uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 7759
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Oldest first
  • Newest first
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aarts, Fides
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Inference and Abstraction of Communication Protocols2009Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
    Abstract [en]

    In this master thesis we investigate to infer models of standard communication protocols using automata learning techniques. One obstacle is that automata learning has been developed for machines with relatively small alphabets and a moderate number of states, whereas communication protocols usually have huge (practically infinite) sets of messages and sets of states. We propose to overcome this obstacle by defining an abstraction mapping, which reduces the alphabets and sets of states to finite sets of manageable size. We use an existing implementation of the L* algorithm for automata learning to generate abstract finite-state models, which are then reduced in size and converted to concrete models of the tested communication protocol by reversing the abstraction mapping.

    We have applied our abstraction technique by connecting the Learn-Lib library for regular inference with the protocol simulator ns-2, which provides implementations of standard protocols. By using additional reductionsteps, we succeeded in generating readable and understandable models of the SIP protocol.

  • 2. Aarts, Fides
    et al.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Uijen, Johan
    Generating Models of Infinite-State Communication Protocols Using Regular Inference with Abstraction2010In: Testing Software and Systems: ICTSS 2010, Berlin: Springer-Verlag , 2010, 188-204 p.Conference paper (Refereed)
  • 3. Aarts, Fides
    et al.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Uijen, Johan
    Vaandrager, Frits
    Generating models of infinite-state communication protocols using regular inference with abstraction2015In: Formal methods in system design, ISSN 0925-9856, E-ISSN 1572-8102, Vol. 46, no 1, 1-41 p.Article in journal (Refereed)
    Abstract [en]

    In order to facilitate model-based verification and validation, effort is underway to develop techniques for generating models of communication system components from observations of their external behavior. Most previous such work has employed regular inference techniques which generate modest-size finite-state models. They typically suppress parameters of messages, although these have a significant impact on control flow in many communication protocols. We present a framework, which adapts regular inference to include data parameters in messages and states for generating components with large or infinite message alphabets. A main idea is to adapt the framework of predicate abstraction, successfully used in formal verification. Since we are in a black-box setting, the abstraction must be supplied externally, using information about how the component manages data parameters. We have implemented our techniques by connecting the LearnLib tool for regular inference with an implementation of session initiation protocol (SIP) in ns-2 and an implementation of transmission control protocol (TCP) in Windows 8, and generated models of SIP and TCP components.

  • 4. Abarbanel, Saul
    et al.
    Ditkowski, Adi
    Gustafsson, Bertil
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    On error bounds of finite difference approximations to partial differential equations: Temporal behavior and rate of convergence2000Report (Other academic)
  • 5. Abarbanel, Saul
    et al.
    Ditkowski, Adi
    Gustafsson, Bertil
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    On error bounds of finite difference approximations to partial differential equations: Temporal behavior and rate of convergence2000In: Journal of Scientific Computing, ISSN 0885-7474, E-ISSN 1573-7691, Vol. 15, 79-116 p.Article in journal (Refereed)
  • 6.
    Abbas, Mohammed Zahid
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Prasad, Pokala
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Query-Based Visualization of Iso-Surfaces for Tetrahedral Meshes2008Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This is an application of information visualization in object relational database. This will present query based visualization of iso-surfaces for tetrahedral meshes. An Amos 2 object-relational database is used for domain modeling of discrete geometrical objects (like points) and for assigning them temperature values. Java 3D API is used to visualize the result of graphical queries. AmosQL an extensible query language has been used for database design and for composing of graphical queries. This report also has some basic information about OpenGL (API) and spatial query languages attributes (like their famous algorithms). In this application, Delauny triangulation and interpolation of vertices play major role for construction of iso-surfaces. Simulation of work is done by usage of sample queries in different size of meshes according to 3D coordinates. Interpolation is done for the usage of colors spectrum to display different isosurfaces based on their temperature values. Finally, we have discussed scalability of this application for future work. By using of this application users can compose queries and have 3D visual results against their geometrical and temperature queries.

  • 7.
    Abbas, Qaisar
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Weak Boundary and Interface Procedures for Wave and Flow Problems2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, we have analyzed the accuracy and stability aspects of weak boundary and interface conditions (WBCs) for high order finite difference methods on Summations-By-Parts (SBP) form. The numerical technique has been applied to wave propagation and flow problems.

    The advantage of WBCs over strong boundary conditions is that stability of the numerical scheme can be proven. The boundary procedures in the advection-diffusion equation for a boundary layer problem is analyzed. By performing Navier-Stokes calculations, it is shown that most of the conclusions from the model problem carries over to the fully nonlinear case.

    The work was complemented to include the new idea of using WBCs on multiple grid points in a region, where the data is known, instead of at a single point. It was shown that we can achieve high accuracy, an increased rate of convergence to steady-state and non-reflecting boundary conditions by using this approach.

    Using the SBP technique and WBCs, we have worked out how to construct conservative and energy stable hybrid schemes for shocks using two different approaches. In the first method, we combine a high order finite difference scheme with a second order MUSCL scheme. In the second method, a procedure to locally change the order of accuracy of the finite difference schemes is developed. The main purpose is to obtain a higher order accurate scheme in smooth regions and a low order non-oscillatory scheme in the vicinity of shocks.

    Furthermore, we have analyzed the energy stability of the MUSCL scheme, by reformulating the scheme in the framework of SBP and artificial dissipation operators. It was found that many of the standard slope limiters in the MUSCL scheme do not lead to a negative semi-definite dissipation matrix, as required to get pointwise stability.

    Finally, high order simulations of shock diffracting over a convex wall with two facets were performed. The numerical study is done for a range of Reynolds numbers. By monitoring the velocities at the solid wall, it was shown that the computations were resolved in the boundary layer. Schlieren images from the computational results were obtained which displayed new interesting flow features.

    List of papers
    1. Weak versus strong no-slip boundary conditions for the Navier-Stokes equations
    Open this publication in new window or tab >>Weak versus strong no-slip boundary conditions for the Navier-Stokes equations
    2010 (English)In: Engineering Applications of Computational Fluid Mechanics, ISSN 1994-2060, Vol. 4, 29-38 p.Article in journal (Refereed) Published
    National Category
    Computational Mathematics Computer Science
    Identifiers
    urn:nbn:se:uu:diva-112977 (URN)000276898600003 ()
    Available from: 2010-01-24 Created: 2010-01-24 Last updated: 2011-11-30Bibliographically approved
    2. A weak boundary procedure for high order finite difference approximations of hyperbolic problems
    Open this publication in new window or tab >>A weak boundary procedure for high order finite difference approximations of hyperbolic problems
    2011 (English)Report (Other academic)
    Series
    Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2011-019
    National Category
    Computational Mathematics
    Identifiers
    urn:nbn:se:uu:diva-159353 (URN)
    Available from: 2011-09-23 Created: 2011-09-28 Last updated: 2011-11-04Bibliographically approved
    3. Accurate and stable calculations involving shocks using a new hybrid scheme
    Open this publication in new window or tab >>Accurate and stable calculations involving shocks using a new hybrid scheme
    2009 (English)In: Proc. 19th AIAA CFD Conference, AIAA , 2009Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    AIAA, 2009
    Series
    Conference Proceeding Series, 2009-3985
    National Category
    Computational Mathematics Computer Science
    Identifiers
    urn:nbn:se:uu:diva-110133 (URN)
    Available from: 2009-11-04 Created: 2009-11-04 Last updated: 2011-11-26Bibliographically approved
    4. A stable and conservative method for locally adapting the design order of finite difference schemes
    Open this publication in new window or tab >>A stable and conservative method for locally adapting the design order of finite difference schemes
    2011 (English)In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 230, 4216-4231 p.Article in journal (Refereed) Published
    National Category
    Computational Mathematics Computer Science
    Identifiers
    urn:nbn:se:uu:diva-134055 (URN)10.1016/j.jcp.2010.11.020 (DOI)000290185000007 ()
    Available from: 2010-11-20 Created: 2010-11-21 Last updated: 2013-01-23Bibliographically approved
    5. Energy stability of the MUSCL scheme
    Open this publication in new window or tab >>Energy stability of the MUSCL scheme
    2010 (English)In: Numerical Mathematics and Advanced Applications: 2009, Berlin: Springer-Verlag , 2010, 61-68 p.Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    Berlin: Springer-Verlag, 2010
    National Category
    Computational Mathematics
    Identifiers
    urn:nbn:se:uu:diva-132925 (URN)10.1007/978-3-642-11795-4_5 (DOI)978-3-642-11794-7 (ISBN)
    Available from: 2010-10-29 Created: 2010-10-29 Last updated: 2011-11-26Bibliographically approved
    6. The Effect of Reynolds Number in High Order Accurate Calculations with Shock Diffraction
    Open this publication in new window or tab >>The Effect of Reynolds Number in High Order Accurate Calculations with Shock Diffraction
    2010 (English)In: Proc. 7th South African Conference on Computational and Applied Mechanics, South African Association for Theoretical and Applied Mechanics , 2010, 416-423 p.Conference paper, Published paper (Refereed)
    Place, publisher, year, edition, pages
    South African Association for Theoretical and Applied Mechanics, 2010
    National Category
    Computational Mathematics Computer Science
    Identifiers
    urn:nbn:se:uu:diva-113571 (URN)978-0-620-49192-1 (ISBN)
    Available from: 2010-01-29 Created: 2010-01-29 Last updated: 2011-11-09Bibliographically approved
  • 8.
    Abbas, Qaisar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Nordström, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Weak versus strong no-slip boundary conditions for the Navier-Stokes equations2010In: Engineering Applications of Computational Fluid Mechanics, ISSN 1994-2060, Vol. 4, 29-38 p.Article in journal (Refereed)
  • 9.
    Abbas, Qaisar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Nordström, Jan
    A weak boundary procedure for high order finite difference approximations of hyperbolic problems2011Report (Other academic)
  • 10.
    Abbas, Qaisar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Nordström, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Weak versus Strong No-Slip Boundary Conditions for the Navier-Stokes Equations2008In: Proc. 6th South African Conference on Computational and Applied Mechanics, South African Association for Theoretical and Applied Mechanics , 2008, 52-62 p.Conference paper (Other academic)
  • 11.
    Abbas, Qaisar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    van der Weide, Edwin
    Nordström, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Energy stability of the MUSCL scheme2010In: Numerical Mathematics and Advanced Applications: 2009, Berlin: Springer-Verlag , 2010, 61-68 p.Conference paper (Refereed)
  • 12.
    Abbas, Qaisar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    van der Weide, Edwin
    Nordström, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
    Accurate and stable calculations involving shocks using a new hybrid scheme2009In: Proc. 19th AIAA CFD Conference, AIAA , 2009Conference paper (Refereed)
  • 13.
    Abbasi, Vahid
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Phonetic Analysis and Searching with Google Glass API2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This project utilizes speech recognition Application Program Interface (API) together with phonetic algorithms to search Stockholm's restaurant names via Google Glass with higher precision. This project considers the ability of phonetic algorithms and N-gram analyzer to retrieve the word and how it can be combined with automatic speech recognition to find the correct match. Significantly, the combination of these algorithms and the Google Glass limitation, e.g. its smallscreen, makes using a phonnetic filtering algorithm very helpful in getting better results.

  • 14.
    Abdal, Zardasht
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Användbarheten i Business Intelligens-system: Utvecklingen av användbarheten och funktionaliteten i ett webbaserat BI-system2015Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The purpose of this study is to evaluate an existing user interface. The company in question has a web-based user interface (available through logging in via their website), but they are interested in making the process of using the interface more convenient and the interface more accessible, so that users without a background in computing can properly manage the interface. At the same time they want to apply additional functionalities in order create and to manage increased traffic on the company’s website. For this reason it is important to take into account the issues involved in human-computer interaction (HCI) as well as aspects of cognitive psychology in order to make the tool and the web interface more usable, more motivational, and therefore more efficient and professional. When I refer to the system as “more useful”, I mean firstly that it should work better and provide better and more useful information to users. I also mean that it should become more user-friendly, which involves both being easier to use and more difficult to use incorrectly. I have had to pay attention to, and reflect over, values, structures, norms, rules, motivational factors, and routines in order to improve the usability of the web interface.

  • 15.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    An adaptive grid point algorithm for harmonic signal modeling,2001Report (Other scientific)
  • 16.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Convergence of the RPEM as applied to harmonic signal modeling2000Report (Other scientific)
  • 17.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    A nonlinear approach to harmonic signal modeling2004In: Signal Processing, Vol. 84, no 1, 163-195 p.Article in journal (Refereed)
  • 18.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Study of a nonlinear recursive method for harmonic signal modeling2001In: Proc. of The 20th IASTED International Conference on Modeling, Identification and Control, Innsbruck, Austria, Feb. 19-22,, 2001Conference paper (Refereed)
  • 19.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    An adaptive grid point algorithm for harmonic signal modeling2002In: Proc. of The 15th IFAC World Congress on Automatic Control, Barcelona, Spain, July 21-26,, 2002Conference paper (Refereed)
  • 20.
    Abd-Elrady, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    An adaptive grid point algorithm for harmonic signal modeling2002In: Preprint of Reglermöte, Linköping, Sweden, May 29-30., 2002Conference paper (Other scientific)
  • 21.
    Abd-Elrady, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Schoukens, J
    Least squares periodic signal modeling using orbits of nonlinear ODE's and fully automated spectral analysis2005In: Automatica, Vol. 41, no 5, 857-862 p.Article in journal (Refereed)
  • 22.
    Abd-Elrady, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Schoukens, J
    Least squares periodic signal modeling using orbits of nonlinear ODE's and fully automated spectral analysis2004In: Proc 6th IFAC Symposium on Nonlinear Control Systems, 2004Conference paper (Refereed)
  • 23.
    Abd-Elrady, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Schoukens, J
    Least squares periodic signal modeling using orbits of nonlinear ODE's and fully automated spectral analysis2004In: Preprint of Reglermöte, Gothenburg, Sweden, May 26-27, 2004Conference paper (Refereed)
  • 24.
    Abd-Elrady, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Söderström, T
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Bias analysis in least squares estimation of periodic signals using nonlinear ODEs2004Report (Other scientific)
  • 25.
    Abd-Elrady, E
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Söderström, T
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
    Bias analysis in LS estimation of periodic signals using nonlinear ODE's2005In: Proc IFAC 16th World Congress, 2005Conference paper (Refereed)
  • 26.
    Abd-Elrady, Emad
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Nonlinear Approaches to Periodic Signal Modeling2005Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Periodic signal modeling plays an important role in different fields. The unifying theme of this thesis is using nonlinear techniques to model periodic signals. The suggested techniques utilize the user pre-knowledge about the signal waveform. This gives these techniques an advantage as compared to others that do not consider such priors.

    The technique of Part I relies on the fact that a sine wave that is passed through a static nonlinear function produces a harmonic spectrum of overtones. Consequently, the estimated signal model can be parameterized as a known periodic function (with unknown frequency) in cascade with an unknown static nonlinearity. The unknown frequency and the parameters of the static nonlinearity are estimated simultaneously using the recursive prediction error method (RPEM). A treatment of the local convergence properties of the RPEM is provided. Also, an adaptive grid point algorithm is introduced to estimate the unknown frequency and the parameters of the static nonlinearity in a number of adaptively estimated grid points. This gives the RPEM more freedom to select the grid points and hence reduces modeling errors.

    Limit cycle oscillations problem are encountered in many applications. Therefore, mathematical modeling of limit cycles becomes an essential topic that helps to better understand and/or to avoid limit cycle oscillations in different fields. In Part II, a second-order nonlinear ODE is used to model the periodic signal as a limit cycle oscillation. The right hand side of the ODE model is parameterized using a polynomial function in the states, and then discretized to allow for the implementation of different identification algorithms. Hence, it is possible to obtain highly accurate models by only estimating a few parameters.

    In Part III, different user aspects for the two nonlinear approaches of the thesis are discussed. Finally, topics for future research are presented.

  • 27.
    Abd-Elrady, Emad
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Harmonic signal modeling based on the Wiener model structure2002Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The estimation of frequencies and corresponding harmonic overtones is a problem of great importance in many situations. Applications can, for example, be found in supervision of electrical power transmission lines, in seismology and in acoustics. Generally, a periodic function with an unknown fundamental frequency in cascade with a parameterized and unknown nonlinear function can be used as a signal model for an arbitrary periodic signal. The main objective of the proposed modeling technique is to estimate the fundamental frequency of the periodic function in addition to the parameters of the nonlinear function.

    The thesis is divided into four parts. In the first part, a general introduction to the harmonic signal modeling problem and different approaches to solve the problem are given. Also, an outline of the thesis and future research topics are introduced.

    In the second part, a previously suggested recursive prediction error method (RPEM) for harmonic signal modeling is studied by numerical examples to explore the ability of the algorithm to converge to the true parameter vector. Also, the algorithm is modified to increase its ability to track the fundamental frequency variations.

    A modified algorithm is introduced in the third part to give the algorithm of the second part a more stable performance. The modifications in the RPEM are obtained by introducing an interval in the nonlinear block with fixed static gain. The modifications that result in the convergence analysis are, however, substantial and allows a complete treatment of the local convergence properties of the algorithm. Moreover, the Cramér–Rao bound (CRB) is derived for the modified algorithm and numerical simulations indicate that the method gives good results especially for moderate signal to noise ratios (SNR).

    In the fourth part, the idea is to give the algorithm of the third part the ability to estimate the driving frequency and the parameters of the nonlinear output function parameterized also in a number of adaptively estimated grid points. Allowing the algorithm to automatically adapt the grid points as well as the parameters of the nonlinear block, reduces the modeling errors and gives the algorithm more freedom to choose the suitable grid points. Numerical simulations indicate that the algorithm converges to the true parameter vector and gives better performance than the fixed grid point technique. Also, the CRB is derived for the adaptive grid point technique.

  • 28.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal analysis using orbits of nonlinear ODEs based on the Markov estimate2004Conference paper (Refereed)
  • 29.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal modeling based on Liénard's equation2004In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 49, no 10, 1773-1778 p.Article in journal (Refereed)
  • 30.
    Abd-Elrady, Emad
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Söderström, Torsten
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Wigren, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control.
    Periodic signal modeling based on Liénard's equation2003Report (Other academic)
  • 31.
    Abdou, Elhassan M
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Visual Planning and Verification of Deep Brain Stimulation Interventions2011Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
  • 32.
    Abdulla, Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Henda, Ben
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Rezine, Ahmed
    Monotonic Abstraction: on Efficient Verification of Parameterized Systems2009In: International Journal of Foundations of Computer Science, ISSN 0129-0541, Vol. 20, no 5, 779-801 p.Article in journal (Refereed)
    Abstract [en]

    We introduce the simple and efficient method of monotonic abstraction to prove safety properties for parameterized systems with linear topologies. A process in the system is a finite-state automaton, where the transitions are guarded by both local and global conditions. Processes may communicate via broadcast, rendez-vous and shared variables over finite domains. The method of monotonic abstraction derives an over-approximation of the induced transition system that allows the use of a simple class of regular expressions as a symbolic representation. Compared to traditional regular model checking methods, the analysis does not require the manipulation of transducers, and hence its simplicity and efficiency. We have implemented a prototype that works well on several mutual exclusion algorithms and cache coherence protocols

  • 33.
    Abdulla, Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Rezine, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Approximated parameterized verification of infinite-state processes with global conditions2009In: Formal methods in system design, ISSN 0925-9856, E-ISSN 1572-8102, Vol. 34, no 2, 126-156 p.Article in journal (Refereed)
  • 34.
    Abdulla, Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Rezine, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Monotonic Abstraction in Parameterized Verification2008In: Electronical Notes in Theoretical Computer Science, ISSN 1571-0661, Vol. 223, 3-14 p.Article in journal (Refereed)
  • 35.
    Abdulla, Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Rezine, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Approximated Context-Sensitive Analysis for Parameterized Verification2009In: Formal Techniques for Distributed Systems: Joint 11th IFIP WG 6.1 International Conference FMOODS 2009 and 29th IFIP WG 6.1 International Conference FORTE 2009, Lisboa, Portugal, June 9-12, 2009. Proceedings / [ed] David Lee, Antónia Lopes and Arnd Poetzsch-Heffter, 2009, Vol. 5522, 41-56 p.Conference paper (Other academic)
  • 36.
    Abdulla, Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Rezine, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Automatic Verification of Directory-Based Consistency Protocols2009In: Reachability Problems: 3rd International Workshop, RP 2009, Palaiseau, France, September 23-25, 2009. Proceedings / [ed] Olivier Bournez and Igor Potapov, 2009, Vol. 5797, 36-50 p.Conference paper (Other academic)
  • 37.
    Abdulla, P.A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Bjesse, P
    Een, N
    Symbolic Reachability Analysis Based on SAT Solvers2000In: Proc. TACAS'00, 6th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, 2000Conference paper (Refereed)
  • 38.
    Abdulla, PA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computer Systems. DEPARTMENT OF COMPUTER SYSTEMS.
    Boasson, L
    Bouajjani, A
    Effective Lossy Queue Languages.2001In: ICALP'2001, 28th Int. Colloquium on Automata, Languages and Programmming., 2001Conference paper (Refereed)
  • 39.
    Abdulla, PA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology.
    Cerans, K
    Jonsson, B
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology.
    Tsay, YK
    Algorithmic analysis of programs with well quasi-ordered domains2000In: INFORMATION AND COMPUTATION, ISSN 0890-5401, Vol. 160, no 1-2, 109-127 p.Article in journal (Refereed)
    Abstract [en]

    Over the past few years increasing research effort has been directed towards the automatic verification of infinite-state systems. This paper is concerned with identifying general mathematical structures which can serve as sufficient conditions for achiev

  • 40.
    Abdulla, PA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. DEPARTMENT OF COMPUTER SYSTEMS.
    Jonsson, B
    Ensuring completeness of symbolic verification methods for infinite-state systems2001In: THEORETICAL COMPUTER SCIENCE, ISSN 0304-3975, Vol. 256, no 1-2, 145-167 p.Article in journal (Refereed)
    Abstract [en]

    Over the last few years there has been an increasing research effort directed towards the automatic verification of infinite state systems. For different classes of such systems, e.g., hybrid automata, data-independent systems, relational automata, Petri

  • 41.
    Abdulla, PA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Jonsson, B
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Verifying programs with unreliable channels1996In: Information and Computation, ISSN 0890-5401, Vol. 127, no 2, 91-101 p.Article in journal (Refereed)
    Abstract [en]

    We consider the verification of a particular class of infinite-state systems, namely systems consisting of finite-state processes that communicate via unbounded lossy FIFO channels. This class is able to model, e.g., link protocols such as the Alternating

  • 42.
    Abdulla, PA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. DEPARTMENT OF COMPUTER SYSTEMS.
    Jonsson, B
    Channel Abstractions in Protocol Verification2001In: CONCUR'2001, 12th Int. Conf. on Concurrency Theory, 2001Conference paper (Refereed)
  • 43.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
    Bouajjani, Ahmed
    Jonnson, Bengt
    Nilsson, Marcus
    Handling Global Conditions in Parameterized System Verification1999In: Proc. 11th Int. Conf. on Computer Aided Verification / [ed] Nicolas Halbwachs, Doron Peled, Berlin: Springer Verlag , 1999, 134-145 p.Conference paper (Refereed)
    Abstract [en]

    We consider symbolic verification for a class of parameterized systems, where a system consists of a linear array of processes, and where an action of a process may in general be guarded by both local conditions restricting the state of the process about to perform the action, and global conditions defining the context in which the action is enabled. Such actions are present, e.g., in idealized versions of mutual exclusion protocols, such as the bakery and ticket algorithms by Lamport, Burn’s protocol, Dijkstra’s algorithm, and Szymanski’s algorithm. The presence of both local and global conditions makes the parameterized versions of these protocols infeasible to analyze fully automatically, using existing model checking methods for parameterized systems. In all these methods the actions are guarded only by local conditions involving the states of a finite set of processes. We perform verification using a standard symbolic reachability algorithm enhanced by an operation to accelerate the search of the state space. The acceleration operation computes the effect of an arbitrary number of applications of an action, rather than a single application. This is crucial for convergence of the analysis e.g. when applying the algorithm to the above protocols. We illustrate the use of our method through an application to Szymanski’s algorithm.

  • 44.
    Abdulla, Parosh Aziz
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Cyriac, Aiswarya
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems. Chennai Math Inst, Madras, Tamil Nadu, India..
    Atig, Mohamed Faouzi
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Data Communicating Processes with Unreliable Channels2016In: Proceedings Of The 31St Annual ACM-IEEE Symposium On Logic In Computer Science (LICS 2016), 2016, 166-175 p.Conference paper (Refereed)
    Abstract [en]

    We extend the classical model of lossy channel systems by considering systems that operate on a finite set of variables ranging over an infinite data domain. Furthermore, each message inside a channel is equipped with a data item representing its value. Although we restrict the model by allowing the variables to be only tested for (dis-)equality, we show that the state reachability problem is undecidable. In light of this negative result, we consider bounded-phase reachability, where the processes are restricted to performing either send or receive operations during each phase. We show decidability of state reachability in this case by computing a symbolic encoding of the set of system configurations that are reachable from a given configuration.

  • 45.
    Abdulla, Parosh A.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Univ Genoa, DIBRIS, Genoa, Italy..
    Parameterized verification2016In: International Journal on Software Tools for Technology Transfer (STTT), ISSN 1433-2779, E-ISSN 1433-2787, Vol. 18, no 5, 469-473 p.Article in journal (Other academic)
    Abstract [en]

    The goal of parameterized verification is to prove the correctness of a system specification regardless of the number of its components. The problem is of interest in several different areas: verification of hardware design, multithreaded programs, distributed systems, and communication protocols. The problem is undecidable in general. Solutions for restricted classes of systems and properties have been studied in areas like theorem proving, model checking, automata and logic, process algebra, and constraint solving. In this introduction to the special issue, dedicated to a selection of works from the Parameterized Verification workshop PV '14 and PV '15, we survey some of the works developed in this research area.

  • 46.
    Abdulla, Parosh A.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Delzanno, Giorgio
    Univ Genoa, Genoa, Italy..
    Montali, Marco
    Free Univ Bolzano, Bolzano, Italy..
    Well Structured Transition Systems with History2015In: Electronic Proceedings in Theoretical Computer Science, ISSN 2075-2180, E-ISSN 2075-2180, no 193, 115-128 p.Article in journal (Refereed)
    Abstract [en]

    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.

  • 47.
    Abdulla, Parosh
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Aronis, Stavros
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Jonsson, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Sagonas, Konstantinos
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computing Science.
    Optimal dynamic partial order reduction2014In: Proc. 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New York: ACM Press, 2014, 373-384 p.Conference paper (Refereed)
    Abstract [en]

    Stateless model checking is a powerful technique for program verification, which however suffers from an exponential growth in the number of explored executions. A successful technique for reducing this number, while still maintaining complete coverage, is Dynamic Partial Order Reduction (DPOR). We present a new DPOR algorithm, which is the first to be provably optimal in that it always explores the minimal number of executions. It is based on a novel class of sets, called source sets, which replace the role of persistent sets in previous algorithms. First, we show how to modify an existing DPOR algorithm to work with source sets, resulting in an efficient and simple to implement algorithm. Second, we extend this algorithm with a novel mechanism, called wakeup trees, that allows to achieve optimality. We have implemented both algorithms in a stateless model checking tool for Erlang programs. Experiments show that source sets significantly increase the performance and that wakeup trees incur only a small overhead in both time and space.

  • 48.
    Abdulla, Parosh Aziz
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Well (and better) quasi-ordered transition systems2010In: Bulletin of Symbolic Logic, ISSN 1079-8986, E-ISSN 1943-5894, Vol. 16, no 4, 457-515 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, we give a step by step introduction to the theory of well quasi-ordered transition systems. The framework combines two concepts, namely (i) transition systems which are monotonic wrt. a well-quasi ordering; and (ii) a scheme for symbolic backward reachability analysis. We describe several models with infinite-state spaces, which can be analyzed within the framework, e.g., Petri nets, lossy channel systems, timed automata, timed Petri nets, and multiset rewriting systems. We will also present better quasi-ordered transition systems which allow the design of efficient symbolic representations of infinite sets of states.

  • 49.
    Abdulla, Parosh Aziz
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.
    Regular model checking2012In: International Journal on Software Tools for Technology Transfer (STTT), ISSN 1433-2779, E-ISSN 1433-2787, Vol. 14, no 2, 109-118 p.Article in journal (Refereed)
  • 50.
    Abdulla, Parosh Aziz
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. DEPARTMENT OF COMPUTER SYSTEMS.
    Using (Timed) Petri Nets for Verification of Parametrized (Timed) Systems2001In: VEPAS'2001, Verification of Parameterized Systems, 2001Conference paper (Refereed)
1234567 1 - 50 of 7759
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf