov, L. S.
    Verzocchi, M.
    Villeneuve-Seguier, F.
    Vint, P.
    Vokac, P.
    Von Toerne, E.
    Voutilainen, M.
    Vreeswijk, M.
    Wagner, R.
    Wahl, H. D.
    Wang, L.
    Swang, M. H. L.
    Warchol, J.
    Watts, G.
    Wayne, M.
    Weber, M.
    Weber, G.
    Weerts, H.
    Wenger, A.
    Wermes, N.
    Wetstein, M.
    White, A.
    Wicke, D.
    Wilson, G. W.
    Wimpenny, S. J.
    Wobisch, M.
    Wood, D. R.
    Wyatt, T. R.
    Xie, Y.
    Yacoob, S.
    Yamada, R.
    Yan, M.
    Yasuda, T.
    Yatsunenko, Y. A.
    Yip, K.
    Yoo, H. D.
    Youn, S. W.
    Yu, J.
    Yu, C.
    Yurkewicz, A.
    Zatserklyaniy, A.
    Zeitnitz, C.
    Zhang, D.
    Zhao, T.
    Zhou, B.
    Zhu, J.
    Zielinski, M.
    Zieminska, D.
    Zieminski, A.
    Zivkovic, L.
    Zutshi, V.
    Zverev, E. G.
    Measurement of the Lambda(0)(b) lifetime using semileptonic decays2007In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 99, no 18, p. 182001-Article in journal (Refereed)
    Abstract [en]

    We report a measurement of the Lambda(0)(b) lifetime using a sample corresponding to 1.3 fb(-1) of data collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron collider. The Lambda(0)(b) baryon is reconstructed via the decay Lambda(0)(b)->mu(nu) over bar Lambda X-+(c). Using 4437 +/- 329 signal candidates, we measure the Lambda(0)(b) lifetime to be tau(Lambda(0)(b))=1.290(-0.110)(+0.119)(stat)(-0.091)(+0.087)(syst) ps, which is among the most precise measurements in semileptonic Lambda(0)(b) decays. This result is in good agreement with the world average value.

  • 4. Abazov, V. M.
    et al.
    Abbott, B.
    Abolins, M.
    Acharya, B. S.
    Adams, M.
    Adams, T.
    Aguilo, E.
    Ahn, S. H.
    Ahsan, M.
    Alexeev, G. D.
    Alkhazov, G.
    Alton, A.
    Alverson, G.
    Alves, G. A.
    Anastasoaie, M.
    Ancu, L. S.
    Andeen, T.
    Anderson, S.
    Anzelc, M. S.
    Aoki, M.
    Arnoud, Y.
    Arov, M.
    Arthaud, M.
    Askew, A.
    Åsman, B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Assis Jesus, A. C. S.
    Atramentov, O.
    Avila, C.
    Ay, C.
    Badaud, F.
    Baden, A.
    Bagby, L.
    Baldin, B.
    Bandurin, D. V.
    Banerjee, P.
    Banerjee, S.
    Barberis, E.
    Barfuss, A. -F
    Bargassa, P.
    Baringer, P.
    Barreto, J.
    Bartlett, J. F.
    Bassler, U.
    Bauer, D.
    Beale, S.
    Bean, A.
    Begalli, M.
    Begel, M.
    Belanger-Champagne, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Bellantoni, L.
    Bellavance, A.
    Benitez, J. A.
    Beri, S. B.
    Bernardi, G.
    Bernhard, R.
    Bertram, I.
    Besancon, M.
    Beuselinck, R.
    Bezzubov, V. A.
    Bhat, P. C.
    Bhatnagar, V.
    Biscarat, C.
    Blazey, G.
    Blekman, F.
    Blessing, S.
    Bloch, D.
    Bloom, K.
    Boehnlein, A.
    Boline, D.
    Bolton, T. A.
    Boos, E. E.
    Borissov, G.
    Bose, T.
    Brandt, A.
    Brock, R.
    Brooijmans, G.
    Bross, A.
    Brown, D.
    Buchanan, N. J.
    Buchholz, D.
    Buehler, M.
    Buescher, V.
    Bunichev, V.
    Burdin, S.
    Burke, S.
    Burnett, T. H.
    Buszello, C. P.
    Butler, J. M.
    Calfayan, P.
    Calvet, S.
    Cammin, J.
    Carvalho, W.
    Casey, B. C. K.
    Castilla-Valdez, H.
    Chakrabarti, S.
    Chakraborty, D.
    Chan, K.
    Chan, K. M.
    Chandra, A.
    Charles, F.
    Cheu, E.
    Chevallier, F.
    Cho, D. K.
    Choi, S.
    Choudhary, B.
    Christofek, L.
    Christoudias, T.
    Cihangir, S.
    Claes, D.
    Coadou, Y.
    Cooke, M.
    Cooper, W. E.
    Corcoran, M.
    Couderc, F.
    Cousinou, M. -C
    Crepe-Renaudin, S.
    Cutts, D.
    Cwiok, M.
    da Motta, H.
    Das, A.
    Davies, G.
    De, K.
    de Jong, S. J.
    De La Cruz-Burelo, E.
    Martins, C. De Oliveira
    Degenhardt, J. D.
    Deliot, F.
    Demarteau, M.
    Demina, R.
    Denisov, D.
    Denisov, S. P.
    Desai, S.
    Diehl, H. T.
    Diesburg, M.
    Dominguez, A.
    Dong, H.
    Dudko, L. V.
    Duflot, L.
    Dugad, S. R.
    Duggan, D.
    Duperrin, A.
    Dyer, J.
    Dyshkant, A.
    Eads, M.
    Edmunds, D.
    Ellison, J.
    Elvira, V. D.
    Enari, Y.
    Eno, S.
    Ermolov, P.
    Evans, H.
    Evdokimov, A.
    Evdokimov, V. N.
    Ferapontov, A. V.
    Ferbel, T.
    Fiedler, F.
    Filthaut, F.
    Fisher, W.
    Fisk, H. E.
    Fortner, M.
    Fox, H.
    Fu, S.
    Fuess, S.
    Gadfort, T.
    Galea, C. F.
    Gallas, E.
    Garcia, C.
    Garcia-Bellido, A.
    Gavrilov, V.
    Gay, P.
    Geist, W.
    Gele, D.
    Gerber, C. E.
    Gershtein, Y.
    Gillberg, D.
    Ginther, G.
    Gollub, N.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Gomez, B.
    Goussiou, A.
    Grannis, P. D.
    Greenlee, H.
    Greenwood, Z. D.
    Gregores, E. M.
    Grenier, G.
    Gris, Ph.
    Grivaz, J. -F
    Grohsjean, A.
    Gruenendahl, S.
    Gruenewald, M. W.
    Guo, F.
    Guo, J.
    Gutierrez, G.
    Gutierrez, P.
    Haas, A.
    Hadley, N. J.
    Haefner, P.
    Hagopian, S.
    Haley, J.
    Hall, I.
    Hall, R. E.
    Han, L.
    Harder, K.
    Harel, A.
    Harrington, R.
    Hauptman, J. M.
    Hauser, R.
    Hays, J.
    Hebbeker, T.
    Hedin, D.
    Hegeman, J. G.
    Heinmiller, J. M.
    Heinson, A. P.
    Heintz, U.
    Hensel, C.
    Herner, K.
    Hesketh, G.
    Hildreth, M. D.
    Hirosky, R.
    Hobbs, J. D.
    Hoeneisen, B.
    Hoeth, H.
    Hohlfeld, M.
    Hong, S. J.
    Hossain, S.
    Houben, P.
    Hu, Y.
    Hubacek, Z.
    Hynek, V.
    Iashvili, I.
    Illingworth, R.
    Ito, A. S.
    Jabeen, S.
    Jaffre, M.
    Jain, S.
    Jakobs, K.
    Jarvis, C.
    Jesik, R.
    Johns, K.
    Johnson, C.
    Johnson, M.
    Jonckheere, A.
    Jonsson, P.
    Juste, A.
    Kajfasz, E.
    Kalinin, A. M.
    Kalk, J. M.
    Kappler, S.
    Karmanov, D.
    Kasper, P. A.
    Katsanos, I.
    Kau, D.
    Kaushik, V.
    Kehoe, R.
    Kermiche, S.
    Khalatyan, N.
    Khanov, A.
    Kharchilava, A.
    Kharzheev, Y. M.
    Khatidze, D.
    Kim, T. J.
    Kirby, M. H.
    Kirsch, M.
    Klima, B.
    Kohli, J. M.
    Konrath, J. -P
    Korablev, V. M.
    Kozelov, A. V.
    Kraus, J.
    Krop, D.
    Kuhl, T.
    Kumar, A.
    Kupco, A.
    Kurca, T.
    Kvita, J.
    Lacroix, F.
    Lam, D.
    Lammers, S.
    Landsberg, G.
    Lebrun, P.
    Lee, W. M.
    Leflat, A.
    Lellouch, J.
    Leveque, J.
    Li, J.
    Li, L.
    Li, Q. Z.
    Lietti, M.
    Lima, J. G. R.
    Lincoln, D.
    Linnemann, J.
    Lipaev, V. V.
    Lipton, R.
    Liu, Y.
    Liu, Z.
    Lobodenko, A.
    Lokajicek, M.
    Love, P.
    Lubatti, H. J.
    Luna, R.
    Lyon, A. L.
    Maciel, A. K. A.
    Mackin, D.
    Madaras, R. J.
    Maettig, P.
    Magass, C.
    Magerkurth, A.
    Mal, P. K.
    Malbouisson, H. B.
    Malik, S.
    Malyshev, V. L.
    Mao, H. S.
    Maravin, Y.
    Martin, B.
    McCarthy, R.
    Melnitchouk, A.
    Mendoza, L.
    Mercadante, P. G.
    Merkin, M.
    Merritt, K. W.
    Meyer, A.
    Meyer, J.
    Millet, T.
    Mitrevski, J.
    Molina, J.
    Mommsen, R. K.
    Mondal, N. K.
    Moore, R. W.
    Moulik, T.
    Muanza, G. S.
    Mulders, M.
    Mulhearn, M.
    Mundal, O.
    Mundim, L.
    Nagy, E.
    Naimuddin, M.
    Narain, M.
    Naumann, N. A.
    Neal, H. A.
    Negret, J. P.
    Neustroev, P.
    Nilsen, H.
    Nogima, H.
    Novaes, S. F.
    Nunnemann, T.
    O'Dell, V.
    O'Neil, D. C.
    Obrant, G.
    Ochando, C.
    Onoprienko, D.
    Oshima, N.
    Osman, N.
    Osta, J.
    Otec, R.
    Otero y Garzon, G. J.
    Owen, M.
    Padley, P.
    Pangilinan, M.
    Parashar, N.
    Park, S. -J
    Park, S. K.
    Parsons, J.
    Partridge, R.
    Parua, N.
    Patwa, A.
    Pawloski, G.
    Penning, B.
    Perfilov, M.
    Peters, K.
    Peters, Y.
    Petroff, P.
    Petteni, M.
    Piegaia, R.
    Piper, J.
    Pleier, M. -A
    Podesta-Lerma, P. L. M.
    Podstavkov, V. M.
    Pogorelov, Y.
    Pol, M. -E
    Polozov, P.
    Pope, B. G.
    Popov, A. V.
    Potter, C.
    da Silva, W. L. Prado
    Prosper, H. B.
    Protopopescu, S.
    Qian, J.
    Quadt, A.
    Quinn, B.
    Rakitine, A.
    Rangel, M. S.
    Ranjan, K.
    Ratoff, P. N.
    Renkel, P.
    Reucroft, S.
    Rich, P.
    Rieger, J.
    Rijssenbeek, M.
    Ripp-Baudot, I.
    Rizatdinova, F.
    Robinson, S.
    Rodrigues, R. F.
    Rominsky, M.
    Royon, C.
    Rubinov, P.
    Ruchti, R.
    Safronov, G.
    Sajot, G.
    Sanchez-Hernandez, A.
    Sanders, M. P.
    Santoro, A.
    Savage, G.
    Sawyer, L.
    Scanlon, T.
    Schaile, D.
    Schamberger, R. D.
    Scheglov, Y.
    Schellman, H.
    Schliephake, T.
    Schwanenberger, C.
    Schwartzman, A.
    Schwienhorst, R.
    Sekaric, J.
    Severini, H.
    Shabalina, E.
    Shamim, M.
    Shary, V.
    Shchukin, A. A.
    Shivpuri, R. K.
    Siccardi, V.
    Simak, V.
    Sirotenko, V.
    Skubic, P.
    Slattery, P.
    Smirnov, D.
    Snow, G. R.
    Snow, J.
    Snyder, S.
    Soeldner-Rembold, S.
    Sonnenschein, L.
    Sopczak, A.
    Sosebee, M.
    Soustruznik, K.
    Spurlock, B.
    Stark, J.
    Steele, J.
    Stolin, V.
    Stoyanova, D. A.
    Strandberg, J.
    Strandberg, S.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Strang, M. A.
    Strauss, E.
    Strauss, M.
    Stroehmer, R.
    Strom, D.
    Stutte, L.
    Sumowidagdo, S.
    Svoisky, P.
    Sznajder, A.
    Tamburello, P.
    Tanasijczuk, A.
    Taylor, W.
    Temple, J.
    Tiller, B.
    Tissandier, F.
    Titov, M.
    Tokmenin, V. V.
    Toole, T.
    Torchiani, I.
    Trefzger, T.
    Tsybychev, D.
    Tuchming, B.
    Tully, C.
    Tuts, P. M.
    Unalan, R.
    Uvarov, L.
    Uvarov, S.
    Uzunyan, S.
    Vachon, B.
    van den Berg, P. J.
    Van Kooten, R.
    van Leeuwen, W. M.
    Varelas, N.
    Varnes, E. W.
    Vasilyev, I. A.
    Vaupel, M.
    Verdier, P.
    Vertogradov, L. S.
    Verzocchi, M.
    Vetterli, M.
    Villeneuve-Seguier, F.
    Vint, P.
    Vokac, P.
    Von Toerne, E.
    Voutilainen, M.
    Wagner, R.
    Wahl, H. D.
    Wang, L.
    Wang, M. H. L. S.
    Warchol, J.
    Watts, G.
    Wayne, M.
    Weber, G.
    Weber, M.
    Welty-Rieger, L.
    Wenger, A.
    Wermes, N.
    Wetstein, M.
    White, A.
    Wicke, D.
    Wilson, G. W.
    Wimpenny, S. J.
    Wobisch, M.
    Wood, D. R.
    Wyatt, T. R.
    Xie, Y.
    Yacoob, S.
    Yamada, R.
    Yan, M.
    Yasuda, T.
    Yatsunenko, Y. A.
    Yip, K.
    Yoo, H. D.
    Youn, S. W.
    Yu, J.
    Zatserklyaniy, A.
    Zeitnitz, C.
    Zhao, T.
    Zhou, B.
    Zhu, J.
    Zielinski, M.
    Zieminska, D.
    Zieminski, A.
    Zivkovic, L.
    Zutshi, V.
    Zverev, E. G.
    Evidence for production of single top quarks2008In: Physical Review D, ISSN 1550-7998, Vol. 78, no 1, p. 012005-Article, review/survey (Refereed)
    Abstract [en]

    We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-quark partner that is always produced from strong-coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top-quark production has been searched for in ever larger data sets. In this analysis, we select events from a 0.9 fb(-1) data set that have an electron or muon and missing transverse energy from the decay of a W boson from the top-quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W + jets and t (t) over bar events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix-element calculations. A binned likelihood fit of the signal cross section plus background to the data from the combination of the results from the three analysis methods gives a cross section for single top-quark production of sigma(p (p) over bar -> tb + X, tqb + X) = 4.7 +/- 1.3 pb. The probability to measure a cross section at this value or higher in the absence of signal is 0.014%, corresponding to a 3.6 standard deviation significance. The measured cross section value is compatible at the 10% level with the standard model prediction for electroweak top-quark production. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix element that describes the Wtb coupling and find vertical bar V(tb)f(1)(L)vertical bar = 1.31(-0.21)(+0.25), where f(1)(L) is a generic vector coupling. This model-independent measurement translates into 0.68 <= 1 at the 95% C.L. in the standard model.

  • 5. Adelman, S. J.
    et al.
    Gulliver, A. F.
    Kochukhov, O.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Ryabchikova, T. A.
    The variability of the HgII λ3984 line of the mercury-manganese star α Andromedae2002In: The Astrophysical Journal, ISSN 0004-637X, Vol. 575, no 1, p. 449-460Article in journal (Refereed)
  • 6. Adelman, S.J.
    et al.
    Gulliver, A.F.
    Kochukhov, Oleg
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy.
    Ryabchikova, T.
    The variability of the HgII lambda 3984 line of the mercury-manganese star alpha Andromedae2002In: Astrophysical Journal, ISSN 0004-637X, Vol. 575, p. 449-Article in journal (Refereed)
  • 7.
    Adelman, SJ
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Gulliver, AF
    Loden, LO
    On the cobalt abundances of early-type stars2000In: ASTRONOMY AND ASTROPHYSICS, ISSN 0004-6361, Vol. 353, no 1, p. 335-338Article in journal (Refereed)
    Abstract [en]

    Photographic region high-dispersion high signal-to-noise spectra of A and F main sequence band stars which exhibit modest rotation show Co I lines. In the hottest of these stars, we also found weak Co II lines whose abundances are consistent with those fr

  • 8. Aerts, C.
    et al.
    De Cat, P.
    Handler, G.
    Heiter, Ulrike
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy.
    et al.,
    Asteroseismology of the β Cephei star ν Eridani: II. Spectroscopic observations and pulsational frequency analysis2004In: Monthly Notices of the Royal Astronomical Society, Vol. 347, p. 463-Article in journal (Refereed)
  • 9. Allende Prieto, C.
    et al.
    Asplund, M.J.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Theoretical Astrophysics.
    Garcia Lopez, R.J.
    Lambert, D.L.
    Nordlund, Å.
    R200,000 Spectroscopic Observations of Procyon. The surface Convection and Radial Velocity2001In: ASPCArticle in journal (Refereed)
  • 10. Allende Prieto, C
    et al.
    Barklem, Paul
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy.
    Asplund, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy.
    Ruiz Cobo, B
    Chemical Abundances from Inversions of Stellar Spectra: Analysis of Solar-Type Stars with Homogeneous and Static Model Atmospheres2001In: ASTROPHYSICAL JOURNAL, Vol. 558, p. 830-851Article in journal (Other (popular scientific, debate etc.))
  • 11. Allende Prieto, C.
    et al.
    Barklem, Paul
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy.
    Lambert, D.L
    Cunha, K.
    S4N: A Spectroscopic Survey of Stars in the Solar Neighborhood2004In: Astronomy and Astrophysics, Vol. 420, p. 183-205Article in journal (Refereed)
  • 12.
    Amatucci, W.E.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Schuck, P.W.
    Walker, D.N.
    Kintner, P.M.
    Powell, S.
    Holback, B.
    Leonhardt, D.
    Contamination-free sounding rocket Langmuir probe2001In: Review of Scientific Instruments, Vol. 72, p. 2052-Article in journal (Refereed)
  • 13.
    Amm, O., Janhunen, P., Kauristie, K., Opgenoorth, H.J., Pulkkinen, T.I. and Viljanen, A.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Mesoscale ionospheric electrodynamics observed with the MIRACLE network: 1. Analysis of a pseudobreakup spiral.2001In: Journal of Geophysical Research, Vol. 106, no 111, p. 24675-24690Article in journal (Refereed)
    Abstract [en]

    A short-lived auroral spiral is observed on February 3, 1999, around 2204 UT, using the Multi-Instrument Array for Ionosphere-Magnetosphere Coupling Studies (MIRACLE) network of ground-based instruments in Fennoscandia, which consists of magnetometers, co

  • 14.
    Andersen, A. C.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Höfner, S.
    Gautschy-Loidl, R.
    Dust formation in winds of long-period variables: V. The influence of micro-physical dust properties in carbon stars2003In: Astronomy and Astrophysics, Vol. 400, p. 981-992Article in journal (Refereed)
  • 15.
    Andersen, A.C.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Conference impressions and thoughts2002In: Women in Academia - a Nordic Perspective, NorFA , 2002, Vol. 1, p. 46-48Conference paper (Other scientific)
  • 16.
    Andersen, A.C.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Stjernestov2001Chapter in book (Other scientific)
  • 17.
    Andersen A.C., Höfner S., Loidl R.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    The influence of dust properties on the mass loss in pulsating AGB stars2002In: Radial and Nonradial Pulsations as Probes of Stellar Physics, San Francisco: Astronomical Society of the Pacific , 2002, Vol. 259, p. 542-545Conference paper (Other scientific)
    Abstract [en]

    We are currently studying carbon based dust types of relevance for carbon-rich AGB stars, to obtain a better understanding of the influence of the optical and chemical properties of the grains on the mass loss of the star. An investigation of the complex

  • 18. Andersen, A.C.
    et al.
    Höfner, Susanne
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Loidl, R.
    The Influence of Dust Properties on the Mass Loss in Pulsating AGB Stars2002In: Radial and Nonradial Pulsations as Probes of Stellar Physics, ASP Conference Proceedings, Vol. 259, 2002Conference paper (Other scientific)
    Abstract [en]

    We are currently studying carbon based dust types of relevance for carbon-rich AGB stars, to obtain a better understanding of the influence of the optical and chemical properties of the grains on the mass loss of the star. An investigation of the complex interplay between hydrodynamics,radiative transfer and chemistry has to be based on a better knowledge of the micro-physics of the relevant dust species.

  • 19.
    Andersen, AC
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Loidl, R
    Höfner, S
    Optical properties of carbon grains: Influence on dynamical models of AGB stars1999In: ASTRONOMY AND ASTROPHYSICS, ISSN 0004-6361, Vol. 349, no 1, p. 243-252Article in journal (Refereed)
    Abstract [en]

    For amorphous carbon several laboratory extinction data are available, which show quite a wide range of differences due to the structural complexity of this material. We have calculated self-consistent dynamic models of circumstellar dust-shells around ca

  • 20.
    Andersen A.C., Sotelo J.A., Pustovit V.N., Niklasson G.A
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. SOLID STATE PHYSICS.
    Extinction calculations of multi-sphere polycrystalline graphitic clusters- A comparison with the 2175 AA peak and between a rigorous solution and discrete-dipole approximations2002In: Astronomy & Astrophysics, Vol. 386, p. 296-307Article in journal (Refereed)
    Abstract [en]

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. In this paper we study the light scattering by compact and fractal polycrystalline graphitic clusters co

  • 21.
    Andersen A.C., Sotelo J.A., Pustovit V.N., Niklasson G.A.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Interstellar extinction by fractal polycrystalline graphite clusters?2002In: Electromagnetic and Light Scattering by Non-spherical Particles, Army Research Laboratory , 2002, Vol. 1, p. 1-4Conference paper (Refereed)
    Abstract [en]

    Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. To determine how these structural features would affect the interpretation of the observed interstellar

  • 22.
    Andersson, L., Wahlund, J.E., Clemmons, J., Gustavsson, B. and Eliasson, L.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Electromagnetic waves and bursty electron acceleration: implications from Freja.2001In: Annales Geophysicae, Vol. 20, no 2, p. 139-150Article in journal (Refereed)
    Abstract [en]

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extreme

  • 23.
    Andre, M., Behlke, R., Wahlund, J.E., Vaivads, A., Eriksson, A., Tjulin, A., Carozzi, T. D., Cully, C., Gustafsson, G., Sundkvist, D., Khotyaintsev, Y., Cornilleau-Wehrlin, N., Rezeau, L., Maksimovic, M., Lucek, E., Balogh, A., Dunlop, M., Lindqvist, P.A.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause.2001In: Annales Geophysicae, Vol. 19, no 6, p. 1471-1481Article in journal (Refereed)
    Abstract [en]

    Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have a

  • 24. Andrushchenko, Zh. N.
    et al.
    Pavlenko, V. P.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Generation of large-scale magnetic flows in turbulent plasma2004In: Physics of Plasmas, Vol. 11, p. 1402-Article in journal (Refereed)
  • 25. Andrushchenko, Zh. N.
    et al.
    Sandberg, I.
    Pavlenko, V. P.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    On the stability of interchange mode turbulence with respect to excitation of large scale flows2004In: 12th International Congress on Plasma Physics, October 25 - 29 2004, Nice, France, 2004Conference paper (Refereed)
  • 26.
    Andrushchenko Zh.N., Pavlenko V.P.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Turbulent generation of large scale flows and nonlinear dynamics of flute modes2002In: Physics of Plasmas, Vol. 9, p. 4512-Article in journal (Refereed)
  • 27.
    Andrushchenko Zh.N., Pavlenko V.P., Schoepf K.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Theory of zonal flow generation by flute type turbulence2002In: Physica Scripta, Vol. 66, p. 326-Article in journal (Refereed)
  • 28.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Analysis of Cluster spacecraft potential during active control2005In: Adv. Space Res., Vol. 36, no 10, p. 1922-1927Article in journal (Refereed)
  • 29.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the fluid into the separatrix region2005In: J. Geophys. Res., Vol. 110, p. A09206-Article in journal (Refereed)
  • 30.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations2005In: J. Geophys. Res., Vol. 110Article in journal (Other (popular scientific, debate etc.))
  • 31.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Density irregularities in the plasmasphere boundary layer: Cluster observations in the dusk secto2005In: Adv. Space Res., Vol. 36, no 10, p. 1964-1965Article in journal (Refereed)
  • 32.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Drift-kinetic Alfvén waves observed near a reconnection X line in the Earth´s magnetopause2005In: Phys. Rev. Lett., Vol. 95, p. 065002-Article in journal (Refereed)
  • 33.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Improvement of plasma measurements onboard Cluster due to spacecraft potential control2005In: Adv. Space Res., Vol. 36, no 10, p. 1951-1957Article in journal (Refereed)
  • 34.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Ion sound wave packets at the quasiperpendicular shock front2005In: Geophys. Res. Lett., Vol. 32, p. L24106-Article in journal (Other (popular scientific, debate etc.))
  • 35.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Localized fast flow disturbance observed in the plasma sheet and in the ionosphere2005In: Ann. Geophys., Vol. 23, p. 553-566Article in journal (Refereed)
  • 36.
    André, Mats
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Wave particle interactions in the high-altitude cusp: a Cluster study2005In: Ann. Geophys., Vol. 23, p. 3699-3713Article in journal (Refereed)
  • 37.
    André, Mats
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Khotyaintsev, Yuri
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Space Plasma Physics.
    Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations2005In: J. Geophys. Res., Vol. 110, no A02211Article in journal (Refereed)
  • 38.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics, Space and Plasma Physics.
    Vaivads, Andris
    Buchert, Stephan C.
    Fazakerley, A. N.
    Lahiff, A.
    Thin electron-scale layers at the magnetopause2004In: Geophys. Res. Lett., Vol. 31, p. L03803-Article in journal (Refereed)
  • 39. Aoki, W
    et al.
    Frebel, A
    Christlieb, Norbert
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    Norris, J
    Beers, T
    Minezaki, T
    Barklem, Paul
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    Honda, S
    Takada-Hidai, M
    Asplund, M
    Ryan, S
    Tsangarides, S
    Eriksson, Kjell
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    An abundance study of the most iron-poor star HE1327-2326 with Subaru/HDS2006In: International Symposium on Origin of Matter and Evolution of Galaxies, 2006Conference paper (Other scientific)
  • 40. Aoki, W
    et al.
    Frebel, A
    Christlieb, Norbert
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    Norris, J
    Beers, T
    Minezaki, T
    Barklem, Paul
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    Honda, S
    Takada-Hidai, M
    Asplund, M
    Ryan, S
    Tsangarides, S
    Eriksson, Kjell
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics. Department of Physics and Astronomy, Observational Astronomy. Theoretical Astrophysics.
    HE 1327-2326, an Unevolved Star with [Fe/H] < -5.0.: I. A Comprehensive Abundance Analysis2006In: The Astrophysical Journal, Vol. 639, p. 897-917Article in journal (Refereed)
  • 41.
    Aringer, B.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Jørgensen, U. G.
    Kerschbaum, F.
    Hron, J.
    Höfner, S.
    The Pulsation of M-type Miras: Multi-Epoch ISO-SWS Observations and Dynamical Models2002In: Radial and Nonradial Pulsations as Probes of Stellar Physics, San Francisco: Astronomical Society of the Pacific , 2002, Vol. 259, p. 538-541Conference paper (Other scientific)
  • 42.
    Aringer, B.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Kerschbaum, F.
    Hron, J.
    Höfner, S.
    A new generation of dynamical models for Long-Period Variables: A new era for the interpretation of ISO-SWS data of cool giants2000In: ISO beyond the peaks: The 2nd ISO workshop on analytical spectroscopy, ESA Publications Division , 2000, Vol. 456, p. 295-298Conference paper (Other scientific)
    Abstract [en]

    We present synthetic ISO-SWS spectra of oxygen-rich cool giants for the wavelength range between 2.36 and 7.75 &mu;m. These are based on hydrostatic as well as on completely new dynamical models which have been calculated with a non-grey radiative transfe

  • 43.
    Asp, Elina
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Drift-Type Waves in Rotating Tokamak Plasma2003Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The concept of energy production through the fusion of two light nuclei has been studied since the 1950’s. One of the major problems that fusion scientists have encountered is the confinement of the hot ionised gas, i.e. the plasma, in which the fusion process takes place. The most common way to contain the plasma is by using at magnetic field configuration, in which the plasma takes a doughnut-like shape. Experimental devices of this kind are referred to as tokamaks. For the fusion process to proceed at an adequate rate, the temperature of the plasma must exceed 100,000,000C. Such a high temperature forces the plasma out of thermodynamical equilibrium which plasma tries to regain by exciting a number of turbulent processes. After successfully quenching the lager scale magnetohydrodynamic turbulence that may instantly disrupt the plasma, a smaller scale turbulence revealed itself. As this smaller scale turbulence behaved contrary to the common theory at the time, it was referred to as anomalous. This kind of turbulence does not directly threaten existents of the plasma, but it allows for a leakage of heat and particles which inhibits the fusion reactions. It is thus essential to understand the origin of anomalous turbulence, the transport it generates and most importantly, how to reduce it. Today it is believed that anomalous transport is due to drift-type waves driven by temperature and density inhomogeneities and the theoretical treatment of these waves is the topic of this thesis.

    The first part of the thesis contains a rigorous analytical two-fluid treatment of drift waves driven solely by density inhomogeneities. Effects of the toroidal magnetic field configuration, the Landau resonance, a peaked diamagnetic frequency and a sheared rotation of the plasma have been taken into account. These effects either stabilise or destabilise the drift waves and to determine the net result on the drift waves requires careful analysis. To this end, dispersion relations have been obtained in various limits to determine when to expect the different effects to be dominant. The main result of this part is that with a large enough rotational shear, the drift waves will be quenched.

    In the second part we focus on temperature effects and thus treat reactive drift waves, specifically ion temperature gradient and trapped electron modes. In fusion plasmas the α-particles, created as a by-product of the fusion process, transfer the better part of their energy to the electrons and hence the electron temperature is expected to exceed the ion temperature. In most experiments until today, the ion temperature is greater than the electron temperature and this have been proven to improve the plasma confinement. To predict the performance of future fusion plasmas, where the fusion process is ongoing, a comprehensive study of hot-electron plasmas and external heating effects have been carried out. Especially the stiffness (heat flux vs. inverse temperature length scale) of the plasma has been examined. This work was performed by simulations done with the JETTO code utilising the Weiland model. The outcome of these simulations shows that the plasma response to strong heating is very stiff and that the plasma energy confinement time seems to vary little in the hot-electron mode.

    List of papers
    1. Ship-Wave Eigenmodes of Drift Type in Rotating Tokamak Plasmas
    Open this publication in new window or tab >>Ship-Wave Eigenmodes of Drift Type in Rotating Tokamak Plasmas
    2000 (English)In: Physica scripta. T, ISSN 0281-1847, Vol. 62, no 2-3, p. 169-176Article in journal (Refereed) Published
    Abstract [en]

    Ship waves of drift type in rotating plasma of axisymmetric, large aspect-ratio tokamaks with concentric, circular magnetic surfaces are investigated. Plasma rotation is driven by an electrostatic radial electric field and the waves under consideration may be excited by plasma flow past some static obstacle. The analysis performed is based on rigorously derived eigenmode equations coupled in poloidal mode numbers through toroidal effects. The existence of two qualitatively different types of ship wave eigenmodes is demonstrated. Namely (i) global modes that have a structure of quasimodes localised in both radial and poloidal directions and correspond to the bounded states in a potential well which are marginally stable and (ii) propagating modes that experience shear convective damping. The dispersion relations for both types of eigenmodes are obtained both in the weak and the strong coupling approximation.

    We find the analytical solutions of the dispersion relations and the regions of their existence which are defined, mainly, by the value and direction of the poloidal rotation velocity. An accumulation point for global ship eigenmodes is determined. For propagating ship waves the real and the imaginary parts of the poloidal wavenumber are found. It is shown that the imaginary part always corresponds to convective damping of these waves

    Keywords
    Ship waves of drift type in rotating plasma of axisymmetric, large aspect-ratio tokamaks with concentric, circular magnetic surfaces are investigated. Plasma rotation is driven by an electrostatic radial electric field and the waves under consideration ma
    National Category
    Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-90344 (URN)10.1238/Physica.Regular.062a00169 (DOI)
    Available from: 2003-05-15 Created: 2003-05-15 Last updated: 2017-12-14Bibliographically approved
    2. Localising Effects of a Peaked Diamagnetic Frequency on Drift Modes in Rotating Tokamak Plasmas
    Open this publication in new window or tab >>Localising Effects of a Peaked Diamagnetic Frequency on Drift Modes in Rotating Tokamak Plasmas
    2002 (English)In: Physica scripta. T, ISSN 0281-1847, Vol. T98, no -, p. 151-154Article in journal (Refereed) Published
    Abstract [en]

    In this paper we investigate the effects of a diamagnetic frequency peaking and velocity shear on a two-dimensional drift mode structure. Previous study made by Horton et al. showed that a strong diamagnetic frequency peaking can trap the wave energy both radially and along the magnetic field lines. We show that the localising effect of the diamagnetic frequency peaking can be suppressed by a strong velocity shear in the edge plasma. The same phenomenon is present in the bulk plasma, but due to the velocity shear not being as pronounced there, the effect is nominal.

    National Category
    Fusion, Plasma and Space Physics
    Identifiers
    urn:nbn:se:uu:diva-90345 (URN)10.1238/Physica.Topical.098a00151 (DOI)
    Available from: 2003-05-15 Created: 2003-05-15 Last updated: 2017-12-14Bibliographically approved
    3. Stability of the Landau Resonance for Drift Modes in Rotating Tokamak Plasma
    Open this publication in new window or tab >>Stability of the Landau Resonance for Drift Modes in Rotating Tokamak Plasma
    2003 (English)In: Journal of Plasma Physics, ISSN 0022-3778, E-ISSN 1469-7807, Vol. 60, no 5, p. 371-Article in journal (Refereed) Published
    Abstract [en]

    The linear stability of drift waves in a poloidally rotating tokamak plasma is considered. The derived dispersion relation features a peaking of the diamagnetic frequency which gives the drift modes an irreducible two-dimensional character. We then show that inverse Landau damping can be suppressed and even stabilized, if the flow's shear is strong. Even though the instability, excited by the Landau resonance, is stronger at a high velocity shear for positive rotation velocities, effects due to the rotation of the plasma can reverse the sign and induce damping of the two-dimensional drift modes. This stabilizing mechanism works only for positive rotation velocities. For negative rotation velocities, we show that only modes with high poloidal mode numbers are unstable.

    National Category
    Fusion, Plasma and Space Physics
    Identifiers
    urn:nbn:se:uu:diva-90346 (URN)10.1017/S0022377803002253 (DOI)
    Available from: 2003-05-15 Created: 2003-05-15 Last updated: 2017-12-14Bibliographically approved
    4. JETTO Simulations of Te/Ti Effects on Plasma Confinement
    Open this publication in new window or tab >>JETTO Simulations of Te/Ti Effects on Plasma Confinement
    Show others...
    Manuscript (Other academic)
    Identifiers
    urn:nbn:se:uu:diva-90347 (URN)
    Available from: 2003-05-15 Created: 2003-05-15 Last updated: 2010-01-13Bibliographically approved
    Download full text (pdf)
    FULLTEXT01
  • 44.
    Asp, Elina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Pavlenko, Vladimir P.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Revenchuk, Sergey M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Localising Effects of a Peaked Diamagnetic Frequency on Drift Modes in Rotating Tokamak Plasmas2002In: Physica scripta. T, ISSN 0281-1847, Vol. T98, no -, p. 151-154Article in journal (Refereed)
    Abstract [en]

    In this paper we investigate the effects of a diamagnetic frequency peaking and velocity shear on a two-dimensional drift mode structure. Previous study made by Horton et al. showed that a strong diamagnetic frequency peaking can trap the wave energy both radially and along the magnetic field lines. We show that the localising effect of the diamagnetic frequency peaking can be suppressed by a strong velocity shear in the edge plasma. The same phenomenon is present in the bulk plasma, but due to the velocity shear not being as pronounced there, the effect is nominal.

  • 45.
    Asp, Elina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Pavlenko, Vladimir P.
    Revenchuk, Sergey M.
    Ship-Wave Eigenmodes of Drift Type in Rotating Tokamak Plasmas2000In: Physica scripta. T, ISSN 0281-1847, Vol. 62, no 2-3, p. 169-176Article in journal (Refereed)
    Abstract [en]

    Ship waves of drift type in rotating plasma of axisymmetric, large aspect-ratio tokamaks with concentric, circular magnetic surfaces are investigated. Plasma rotation is driven by an electrostatic radial electric field and the waves under consideration may be excited by plasma flow past some static obstacle. The analysis performed is based on rigorously derived eigenmode equations coupled in poloidal mode numbers through toroidal effects. The existence of two qualitatively different types of ship wave eigenmodes is demonstrated. Namely (i) global modes that have a structure of quasimodes localised in both radial and poloidal directions and correspond to the bounded states in a potential well which are marginally stable and (ii) propagating modes that experience shear convective damping. The dispersion relations for both types of eigenmodes are obtained both in the weak and the strong coupling approximation.

    We find the analytical solutions of the dispersion relations and the regions of their existence which are defined, mainly, by the value and direction of the poloidal rotation velocity. An accumulation point for global ship eigenmodes is determined. For propagating ship waves the real and the imaginary parts of the poloidal wavenumber are found. It is shown that the imaginary part always corresponds to convective damping of these waves

  • 46.
    Asp, Elina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Pavlenko, Vladimir P.
    Revenchuk, Sergey M.
    Stability of the Landau Resonance for Drift Modes in Rotating Tokamak Plasma2003In: Journal of Plasma Physics, ISSN 0022-3778, E-ISSN 1469-7807, Vol. 60, no 5, p. 371-Article in journal (Refereed)
    Abstract [en]

    The linear stability of drift waves in a poloidally rotating tokamak plasma is considered. The derived dispersion relation features a peaking of the diamagnetic frequency which gives the drift modes an irreducible two-dimensional character. We then show that inverse Landau damping can be suppressed and even stabilized, if the flow's shear is strong. Even though the instability, excited by the Landau resonance, is stronger at a high velocity shear for positive rotation velocities, effects due to the rotation of the plasma can reverse the sign and induce damping of the two-dimensional drift modes. This stabilizing mechanism works only for positive rotation velocities. For negative rotation velocities, we show that only modes with high poloidal mode numbers are unstable.

  • 47.
    Asp, Elina
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Weiland, Jan
    Garbet, Xavier
    Mantica, Paola
    Parail, Vassili
    Suttrop, Wolfgang
    JETTO Simulations of Te/Ti Effects on Plasma ConfinementManuscript (Other academic)
  • 48.
    Asplund, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Line formation in solar granulation III. The photospheric Si and meteoritic Fe abundances2000In: ASTRONOMY AND ASTROPHYSICS, ISSN 0004-6361, Vol. 359, no 2, p. 755-758Article in journal (Refereed)
    Abstract [en]

    Using realistic hydrodynamical simulations of the solar surface convection as 3D, time-dependent, inhomogeneous model atmospheres, the solar photospheric Si abundance has been determined to be log epsilon(Si) = 7.51 +/- 0.04. This constitutes a difference

  • 49.
    Asplund, M
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Oxygen line formation in 3D hydrodynamical model atmospheres2001In: NEW ASTRONOMY REVIEWS, ISSN 1387-6473, Vol. 45, no 8, p. 565-565Article in journal (Refereed)
  • 50.
    Asplund, M
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Astronomy and Space Physics.
    Gustafsson, B
    Lambert, DL
    Rao, NK
    The R Coronae Borealis stars - atmospheres and abundances2000In: ASTRONOMY AND ASTROPHYSICS, ISSN 0004-6361, Vol. 353, no 1, p. 287-310Article in journal (Refereed)
    Abstract [en]

    An abundance analysis of the H-deficient and He- and C-rich R Coronae Borealis (R CrB) stars has been undertaken to examine the ancestry of the stars. The investigation is based on high-resolution spectra and line-blanketed H-deficient model atmospheres.

1234567 1 - 50 of 1015
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf