Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 947
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbott, Benjamin W.
    et al.
    Univ Rennes 1, OSUR, CNRS, UMR ECOBIO 6553, F-35014 Rennes, France.;Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.;Univ Alaska Fairbanks, Dept Biology& Wildlife, Fairbanks, AK USA..
    Jones, Jeremy B.
    Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.;Univ Alaska Fairbanks, Dept Biology& Wildlife, Fairbanks, AK USA..
    Schuur, Edward A. G.
    No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA..
    Chapin, F. Stuart, III
    Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.;Univ Alaska Fairbanks, Dept Biology& Wildlife, Fairbanks, AK USA..
    Bowden, William B.
    Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA..
    Bret-Harte, M. Syndonia
    Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.;Univ Alaska Fairbanks, Dept Biology& Wildlife, Fairbanks, AK USA..
    Epstein, Howard E.
    Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA..
    Flannigan, Michael D.
    Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2M7, Canada..
    Harms, Tamara K.
    Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.;Univ Alaska Fairbanks, Dept Biology& Wildlife, Fairbanks, AK USA..
    Hollingsworth, Teresa N.
    Univ Alaska Fairbanks, PNW Res Stn, USDA Forest Serv, Fairbanks, AK USA..
    Mack, Michelle C.
    No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA..
    McGuire, A. David
    Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Anchorage, AK USA..
    Natali, Susan M.
    Woods Hole Res Ctr, Woods Hole, MA USA..
    Rocha, Adrian V.
    Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA.;Univ Notre Dame, Environm Change Initiat, Notre Dame, IN 46556 USA..
    Tank, Suzanne E.
    Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2M7, Canada..
    Turetsky, Merritt R.
    Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada..
    Vonk, Jorien E.
    Vrije Univ Amsterdam, Dept Earth Sci, Amsterdam, Netherlands..
    Wickland, Kimberly P.
    US Geol Survey, Natl Res Program, Boulder, CO USA..
    Aiken, George R.
    US Geol Survey, Natl Res Program, Boulder, CO USA..
    Alexander, Heather D.
    Mississippi State Univ, Forest & Wildlife Res Ctr, Mississippi State, MS 39762 USA..
    Amon, Rainer M. W.
    Texas A&M Univ, Galveston, TX USA..
    Benscoter, Brian W.
    Florida Atlantic Univ, Boca Raton, FL 33431 USA..
    Bergeron, Yves
    Univ Quebec Abitibi Temiscamingue, Forest Res Inst, Rouyn Noranda, PQ, Canada..
    Bishop, Kevin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Luft-, vatten- och landskapslära. wedish Univ Agr Sci, Dept Aquat Sci & Assessment, S-90183 Umea, Sweden..
    Blarquez, Olivier
    Univ Montreal, Dept Geog, Montreal, PQ H3C 3J7, Canada..
    Bond-Lamberty, Ben
    Pacific NW Natl Lab, Richland, WA 99352 USA..
    Breen, Amy L.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Scenarios Network Alaska & Arctic Planning, Fairbanks, AK USA..
    Buffam, Ishi
    Univ Cincinnati, Cincinnati, OH 45221 USA..
    Cai, Yihua
    Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen, Peoples R China..
    Carcaillet, Christopher
    Ecole Prat Hautes Etud, UMR5023, CNRS Lyon 1, Lyon, France..
    Carey, Sean K.
    McMaster Univ, Hamilton, ON L8S 4L8, Canada..
    Chen, Jing M.
    Univ Toronto, Toronto, ON M5S 1A1, Canada..
    Chen, Han Y. H.
    Lakehead Univ, Fac Nat Resources Management, Thunder Bay, ON P7B 5E1, Canada..
    Christensen, Torben R.
    Lund Univ, Arctic Res Ctr, S-22100 Lund, Sweden.;Aarhus Univ, DK-8000 Aarhus C, Denmark..
    Cooper, Lee W.
    Univ Maryland, Ctr Environm Sci, Bethesda, MD USA..
    Cornelissen, J. Hans C.
    Vrije Univ Amsterdam, Syst Ecol, Amsterdam, Netherlands..
    de Groot, William J.
    Nat Resources Canada, Canadian Forest Serv, Toronto, ON, Canada..
    DeLuca, Thomas H.
    Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA..
    Dorrepaal, Ellen
    Umea Univ, Dept Ecol & Environm Sci, Climate Impacts Res Ctr, S-90187 Umea, Sweden..
    Fetcher, Ned
    Wilkes Univ, Inst Environm Sci & Sustainabil, Wilkes Barre, PA 18766 USA..
    Finlay, Jacques C.
    Univ Minnesota, Dept Ecol Evolut & Behav, Minneapolis, MN 55455 USA..
    Forbes, Bruce C.
    Univ Lapland, Arctic Ctr, Rovaniemi, Finland..
    French, Nancy H. F.
    Michigan Technol Univ, Michigan Tech Res Inst, Houghton, MI 49931 USA..
    Gauthier, Sylvie
    Nat Resources Canada, Canadian Forest Serv, Laurentian Forestry Ctr, Toronto, ON, Canada..
    Girardin, Martin P.
    Nat Resources Canada, Canadian Forest Serv, Laurentian Forestry Ctr, Toronto, ON, Canada..
    Goetz, Scott J.
    Woods Hole Res Ctr, Woods Hole, MA USA..
    Goldammer, Johann G.
    Max Planck Inst Chem, Global Fire Monitoring Ctr, Berlin, Germany..
    Gough, Laura
    Towson Univ, Dept Biol Sci, Towson, MD USA..
    Grogan, Paul
    Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada..
    Guo, Laodong
    Univ Wisconsin Milwaukee, Sch Freshwater Sci, Milwaukee, WI USA..
    Higuera, Philip E.
    Univ Montana, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA..
    Hinzman, Larry
    Univ Alaska Fairbanks, Fairbanks, AK USA..
    Hu, Feng Sheng
    Univ Illinois, Dept Plant Biol, Chicago, IL 60680 USA.;Univ Illinois, Dept Geol, Chicago, IL 60680 USA..
    Hugelius, Gustaf
    Stockholm Univ, Dept Phys Geog, Stockholm, Sweden..
    Jafarov, Elchin E.
    Univ Colorado Boulder, Inst Arctic & Alpine Res, Boulder, CO USA..
    Jandt, Randi
    Univ Alaska Fairbanks, Alaska Fire Sci Consortium, Fairbanks, AK USA..
    Johnstone, Jill F.
    Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 0W0, Canada..
    Karlsson, Jan
    Umea Univ, Dept Ecol & Environm Sci, Climate Impacts Res Ctr, S-90187 Umea, Sweden..
    Kasischke, Eric S.
    Univ Maryland, Dept Geog Sci, Bethesda, MD USA..
    Kattner, Gerhard
    Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Berlin, Germany..
    Kelly, Ryan
    Neptune & Co Inc, North Wales, PA USA..
    Keuper, Frida
    Umea Univ, Dept Ecol & Environm Sci, Climate Impacts Res Ctr, S-90187 Umea, Sweden.;INRA, AgroImpact UPR1158, New York, NY USA..
    Kling, George W.
    Univ Michigan, Ann Arbor, MI 48109 USA..
    Kortelainen, Pirkko
    Finnish Environm Inst, Helsinki, Finland..
    Kouki, Jari
    Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland..
    Kuhry, Peter
    Stockholm Univ, Dept Phys Geog, Stockholm, Sweden..
    Laudon, Hjalmar
    Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden..
    Laurion, Isabelle
    Inst Natl Rech Sci, Ctr Eau Terre Environm, Toronto, ON, Canada..
    Macdonald, Robie W.
    Inst Ocean Sci, Dept Fisheries & Oceans, Toronto, ON, Canada..
    Mann, Paul J.
    Northumbria Univ, Dept Geog, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England..
    Martikainen, Pertti J.
    Univ Eastern Finland, Dept Environm & Biol Sci, Joensuu, Finland..
    McClelland, James W.
    Univ Texas Austin, Inst Marine Sci, Austin, TX 78712 USA..
    Molau, Ulf
    Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden..
    Oberbauer, Steven F.
    Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA..
    Olefeldt, David
    Univ Alberta, Dept Revewable Resources, Edmonton, AB T6G 2M7, Canada..
    Pare, David
    Nat Resources Canada, Canadian Forest Serv, Laurentian Forestry Ctr, Toronto, ON, Canada..
    Parisien, Marc-Andre
    Nat Resources Canada, Canadian Forest Serv, No Forestry Ctr, Toronto, ON, Canada..
    Payette, Serge
    Univ Laval, Ctr Etud Nord, Quebec City, PQ G1K 7P4, Canada..
    Peng, Changhui
    Univ Quebec, Ctr CEF, ESCER, Montreal, PQ H3C 3P8, Canada.;Northwest A&F Univ, Coll Forestry, State Key Lab Soil Eros & Dryland Farming Loess P, Xian, Peoples R China..
    Pokrovsky, Oleg S.
    CNRS, Georesources & Environm, Toulouse, France.;Tomsk State Univ, BIO GEO CLIM Lab, Tomsk, Russia..
    Rastetter, Edward B.
    Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA..
    Raymond, Peter A.
    Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA..
    Raynolds, Martha K.
    Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA..
    Rein, Guillermo
    Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England..
    Reynolds, James F.
    Lanzhou Univ, Sch Life Sci, Lanzhou 730000, Peoples R China.;Duke Univ, Nicholas Sch Environm, Durham, NC 27706 USA..
    Robards, Martin
    Arctic Beringia Program, Wildlife Conservat Soc, New York, NY USA..
    Rogers, Brendan M.
    Woods Hole Res Ctr, Woods Hole, MA USA..
    Schaedel, Christina
    No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA..
    Schaefer, Kevin
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Natl Snow & Ice Data Ctr, Boulder, CO USA..
    Schmidt, Inger K.
    Univ Copenhagen, Dept Geosci & Nat Resource Management, DK-1168 Copenhagen, Denmark..
    Shvidenko, Anatoly
    Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria.;Sukachev Inst Forest, Moscow, Russia..
    Sky, Jasper
    Cambridge Ctr Climate Change Res, Cambridge, England..
    Spencer, Robert G. M.
    Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA..
    Starr, Gregory
    Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA..
    Striegl, Robert G.
    US Geol Survey, Natl Res Program, Boulder, CO USA..
    Teisserenc, Roman
    Univ Toulouse, CNRS, INPT, ECOLAB,UPS, Toulouse, France..
    Tranvik, Lars J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Virtanen, Tarmo
    Univ Helsinki, Dept Environm Sci, FIN-00014 Helsinki, Finland..
    Welker, Jeffrey M.
    Univ Alaska Anchorage, Anchorage, AK USA..
    Zimov, Sergei
    Russian Acad Sci, Northeast Sci Stn, Moscow 117901, Russia..
    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment2016Ingår i: Environmental Research Letters, E-ISSN 1748-9326, Vol. 11, nr 3, artikel-id 034014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

    Ladda ner fulltext (pdf)
    fulltext
  • 2. Abernethy, R.
    et al.
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Ziese, Markus G.
    State of the Climate in 20172018Ingår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 99, nr 8, s. Si-S310Artikel i tidskrift (Refereegranskat)
  • 3. Abramoff, Rose Z.
    et al.
    Georgiou, Katerina
    Guenet, Bertrand
    Torn, Margaret S.
    Huang, Yuanyuan
    Zhang, Haicheng
    Feng, Wenting
    Jagadamma, Sindhu
    Kaiser, Klaus
    Kothawala, Dolly
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Mayes, Melanie A.
    Ciais, Philippe
    How much carbon can be added to soil by sorption?2021Ingår i: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 152, nr 2-3, s. 127-142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quantifying the upper limit of stable soil carbon storage is essential for guiding policies to increase soil carbon storage. One pool of carbon considered particularly stable across climate zones and soil types is formed when dissolved organic carbon sorbs to minerals. We quantified, for the first time, the potential of mineral soils to sorb additional dissolved organic carbon (DOC) for six soil orders. We compiled 402 laboratory sorption experiments to estimate the additional DOC sorption potential, that is the potential of excess DOC sorption in addition to the existing background level already sorbed in each soil sample. We estimated this potential using gridded climate and soil geochemical variables within a machine learning model. We find that mid- and low-latitude soils and subsoils have a greater capacity to store DOC by sorption compared to high-latitude soils and topsoils. The global additional DOC sorption potential for six soil orders is estimated to be 107 ± 13 Pg C to 1 m depth. If this potential was realized, it would represent a 7% increase in the existing total carbon stock.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Ades, M.
    et al.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Adler, R.
    Univ Maryland, College Pk, MD 20742 USA..
    Allan, Rob
    Met Off Hadley Ctr, Exeter, Devon, England..
    Allan, R. P.
    Univ Reading, Reading, Berks, England..
    Anderson, J.
    Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA..
    Arguez, Anthony
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Arosio, C.
    Univ Bremen, Bremen, Germany..
    Augustine, J. A.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Azorin-Molina, C.
    Ctr Invest Desertificac Spanish Natl Res Council, Moncada, Valencia, Spain.;Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden..
    Barichivich, J.
    Pontificia Univ Catolica Valparaiso, Inst Geog, Valparaiso, Chile..
    Barnes, J.
    NOAA OAR ESRL Global Monitoring Lab, Boulder, CO USA..
    Beck, H. E.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA..
    Becker, Andreas
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany..
    Bellouin, Nicolas
    Univ Reading, Reading, Berks, England..
    Benedetti, Angela
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Berry, David I.
    Natl Oceanog Ctr, Southampton, Hants, England..
    Blenkinsop, Stephen
    Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear, England..
    Bock, Olivier
    Univ Paris, CNRS, Inst Phys Globe Paris, IGN, Paris, France.;IGN, ENSG Geomat, Marne La Vallee, France..
    Bosilovich, Michael G.
    NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA..
    Boucher, Olivier
    Sorbonne Univ, Paris, France..
    Buehler, S. A.
    Univ Hamburg, Hamburg, Germany..
    Carrea, Laura
    Univ Reading, Dept Meteorol, Reading, Berks, England..
    Christiansen, Hanne H.
    Univ Ctr Svalbard, Dept Geol, Longyearbyen, Norway..
    Chouza, F.
    CALTECH, Jet Prop Lab, Wrightwood, CA USA..
    Christy, John R.
    Univ Alabama Huntsville, Huntsville, AL USA..
    Chung, E. -S
    Coldewey-Egbers, Melanie
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany..
    Compo, Gil P.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.;NOAA Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA..
    Cooper, Owen R.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Covey, Curt
    Lawrence Livermore Natl Lab, Livermore, CA 94550 USA..
    Crotwell, A.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Davis, Sean M.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.;NOAA OAR Earth Syst Res Lab, Boulder, CO USA..
    de Eyto, Elvira
    Inst Marine, Furnace, Newport, Ireland..
    de Jeu, Richard A. M.
    VanderSat, B. V.
    DeGasperi, Curtis L.
    King Cty Water & Land Resources Div, Seattle, WA USA..
    Degenstein, Doug
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Di Girolamo, Larry
    Univ Illinois, Champaign, IL USA..
    Dokulil, Martin T.
    Univ Innsbruck, Res Dept Limnol, Innsbruck, Austria..
    Donat, Markus G.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Dorigo, Wouter A.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Dunn, R. J. H.
    Met Off Hadley Ctr, Exeter, Devon, England..
    Durre, Imke
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Dutton, Geoff S.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Duveiller, G.
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Elkins, James W.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Fioletov, Vitali E.
    Environm & Climate Change Canada, Toronto, ON, Canada..
    Flemming, Johannes
    European Ctr Medum Range Weather Forecasts, Reading, Berks, England..
    Foster, Michael J.
    Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Space Sci & Engn Ctr, Madison, WI USA..
    Frey, Richard A.
    Univ Wisconsin Madison, Cooperat Inst Meteorol Satellite Studies, Space Sci & Engn Ctr, Madison, WI USA..
    Frith, Stacey M.
    Sci Syst & Applicat Inc, Lanham, MD USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Froidevaux, Lucien
    CALTECH, Jet Prop Lab, Pasadena, CA USA..
    Garforth, J.
    Woodland Trust, Grantham, England..
    Gobron, N.
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Gupta, S. K.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Haimberger, Leopold
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    Hall, Brad D.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Harris, Ian
    Univ East Anglia, Natl Ctr Atmospher Sci, Norwich, Norfolk, England.;Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Heidinger, Andrew K.
    Univ Wisconsin Madison, NOAA NESDIS STAR, Madison, WI USA..
    Hemming, D. L.
    Met Off Hadley Ctr, Exeter, Devon, England.;Univ Birmingham, Birmingham Inst Forest Res, Birmingham, W Midlands, England..
    Ho, Shu-peng (Ben)
    NOAA NESDIS Ctr Satellite Applicat & Res, College Pk, MD USA..
    Hubert, Daan
    Royal Belgian Inst Space Aeron BIRA, Brussels, Belgium..
    Hurst, Dale F.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Huser, I.
    Deutsch Wetterdienst, Offenbach, Germany..
    Inness, Antje
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Isaksen, K.
    Norwegian Meteorol Inst, Oslo, Norway..
    John, Viju
    EUMETSAT, Darmstadt, Germany..
    Jones, Philip D.
    Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Kaiser, J. W.
    Deutsch Wetterdienst, Offenbach, Germany..
    Kelly, S.
    Dundalk Inst Technol, Dundalk, Ireland..
    Khaykin, S.
    Sorbonne Univ, CNRS, LATMOS IPSL, UVSQ, Guyancourt, France..
    Kidd, R.
    Earth Observat Data Ctr GmbH, Vienna, Austria..
    Kim, Hyungiun
    Univ Tokyo, Inst Ind Sci, Tokyo, Japan..
    Kipling, Z.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Kraemer, B. M.
    IGB Leibniz Inst Freshwater Ecol & Inland Fisheri, Berlin, Germany..
    Kratz, D. P.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    La Fuente, R. S.
    Dundalk Inst Technol, Dundalk, Ireland..
    Lan, Xin
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Lantz, Kathleen O.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA..
    Leblanc, T.
    CALTECH, Jet Prop Lab, Wrightwood, CA USA..
    Li, Bailing
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.;Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA..
    Loeb, Norman G.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Long, Craig S.
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA..
    Loyola, Diego
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany..
    Marszelewski, Wlodzimierz
    Nicolaus Copernicus Univ, Dept Hydrol & Water Management, Torun, Poland..
    Martens, B.
    Univ Ghent, Hydro Climate Extremes Lab, Ghent, Belgium..
    May, Linda
    Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland..
    Mayer, Michael
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.;Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    McCabe, M. F.
    King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Thuwal, Saudi Arabia..
    McVicar, Tim R.
    CSIRO Land & Water, Canberra, ACT, Australia.;Australian Res Council Ctr Excellence Climate Ext, Sydney, NSW, Australia..
    Mears, Carl A.
    Remote Sensing Syst, Santa Rosa, CA USA..
    Menzel, W. Paul
    Univ Wisconsin Madison, Space Sci & Engn Ctr, Madison, WI USA..
    Merchant, Christopher J.
    Univ Reading, Dept Meteorol, Reading, Berks, England.;Univ Reading, Natl Ctr Earth Observat, Reading, Berks, England..
    Miller, Ben R.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA.;Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Miralles, Diego G.
    Montzka, Stephen A.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Morice, Colin
    Met Off Hadley Ctr, Exeter, Devon, England..
    Muhle, Jens
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA..
    Myneni, R.
    Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA..
    Nicolas, Julien P.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Noetzli, Jeannette
    WSL Inst Snow & Avalanche Res SLF, Davos, Switzerland..
    Osborn, Tim J.
    Univ East Anglia, Sch Environm Sci, Climat Res Unit, Norwich, Norfolk, England..
    Park, T.
    NASA, Ames Res Ctr, Moffett Field, CA 94035 USA.;Bay Area Environm Res Inst, Moffett Field, CA USA..
    Pasik, A.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Paterson, Andrew M.
    Ontario Minist Environm & Climate Change, Dorset Environm Sci Ctr, Dorset, ON, Canada..
    Pelto, Mauri S.
    Nichols Coll, Dudley, MA USA..
    Perkins-Kirkpatrick, S.
    Univ New South Wales, Sydney, NSW, Australia..
    Petron, G.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Phillips, C.
    Univ Wisconsin Madison, Dept Atmospher & Ocean Sci, Madison, WI USA..
    Pinty, Bernard
    European Commiss, Joint Res Ctr, Ispra, Italy..
    Po-Chedley, S.
    Lawrence Livermore Natl Lab, Livermore, CA 94550 USA..
    Polvani, L.
    Columbia Univ, New York, NY USA..
    Preimesberger, W.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Pulkkanen, M.
    Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland..
    Randel, W. J.
    Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA..
    Remy, Samuel
    UPMC, Inst Pierre Simon Laplace, CNRS, Paris, France..
    Ricciardulli, L.
    Richardson, A. D.
    No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USA.;No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA..
    Rieger, L.
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Robinson, David A.
    Rutgers State Univ, Dept Geog, Piscataway, NJ USA..
    Rodell, Matthew
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA..
    Rosenlof, Karen H.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Roth, Chris
    Univ Saskatchewan, Saskatoon, SK, Canada..
    Rozanov, A.
    Univ Bremen, Bremen, Germany..
    Rusak, James A.
    Ontario Minist Environm & Climate Change, Dorset Environm Sci Ctr, Dorset, ON, Canada..
    Rusanovskaya, O.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Rutishauser, T.
    Univ Bern, Inst Geog, Bern, Switzerland.;Univ Bern, Oeschger Ctr, Bern, Switzerland..
    Sanchez-Lugo, Ahira
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Sawaengphokhai, P.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Scanlon, T.
    TU Wien Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria..
    Schenzinger, Verena
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria..
    Schladow, S. Geoffey
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA..
    Schlegel, R. W.
    Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA..
    Schmid, Martin Eawag
    Swiss Fed Inst Aquat Sci & Technol, Kastanienbaum, Switzerland..
    Selkirk, H. B.
    Univ Space Res Assoc, NASA Goddard Space Flight Ctr, Greenbelt, MD USA..
    Sharma, S.
    York Univ, Toronto, ON, Canada..
    Shi, Lei
    NOAA NESDIS, Natl Ctr Environm Informat, Asheville, NC USA..
    Shimaraeva, S. V.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Silow, E. A.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Simmons, Adrian J.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England..
    Smith, C. A.
    Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA..
    Smith, Sharon L.
    Nat Resources Canada, Geol Survey Canada, Ottawa, ON, Canada..
    Soden, B. J.
    Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Key Biscayne, FL USA..
    Sofieva, Viktoria
    Finnish Meteorol Inst, Helsinki, Finland..
    Sparks, T. H.
    Poznan Univ Life Sci, Poznan, Poland..
    Stackhouse, Paul W., Jr.
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Stanitski, D. M.
    NOAA OAR Earth Syst Res Labs, Boulder, CO USA..
    Steinbrecht, Wolfgang
    German Weather Serv DWD, Hohenpeissenberg, Germany..
    Streletskiy, Dimitri A.
    George Washington Univ, Dept Geog, Washington, DC USA..
    Taha, G.
    GESTAR, Columbia, MD USA..
    Telg, Hagen
    Thackeray, S. J.
    Ctr Ecol & Hydrol, Lancaster, England..
    Timofeyev, M. A.
    Irkutsk State Univ, Inst Biol, Irkutsk, Russia..
    Tourpali, Kleareti
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Tye, Mari R.
    Natl Ctr Atmospher Res, Capac Ctr Climate & Weather Extremes, POB 3000, Boulder, CO 80307 USA..
    van der A, Ronald J.
    Royal Netherlands Meteorol Inst, De Bilt, Netherlands..
    van der Schalie, Robin
    van der Schrier, Gerard
    Royal Netherlands Meteorol Inst, De Bilt, Netherlands..
    van der Werf, Guido R.
    Vrije Univ Amsterdam, Amsterdam, Netherlands..
    Verburg, Piet
    Natl Inst Water & Atmospher Res, Hamilton, New Zealand..
    Vernier, Jean-Paul
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Vomel, Holger
    Natl Ctr Atmospher Res, Earth Observing Lab, POB 3000, Boulder, CO 80307 USA..
    Vose, Russell S.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC USA..
    Wang, Ray
    Georgia Inst Technol, Atlanta, GA 30332 USA..
    Watanabe, Shohei G.
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA..
    Weber, Mark
    Univ Bremen, Bremen, Germany..
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala Univ, Dept Ecol & Genet Limnol, Uppsala, Sweden..
    Wiese, David
    CALTECH, Jet Prop Lab, Pasadena, CA USA..
    Wilber, Anne C.
    Sci Syst & Applicat Inc, Hampton, VA USA..
    Wild, Jeanette D.
    NOAA Climate Predict Ctr, College Pk, MD USA.;Univ Maryland, ESSIC, College Pk, MD 20742 USA..
    Willett, K. M.
    Met Off Hadley Ctr, Exeter, Devon, England..
    Wong, Takmeng
    NASA, Langley Res Ctr, Hampton, VA 23665 USA..
    Woolway, R. Iestyn
    Dundalk Inst Technol, Dundalk, Ireland..
    Yin, Xungang
    NOAA NESDIS Natl Ctr Environm Informat, ERT Inc, Asheville, NC USA..
    Zhao, Lin
    Nanjing Univ Informat Sci & Technol, Sch Geog Sci, Nanjing, Peoples R China..
    Zhao, Guanguo
    Univ Illinois, Champaign, IL USA..
    Zhou, Xinjia
    Ziemke, Jerry R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD 21239 USA..
    Ziese, Markus
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany..
    Global Climate: in State of the climate in 20192020Ingår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 101, nr 8, s. S17-S127Artikel i tidskrift (Refereegranskat)
  • 5. Ades, M.
    et al.
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Ziese, Markus
    State of the Climate in 20182019Ingår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 100, nr 9, s. Si-S306Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Ahlgren, Joakim
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi.
    De Brabandere, Heidi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi.
    Reitzel, Kasper
    Rydin, Emil
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Waldebäck, Monica
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi.
    Sediment Phosphorus Extractants for Phosphorus-31 Nuclear Magnetic Resonance Analysis: A Quantitative Evaluation2007Ingår i: Journal of Environmental Quality, ISSN 0047-2425, E-ISSN 1537-2537, Vol. 36, nr 3, s. 892-898Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of pre-extractant, extractant, and post-extractant on total extracted amounts of P and organic P compound groups measured with 31P nuclear magnetic resonance (31P-NMR) in lacustrine sediment was examined. The main extractants investigated were sodium hydroxide (NaOH) and sodium hydroxide ethylenediaminetetraacetic acid (NaOH-EDTA) with bicarbonate buffered dithionite (BD) or EDTA as pre-extractants. Post extractions were conducted using either NaOH or NaOH-EDTA, depending on the main extractant. Results showed that the most efficient combination of extractants for total P yield was NaOH with EDTA as pre-extractant, yielding almost 50% more than the second best procedure. The P compound groups varying the most between the different extraction procedures were polyphosphates and pyrophosphates. NaOH with BD as pre-extractant was the most efficient combination for these compound groups.

  • 7.
    Ahlgren, Joakim
    et al.
    Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
    Reitzel, Kasper
    Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
    De Brabandere, Heidi
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi, Analytisk kemi.
    Gogoll, Adolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Organisk kemi I.
    Rydin, Emil
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Release of Organic P Forms from Lake Sediments2011Ingår i: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 45, nr 2, s. 565-572Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of different physical and chemical conditions on the decomposition and release of organic and inorganic P compound groups from the sediment of Lake Erken were investigated in a series of laboratory experiments. Conditions investigated were temperature, oxygen level, and the effects of additions of carbon substrate (glucose) and poison (formalin). The effects on the P compound groups were determined by measurements with 31P NMR before and after the experiments, as well as analysis of P in effluent water throughout the experiment. Phosphate analysis of the effluent water showed that oxygen level was the most influential in terms of release rates, with the sediments under anoxic conditions generally releasing more phosphate than the other treatments. 31P NMR showed that the various treatments did influence the P compound group composition of the sediment. In particular, the addition of glucose led to a decrease in orthophosphate and polyphosphate while the addition of formalin led to a decrease in phosphorus lipids, DNAphosphate and polyphosphate. Oxic conditions resulted in an increase in polyphosphates, and anoxic conditions in a decrease in these. Temperature did not seem to affect the composition significantly.

  • 8.
    Ahmed Osman, Omneya
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Beier, Sara
    Leibniz Inst Balt Sea Res, Warnemunde, Germany..
    Grabherr, Manfred
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bertilsson, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Interactions of Freshwater Cyanobacteria with Bacterial Antagonists2017Ingår i: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 83, nr 7, artikel-id UNSP e02634Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cyanobacterial and algal mass development, or blooms, have severe effects on freshwater and marine systems around the world. Many of these phototrophs produce a variety of potent toxins, contribute to oxygen depletion, and affect water quality in several ways. Coexisting antagonists, such as cyanolytic bacteria, hold the potential to suppress, or even terminate, such blooms, yet the nature of this interaction is not well studied. We isolated 31 cyanolytic bacteria affiliated with the genera Pseudomonas, Stenotrophomonas, Acinetobacter, and Delftia from three eutrophic freshwater lakes in Sweden and selected four phylogenetically diverse bacterial strains with strong-to-moderate lytic activity. To characterize their functional responses to the presence of cyanobacteria, we performed RNA sequencing (RNA-Seq) experiments on coculture incubations, with an initial predator-prey ratio of 1: 1. Genes involved in central cellular pathways, stress-related heat or cold shock proteins, and antitoxin genes were highly expressed in both heterotrophs and cyanobacteria. Heterotrophs in coculture expressed genes involved in cell motility, signal transduction, and putative lytic activity. L, D-Transpeptidase was the only significantly upregulated lytic gene in Stenotrophomonas rhizophila EK20. Heterotrophs also shifted their central metabolism from the tricarboxylic acid cycle to the glyoxylate shunt. Concurrently, cyanobacteria clearly show contrasting antagonistic interactions with the four tested heterotrophic strains, which is also reflected in the physical attachment to their cells. In conclusion, antagonistic interactions with cyanobacteria were initiated within 24 h, and expression profiles suggest varied responses for the different cyanobacteria and studied cyanolytes. IMPORTANCE Here, we present how gene expression profiles can be used to reveal interactions between bloom-forming freshwater cyanobacteria and antagonistic heterotrophic bacteria. Species-specific responses in both heterotrophs and cyanobacteria were identified. The study contributes to a better understanding of the interspecies cellular interactions underpinning the persistence and collapse of cyanobacterial blooms.

    Ladda ner fulltext (pdf)
    fulltext
  • 9. Ali El Hadi Mohamed, Rania
    et al.
    Abdelgadir, Deena M.
    Bashab, Hind M.
    Al-Shuraym, Laila A.
    Sfouq Aleanizy, Fadilah
    Alqahtani, Fulwah Y.
    Ahmed Al-Keridis, Lamya
    Mohamed, Nahla
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Princess Nourah Bint Abdurrahman University.
    First record of West Nile Virus detection inside wild mosquitoes in Khartoum capital of Sudan using PCR2020Ingår i: Saudi Journal of Biological Sciences, ISSN 1319-562X, Vol. 27, nr 12, s. 3359-3364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study aimed to explore the presence of West Nile Virus (WNV) inside four species of mosquitoes: Culex univittatus (Theobald), Culex quinquefasciatus (Say) Aedes vittatus (Bigot) and Aedes vexans (Meigen). Adult wild mosquitoes were collected from different sites: Soba West, Hellat Kuku, Shambat, and Khartoum North Central Live Stock Market (KCLM). Surveys were carried out at Khartoum State during two phases: pre to the rainy season and post to the rainy season. Mosquito specimens were identified using classical keys then preserved at −80 °C freezer for two weeks till the virus examination using polymerase chain reaction (PCR) were carried out. WNV has been detected inside the three species of mosquitoes: A. vexans, C. univittatus, and C. quinquefasciatus. The species were collected from Hellat Kuku, (Shambat and Hellat Kuku), and (Shambat and KCLM) respectively. Two species of mosquitoes were positive for the virus: C. quinquefasciatus and C. univittatus. Positive results for the virus during the first phase of the study; males of C. quinquefasciatus and C. univittatus collected during the second phase of the study were also tested for the existence of the virus and they were positive. For our knowledge this study represents first record of WNV inside wild mosquitoes in Sudan. PCR technique provided reliable information because specific primer-probe sets were used for the detection of the virus. Extra studies are required to incriminate these species of mosquitoes as potential vectors of WNV.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Allesson, Lina
    et al.
    Univ Oslo, Dept Biosci, Oslo, Norway..
    Koehler, Birgit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Thrane, Jan-Erik
    Norwegian Inst Water Res, Oslo, Norway..
    Andersen, Tom
    Univ Oslo, Dept Biosci, Oslo, Norway..
    Hessen, Dag O.
    Univ Oslo, Dept Biosci, Oslo, Norway..
    The role of photomineralization for CO2 emissions in boreal lakes along a gradient of dissolved organic matter2021Ingår i: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590, Vol. 66, nr 1, s. 158-170Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many boreal lakes are experiencing an increase in concentrations of terrestrially derived dissolved organic matter (DOM)-a process commonly labeled "browning." Browning affects microbial and photochemical mineralization of DOM, and causes increased light attenuation and hence reduced photosynthesis. Consequently, browning regulates lake heterotrophy and net CO2-efflux to the atmosphere. Climate and environmental change makes ecological forecasting and global carbon cycle modeling increasingly important. A proper understanding of the magnitude and relative contribution from CO2-generating processes for lakes ranging in dissolve organic carbon (DOC) concentrations is therefore crucial for constraining models and forecasts. Here, we aim to study the relative contribution of photomineralization to total CO(2)production in 70 Scandinavian lakes along an ecosystem gradient of DOC concentration. We combined spectral data from the lakes with regression estimates between optical parameters and wavelength specific photochemical reactivity to estimate rates of photochemical DOC mineralization. Further, we estimated total in-lake CO2-production and efflux from lake chemical and physical data. Photochemical mineralization corresponded on average to 9% +/- 1% of the total CO2-evasion, with the highest contribution in clear lakes. The calculated relative contribution of photochemical mineralization to total in-lake CO2-production was about 3% +/- 0.2% in all lakes. Although lakes differed substantially in color, depth-integrated photomineralization estimates were similar in all lakes, regardless of DOC concentrations. DOC concentrations were positively related to CO2-efflux and total in-lake CO2-production but negatively related to primary production. We conclude that enhanced rates of photochemical mineralization will be a minor contributor to increased heterotrophy under increased browning.

    Ladda ner fulltext (pdf)
    fulltext
  • 11. Almeida, Rafael M.
    et al.
    Barros, Nathan
    Cole, Jonathan J.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Roland, Fabio
    Correspondence: Emissions from Amazonian dams2013Ingår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 3, nr 12, s. 1005-1005Artikel i tidskrift (Övrigt vetenskapligt)
  • 12. Almeida, Rafael M.
    et al.
    Barros, Nathan
    Cole, Jonathan J.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Roland, Fábio
    Emissions from Amazonian dams2013Ingår i: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 3, nr 12, s. 1005-1005Artikel i tidskrift (Refereegranskat)
  • 13.
    Almeida, Rafael M.
    et al.
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Nobrega, Gabriel N.
    Univ Sao Paulo, Escola Super Agr Luiz de Queiroz, Dept Ciencia Solo, Piracicaba, Brazil..
    Junger, Pedro C.
    Univ Fed Rio de Janeiro, Lab Limnol, Rio De Janeiro, Brazil..
    Figueiredo, Aline V.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Andrade, Anizio S.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    de Moura, Caroline G. B.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Tonetta, Denise
    Univ Fed Santa Catarina, Lab Freshwater Ecol, Florianopolis, SC, Brazil..
    Oliveira, Ernandes S., Jr.
    Radboud Univ Nijmegen, Dept Aquat Ecol & Environm Biol, Inst Water & Wetland Res, NL-6525 ED Nijmegen, Netherlands..
    Araujo, Fabiana
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Rust, Felipe
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Pineiro-Guerra, Juan M.
    Univ Republica, Dept Ecol Teor & Aplicada, Ctr Univ Reg Este, Montevideo, Uruguay.;Univ Republica, Fac Ciencias, Montevideo, Uruguay..
    Mendonca, Jurandir R., Jr.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Medeiros, Leonardo R.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Pinheiro, Lorena
    Univ Fed Estado Rio de Janeiro, Dept Ciencias Nat, Rio De Janeiro, Brazil..
    Miranda, Marcela
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Costa, Mariana R. A.
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Melo, Michaela L.
    Univ Fed Sao Carlos, Lab Microbial Proc & Biodivers, BR-13560 Sao Carlos, SP, Brazil..
    Nobre, Regina L. G.
    Univ Fed Rio Grande do Norte, Lab Limnol, BR-59072970 Natal, RN, Brazil..
    Benevides, Thiago
    Univ Fed Rio de Janeiro, Lab Limnol, Rio De Janeiro, Brazil..
    Roland, Fabio
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    de Klein, Jeroen
    Wageningen Univ, Aquat Ecol & Environm Sci, NL-6700 AP Wageningen, Netherlands..
    Barros, Nathan O.
    Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil..
    Mendonca, Raquel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Biol, Aquat Ecol Lab, Juiz De Fora, Brazil.
    Becker, Vanessa
    Univ Fed Rio Grande do Norte, Lab Water Resources & Environm Sanitat, BR-59072970 Natal, RN, Brazil..
    Huszar, Veral. M.
    Univ Fed Rio de Janeiro, Museu Nacl, Lab Ficol, Rio De Janeiro, Brazil..
    Kosten, Sarian
    Radboud Univ Nijmegen, Dept Aquat Ecol & Environm Biol, Inst Water & Wetland Res, NL-6525 ED Nijmegen, Netherlands..
    High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir2016Ingår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 7, artikel-id 717Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (Co-2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 +/- 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 +/- 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 +/- 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 +/- 10 mg C m(-2) d(-1)) and diffusive CH4 (11 +/- 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 +/- 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Almeida, Rafael M.
    et al.
    Cornell University, USA.
    Paranaíba, José R.
    Federal University of Juiz de Fora, Brazil.
    Barbosa, Ícaro
    Federal University of Juiz de Fora, Brazil.
    Sobek, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Kosten, Sarian
    University Nijmegen, The Netherlands.
    Linkhorst, Annika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Mendonça, Raquel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Federal University of Juiz de Fora, Brazil.
    Quadra, Gabrielle
    Federal University of Juiz de Fora, Brazil.
    Roland, Fábio
    Federal University of Juiz de Fora, Brazil.
    Barros, Nathan
    Federal University of Juiz de Fora, Brazil.
    Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover2019Ingår i: Aquatic Sciences, ISSN 1015-1621, E-ISSN 1420-9055, Vol. 81, artikel-id 68Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reservoir sediments exposed to air due to water level fluctuations are strong sources of atmospheric carbon dioxide (CO2). The spatial variability of CO2 fluxes from these drawdown areas are still poorly understood. In a reservoir in southeastern Brazil, we investigated whether CO2 emissions from drawdown areas vary as a function of neighboring land cover types and assessed the magnitude of CO2 fluxes from drawdown areas in relation to nearby water surface. Exposed sediments near forestland (average = 2733 mg C m−2 day−1) emitted more CO2 than exposed sediments near grassland (average = 1261 mg C m−2 day−1), congruent with a difference in organic matter content between areas adjacent to forestland (average = 12.2%) and grassland (average = 10.9%). Moisture also had a significant effect on CO2 emission, with dry exposed sediments (average water content: 13.7%) emitting on average 2.5 times more CO2 than wet exposed sediments (average water content: 23.5%). We carried out a systematic comparison with data from the literature, which indicates that CO2 efflux from drawdown areas globally is about an order of magnitude higher than CO2 efflux from adjacent water surfaces, and within the range of CO2 efflux from terrestrial soils. Our findings suggest that emissions from exposed sediments may vary substantially in space, possibly related to organic matter supply from uphill vegetation, and that drawdown areas play a disproportionately important role in total reservoir CO2 emissions with respect to the area they cover.

    Ladda ner fulltext (pdf)
    fulltext
  • 15. Almeida, Rafael M.
    et al.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Huszar, Vera L. M.
    Sobek, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Mendonca, Raquel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Barros, Nathan
    Boemer, Gina
    Arantes, Joao Durval, Jr.
    Roland, Fabio
    Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming2015Ingår i: Inland Waters, ISSN 2044-2041, E-ISSN 2044-205X, Vol. 5, nr 3, s. 275-282Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Originating in the Bolivian and Peruvian Andes, the Madeira River is the largest tributary of the Amazon River in terms of discharge. Andean rivers transport large quantities of nutrient-rich suspended sediments and are the main source of phosphorus (P) to the Amazon basin. Here, we show the seasonal variability in concentrations and loads of different P forms (total, particulate, dissolved, and soluble reactive P) in the Madeira River through 8 field campaigns between 2009 and 2011. At our sampling reach in Porto Velho, Brazil, the Madeira River transports similar to 177-247 Gg yr(-1) of P, mostly linked to particles (similar to 85%). Concentrations and loads of all P forms have a maximum at rising waters and a minimum at low waters. Total P concentrations were substantially higher at a given discharge at rising water than at a similar discharge at falling water. The peak of P concentrations matched the peak of rainfall in the upper basin, suggesting an influence of precipitation-driven erosion. Projected precipitation increase in the eastern slopes of the Andes could enhance sediment yield and hence the P transport in the Madeira River. Because most of the P is particulate, however, we hypothesize that the planned proliferation of hydropower dams in the Madeira basin has the potential to reduce P loads substantially, possibly counteracting any precipitation-related increases. In the long term, this could be detrimental to highly productive downstream floodplain forests that are seasonally fertilized with P-rich deposits.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Alneberg, Johannes
    et al.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Gene Technol, Sci Life Lab, Stockholm, Sweden.
    Karlsson, Christofer M. G.
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden.
    Divne, Anna-Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bergin, Claudia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Homa, Felix
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Lindh, Markus V.
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden;Lund Univ, Dept Biol, Lund, Sweden.
    Hugerth, Luisa W.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Gene Technol, Sci Life Lab, Stockholm, Sweden;Karolinska Inst, Ctr Translat Microbiome Res, Dept Mol Tumour & Cell Biol, Sci Life Lab, Solna, Sweden.
    Ettema, Thijs J. G.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bertilsson, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Andersson, Anders F.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Gene Technol, Sci Life Lab, Stockholm, Sweden.
    Pinhassi, Jarone
    Linnaeus Univ, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, Kalmar, Sweden.
    Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes2018Ingår i: Microbiome, E-ISSN 2049-2618, Vol. 6, artikel-id 173Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Prokaryotes dominate the biosphere and regulate biogeochemical processes essential to all life. Yet, our knowledge about their biology is for the most part limited to the minority that has been successfully cultured. Molecular techniques now allow for obtaining genome sequences of uncultivated prokaryotic taxa, facilitating in-depth analyses that may ultimately improve our understanding of these key organisms.

    Results: We compared results from two culture-independent strategies for recovering bacterial genomes: single-amplified genomes and metagenome-assembled genomes. Single-amplified genomes were obtained from samples collected at an offshore station in the Baltic Sea Proper and compared to previously obtained metagenome-assembled genomes from a time series at the same station. Among 16 single-amplified genomes analyzed, seven were found to match metagenome-assembled genomes, affiliated with a diverse set of taxa. Notably, genome pairs between the two approaches were nearly identical (average 99.51% sequence identity; range 98.77-99.84%) across overlapping regions (30-80% of each genome). Within matching pairs, the single-amplified genomes were consistently smaller and less complete, whereas the genetic functional profiles were maintained. For the metagenome-assembled genomes, only on average 3.6% of the bases were estimated to be missing from the genomes due to wrongly binned contigs.

    Conclusions: The strong agreement between the single-amplified and metagenome-assembled genomes emphasizes that both methods generate accurate genome information from uncultivated bacteria. Importantly, this implies that the research questions and the available resources are allowed to determine the selection of genomics approach for microbiome studies.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 17.
    Alonso-Saez, Laura
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Unanue, Marian
    Latatu, Ainhoa
    Azua, Inigo
    Ayo, Begona
    Artolozaga, Itxaso
    Iriberri, Juan
    Changes in marine prokaryotic community induced by varying types of dissolved organic matter and subsequent grazing pressure2009Ingår i: Journal of Plankton Research, ISSN 0142-7873, E-ISSN 1464-3774, Vol. 31, nr 11, s. 1373-1383Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We analysed changes in the abundance, biomass, activity and composition of coastal marine prokaryotic communities after the addition of organic substrates, such as glucose, leucine and yeast extract, and the effect of grazing pressure exerted by nanoflagellates. The addition of a carbon source (i.e. glucose) promoted the growth of Gammaproteobacteria, while a combined source of C and N (i.e. leucine) favoured the development of Alphaproteobacteria. The addition of yeast extract, a complex substrate rich in N and growth factors, promoted the proliferation of Alphaproteobacteria and Gammaproteobacteria. Grazing pressure exerted by nanoflagellates produced marked differences on the size structure of the prokaryotic biomass. A pronounced tendency to filamentation and aggregation was observed in the glucose treatment, while in the case of yeast extract, small and mainly freely dispersed prokaryotes were maintained throughout the incubations. Thus, the final community in the yeast extract treatment showed a high percentage of edible biomass, while an important fraction of potentially grazing-resistant prokaryotes (more than 50% of total prokaryotic biomass) was detected in the microcosms enriched with glucose. These results suggest a marked effect of DOM sources on the development of grazing-resistant prokaryotes.

  • 18.
    Alonso-Saez, Laura
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Vazquez-Dominguez, Evaristo
    Cardelus, Clara
    Pinhassi, Jarone
    Sala, M. Montserrat
    Lekunberri, Itziar
    Balague, Vanessa
    Vila-Costa, Maria
    Unrein, Fernando
    Massana, Ramon
    Simo, Rafel
    Gasol, Josep M.
    Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system2008Ingår i: Ecosystems (New York. Print), ISSN 1432-9840, E-ISSN 1435-0629, Vol. 11, nr 3, s. 397-409Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Data from several years of monthly samplings are combined with a 1-year detailed study of carbon flux through bacteria at a NW Mediterranean coastal site to delineate the bacterial role in carbon use and to assess whether environmental factors or bacterial assemblage composition affected the in situ rates of bacterial carbon processing. Leucine (Leu) uptake rates [as an estimate of bacterial heterotrophic production (BHP)] showed high interannual variability but, on average, lower values were found in winter (around 50 pM Leu(-1) h(-1)) as compared to summer (around 150 pM Leu(-1) h(-1)). Leu-to-carbon conversion factors ranged from 0.9 to 3.6 kgC mol Leu(-1), with generally higher values in winter. Leu uptake was only weakly correlated to temperature, and over a full-year cycle (in 2003), Leu uptake peaked concomitantly with winter chlorophyll a (Chl a) maxima, and in periods of high ectoenzyme activities in spring and summer. This suggests that both low molecular weight dissolved organic matter (DOM) released by phytoplankton, and high molecular weight DOM in periods of low Chl a, can enhance BHP. Bacterial respiration (BR, range 7-48 mu g C l(-1) d(-1)) was not correlated to BHP or temperature, but was significantly correlated to DOC concentration. Total bacterial carbon demand (BHP plus BR) was only met by dissolved organic carbon produced by phytoplankton during the winter period. We measured bacterial growth efficiencies by the short-term and the long-term methods and they ranged from 3 to 42%, increasing during the phytoplankton blooms in winter (during the Chl a peaks), and in spring. Changes in bacterioplankton assemblage structure (as depicted by denaturing gradient gel electrophoresis fingerprinting) were not coupled to changes in ecosystem functioning, at least in bacterial carbon use.

  • 19.
    Alonso-Saez, Laura
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Zeder, Michael
    Harding, Tommy
    Pernthaler, Jakob
    Lovejoy, Connie
    Bertilsson, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Pedros-Alio, Carlos
    Winter bloom of a rare betaproteobacteriurn in the Arctic Ocean2014Ingår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 5, s. 425-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Extremely low abundance microorganisms (members of the "rare biosphere") are believed to include dormant taxa, which can sporadically become abundant following environmental triggers. Yet, microbial transitions from rare to abundant have seldom been captured in situ, and it is uncertain how widespread these transitions are. A bloom of a single ribotype (>= 99% similarity in the 16S ribosomal RNA gene) of a widespread betaproteobacterium (Janthinobacterium sp.) occurred over 2 weeks in Arctic marine waters. The Janthinobactenum population was not detected microscopically in situ in January and early February, but suddenly appeared in the water column thereafter, eventually accounting for up to 20% of bacterial cells in mid February. During the bloom, this bacterium was detected at open water sites up to 50 km apart, being abundant down to more than 300 m. This event is one of the largest monospecific bacterial blooms reported in polar oceans. It is also remarkable because Betaproteobacteria are typically found only in low abundance in marine environments. In particular, Janthinobacterium were known from non-marine habitats and had previously been detected only in the rare biosphere of seawater samples, including the polar oceans. The Arctic Janthinobacterium formed mucilagenous monolayer aggregates after short (ca. 8 h) incubations, suggesting that biofilm formation may play a role in maintaining rare bacteria in pelagic marine environments. The spontaneous mass occurrence of this opportunistic rare taxon in polar waters during the energy-limited season extends current knowledge of how and when microbial transitions between rare and abundant occur in the ocean.

  • 20.
    Alonso-Sáez, Laura
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Andersson, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Heinrich, Friederike
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Bertilsson, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    High archaeal diversity in Antarctic circumpolar deep waters2011Ingår i: Environmental Microbiology Reports, E-ISSN 1758-2229, Vol. 3, nr 6, s. 689-697Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Archaea are abundant in polar oceans but important ecological aspects of this group remain enigmatic, such as patterns of diversity and biogeography. Here, we provide the first high-throughput sequencing population study of Antarctic archaea based on 198 bp fragments of the 16S rRNA gene, targeting different water masses across the Amundsen and Ross Seas. Our results suggest that archaeal community composition is strongly shaped by hydrography and significantly influenced by environmental parameters. Archaeal communities from cold continental shelf waters (SW) of the Ross Sea were similar over depth with a single thaumarchaeal phylotype dominating Antarctic surface waters (AASW) and deeper SW (contributing up to 80% of reads). However, this phylotype contributed less than 8% of reads in circumpolar deep waters (CDW). A related thaumarchaeon (98% identity) was almost absent in AASW, but contributed up to 30% of reads in CDW, suggesting ecological differentiation of closely related phylotypes. Significantly higher archaeal richness and evenness were observed in CDW, with Shannon indices (c. 2.5) twice as high as for AASW, and high contributions of Group II Euryarchaeota. Based on these results, we suggest that CDW is a hotspot of archaeal diversity and may play an important role in the dispersal of archaeal phylotypes to other oceanic water masses.

  • 21.
    Alonso-Sáez, Laura
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Waller, A. S.
    Mende, D. R.
    Bakker, K.
    Farnelid, H.
    Yager, P. L.
    Lovejoy, C.
    Tremblay, J. -E
    Potvin, M.
    Heinrich, Friederike
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Estrada, M.
    Riemann, L.
    Bork, P.
    Pedrós-Alió, C.
    Bertilsson, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Role for urea in nitrification by polar marine Archaea2012Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 109, nr 44, s. 17989-17994Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite the high abundance of Archaea in the global ocean, their metabolism and biogeochemical roles remain largely unresolved. We investigated the population dynamics and metabolic activity of Thaumarchaeota in polar environments, where these microorganisms are particularly abundant and exhibit seasonal growth. Thaumarchaeota were more abundant in deep Arctic and Antarctic waters and grew throughout the winter at surface and deeper Arctic halocline waters. However, in situ single-cell activity measurements revealed a low activity of this group in the uptake of both leucine and bicarbonate (<5% Thaumarchaeota cells active), which is inconsistent with known heterotrophic and autotrophic thaumarchaeal lifestyles. These results suggested the existence of alternative sources of carbon and energy. Our analysis of an environmental metagenome from the Arctic winter revealed that Thaumarchaeota had pathways for ammonia oxidation and, unexpectedly, an abundance of genes involved in urea transport and degradation. Quantitative PCR analysis confirmed that most polar Thaumarchaeota had the potential to oxidize ammonia, and a large fraction of them had urease genes, enabling the use of urea to fuel nitrification. Thaumarchaeota from Arctic deep waters had a higher abundance of urease genes than those near the surface suggesting genetic differences between closely related archaeal populations. In situ measurements of urea uptake and concentration in Arctic waters showed that small-sized prokaryotes incorporated the carbon from urea, and the availability of urea was often higher than that of ammonium. Therefore, the degradation of urea may be a relevant pathway for Thaumarchaeota and other microorganisms exposed to the low-energy conditions of dark polar waters.

  • 22.
    Anandhi, Aavudai
    et al.
    Florida A&M Univ, Coll Agr & Food Sci, Biol Syst Engn, Tallahassee, FL 32307 USA;Florida A&M Univ, Coll Agr & Food Sci, Ctr Water Resources, Tallahassee, FL 32307 USA.
    Pierson, Don
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Frei, Allan
    CUNY, Hunter Coll, Dept Geog, New York, NY 10065 USA;CUNY, CUNY Inst Sustainable Cities, New York, NY 10065 USA.
    Evaluation of Climate Model Performance for Water Supply Studies: Case Study for New York City2019Ingår i: Journal of water resources planning and management, ISSN 0733-9496, E-ISSN 1943-5452, Vol. 145, nr 8, artikel-id 06019006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Evaluating the suitability of data from global climate models (GCMs) for use as input in water supply models is an important step in the larger task of evaluating the effects of climate change on water resources management such as that of water supply operations. The purpose of this paper is to present the process by which GCMs were evaluated and incorporated into the New York City (NYC) water supply's planning activities and to provide conclusions regarding the overall effectiveness of the ranking procedure used in the evaluation. A suite of GCMs participating in Phase 3 of the Coupled Model Intercomparison Project (CMIP3) were evaluated for use in climate change projections in the watersheds of the NYC water supply that provide 90% of the water consumed by NYC. GCM data were aggregated using the seven land-grid points surrounding NYC watersheds, and these data with a daily timestep were evaluated seasonally using probability-based skill scores for various combinations of five meteorological variables (precipitation, average, maximum and minimum temperatures, and wind speed). These are the key variables for the NYC water supply because they affect the timing and magnitude of water, energy, sediment, and nutrient fluxes into the reservoirs as well as in simulating watershed hydrology and reservoir hydrodynamics. We attempted to choose a subset of GCMs based on the average of several skill metrics that compared baseline (20C3M) GCM results to observations. Skill metrics for the study indicate that the skill in simulating the frequency distributions of measured data is highest for temperature and lowest for wind. However, our attempts to identify the best model or subgroup of models were not successful because we found that no single model performs best when considering all of the variables and seasons.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 23.
    Andersson, Anders F.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Pelve, Erik A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för evolution, genomik och systematik, Molekylär evolution.
    Lindeberg, Stefan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för evolution, genomik och systematik, Molekylär evolution.
    Lundgren, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för evolution, genomik och systematik, Molekylär evolution. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Mikrobiologi.
    Nilsson, Peter
    Bernander, Rolf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för evolution, genomik och systematik, Molekylär evolution.
    Replication-biased genome organisation in the crenarchaeon Sulfolobus2010Ingår i: BMC Genomics, E-ISSN 1471-2164, Vol. 11, s. 454-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Species of the crenarchaeon Sulfolobus harbour three replication origins in their single circular chromosome that are synchronously initiated during replication. Results: We demonstrate that global gene expression in two Sulfolobus species is highly biased, such that early replicating genome regions are more highly expressed at all three origins. The bias by far exceeds what would be anticipated by gene dosage effects alone. In addition, early replicating regions are denser in archaeal core genes (enriched in essential functions), display lower intergenic distances, and are devoid of mobile genetic elements. Conclusion: The strong replication-biased structuring of the Sulfolobus chromosome implies that the multiple replication origins serve purposes other than simply shortening the time required for replication. The higher-level chromosomal organisation could be of importance for minimizing the impact of DNA damage, and may also be linked to transcriptional regulation.

  • 24. Andersson, Eva
    et al.
    Sobek, Sebastian
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Comparison of a mass balance and an ecosystem model approach when evaluating the carbon cycling in a lake ecosystem2006Ingår i: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 35, nr 8, s. 476-483Artikel i tidskrift (Refereegranskat)
  • 25.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Abundance data adaptation experiment2017Dataset
    Ladda ner fulltext (xlsx)
    dataset
  • 26.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Bacterial abundance data from sterilization experiment2017Dataset
    Ladda ner fulltext (xlsx)
    dataset
  • 27.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Extent and limitations of functional redundancy among bacterial communities towards dissolved organic matter2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    One of the key processes in the carbon cycle on our planet is the degradation of dissolved organic matter (DOM) in aquatic environments. The use of organic matter by bacteria links energy from DOM to higher trophic levels of the ecosystem when bacteria are consumed by other organisms. This is referred to as the microbial loop. In this thesis I examined if the communities were functionally redundant in their ability to utilize organic matter, or if variation in bacterial composition and richness is of importance. To test this overarching question several experiments were conducted that include methods such as illumina sequencing of the 16S rRNA gene for taxonomic identification of bacterial communities, flow cytometry to follow the growth of communities and spectroscopic measurement to describe the composition of the organic matter pool. Initially we demonstrated how to optimally sterilize organic matter for experimental studies in order to preserve its natural complexity. In further experiments we found that bacterial communities are redundant in their utilization of organic matter and can maintain optimal performance towards a range of organic matter pools. Related to this we found that pre-adaptation to organic matter played a small role as communities performed equally well regardless of their environmental history. We saw a small effect of richness and composition of bacterial communities on the efficiency of organic matter use, but conclude that this is of minor importance relative to abiotic factors. Still, we also show that organic matter can put strong selection pressure on bacterial communities with regards to richness and composition. Additionally we found that the supply rate of a carbon compound greatly influenced the energy utilization of the compound, i.e. a higher growth rate can be maintained if substrate is delivered in pulses relative to a continuous flow. Finally we conclude that the variation in bacterial communities is unlikely to have a major influence on carbon cycling in boreal lakes, but to enable a finer understanding, the genetics underlying the carbon utilization needs to be further explored. 

    Delarbeten
    1. Effects of sterilization on dissolved organic carbon (DOC) composition and bacterial utilization of DOC from lakes
    Öppna denna publikation i ny flik eller fönster >>Effects of sterilization on dissolved organic carbon (DOC) composition and bacterial utilization of DOC from lakes
    Visa övriga...
    2018 (Engelska)Ingår i: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 82, nr 2, s. 199-208Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Sterilization of dissolved organic carbon (DOC) is an essential step in research on interactions between DOC and organisms, for example where the effect of different microbial communities on DOC is studied or vice versa. However, few studies have gone beyond acknowledging that sterilization of DOC influences its characteristics. Here, we aimed to provide further knowledge that enables scientists to better tailor their sterilization methods to their research question. To meet this aim, we conducted a sterilization experiment with DOC from 4 boreal lakes treated with 4 sterilization methods, i.e. 2 filtrations (0.2 µm, 0.1 µm) and 2 autoclaving approaches (single and double autoclaving with a single pH adjustment). Quantity and spectroscopic properties of DOC, before and after sterilization, were studied, and DOC was further tested as a substrate for bacterial growth. We found that the filtration methods better preserved the different DOC measures. In contrast, autoclaving caused major inconsistent shifts in both qualitative and quantitative measures of DOC, as well as an increase of the maximum abundance of bacteria in growth experiments. Nonetheless, there remains a trade-off between retaining the quality of DOC and achieving sterile conditions. Therefore, the sterilization method of choice should be guided by the scientific question at hand.

    Nyckelord
    sterilization, autoclave, filtration, dissolved organic carbon, excitation emission matrices, parallel factor analysis
    Nationell ämneskategori
    Biologiska vetenskaper
    Forskningsämne
    Mikrobiologi
    Identifikatorer
    urn:nbn:se:uu:diva-331676 (URN)10.3354/ame01890 (DOI)000454321300006 ()
    Anmärkning

    Title in Thesis list of papers: Effects of sterilization on composition and bacterial utilization of dissolved organic carbon

    Tillgänglig från: 2017-10-16 Skapad: 2017-10-16 Senast uppdaterad: 2021-03-25Bibliografiskt granskad
    2. Influence of pulsed and continuous substrate inputs on freshwater bacterial community composition and functioning in bioreactors
    Öppna denna publikation i ny flik eller fönster >>Influence of pulsed and continuous substrate inputs on freshwater bacterial community composition and functioning in bioreactors
    Visa övriga...
    2017 (Engelska)Ingår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 19, nr 12, s. 5078-5087Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Aquatic environments are typically not homogenous, but characterized by changing substrate concentration gradients and nutrient patches. This heterogeneity in substrate availability creates a multitude of niches allowing bacteria with different substrate utilization strategies to hypothetically coexist even when competing for the same substrate. To study the impact of heterogeneous distribution of organic substrates on bacterioplankton, bioreactors with freshwater bacterial communities were fed artificial freshwater medium with acetate supplied either continuously or in pulses. After a month-long incubation, bacterial biomass and community-level substrate uptake rates were twice as high in the pulsed treatment compared to the continuously fed reactors even if the same total amount of acetate was supplied to both treatments. The composition of the bacterial communities emerging in the two treatments differed significantly with specific taxa overrepresented in the respective treatments. The higher estimated growth yield in cultures that received pulsed substrate inputs, imply that such conditions enable bacteria to use resources more efficiently for biomass production. This finding agrees with established concepts of basal maintenance energy requirements and high energetic costs to assimilate substrates at low concentration. Our results further imply that degradation of organic matter is influenced by temporal and spatial heterogeneity in substrate availability. 

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-275178 (URN)10.1111/1462-2920.13979 (DOI)000418352800021 ()29124844 (PubMedID)
    Forskningsfinansiär
    Vetenskapsrådet, 2012-3892
    Tillgänglig från: 2016-02-01 Skapad: 2016-02-01 Senast uppdaterad: 2022-01-29Bibliografiskt granskad
    3. Response and effect interactions between bacterial communities and organic matter
    Öppna denna publikation i ny flik eller fönster >>Response and effect interactions between bacterial communities and organic matter
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The interaction between bacteria and dissolved organic matter (DOM) is crucial for the global carbon cycling. Despite decades of research there are, however, few consistent patterns regarding the relationship between bacterial diversity and community composition and DOM. Here we hypothesized that one reason for such inconsistences among studies is that bacterial communities can adapt to a DOM source over time, whereby a change in the functioning of a community can be, at least partly, decoupled from its composition and diversity. To test this idea we performed a reciprocal transplant experiment with medium (i.e. DOM source) and bacterial communities from two boreal lakes. In this experiment the two communities were allowed to adapt to their indigenous and their foreign source of DOM over 42 days. Bacterial community composition (BCC) was measured throughout the experiment. In addition we measured the capacity of the communities to use DOM, in repeated short (5 days) separated bioassays. The results show a response of bacterial community composition to the DOM sources which was influenced by the origin of the community. In contrast, we could not show an effect of BCC on DOM-processing and functional performance. Indeed, communities of different origin processed the two DOM sources equally well even at the beginning of the experiment. This work demonstrates that the DOM pool can be a strong selective force for BCC but not vice versa. 

    Nationell ämneskategori
    Biologiska vetenskaper
    Identifikatorer
    urn:nbn:se:uu:diva-331696 (URN)
    Tillgänglig från: 2017-10-17 Skapad: 2017-10-17 Senast uppdaterad: 2017-10-23
    4. The relative importance of richness and BCC for DOC degradation
    Öppna denna publikation i ny flik eller fönster >>The relative importance of richness and BCC for DOC degradation
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The importance of biodiversity has been of primary interest for ecologist the last 20 years, giving rise to biodiversity ecosystem function (BEF) studies. Within the traditional field of ecology reoccurring patterns have emerged but within microbial ecology the importance of species richness for functioning is still poorly understood with few consistent patterns. In this study we examined the effect of species richness for dissolved organic matter degradation in lakes. This was examined within a smaller span of species richness compared to what is typically in microbial BEF experiments. Bacterial communities of reduced species richness were exposed to a range of DOC environments to test if reduced richness changed the functioning of communities and if the effect was similar among DOC environments. This was conducted in a full factorial design of 3 levels, with 6 dilutions, 5 media and 3 inocula resulting in 90 treatments. Overall, richness and community composition appeared to have effects on DOC degradation, but these effects were minor compared to the variation caused by the different DOC sources. Further, the importance of species richness varied among media and, thus, the chemical complexity of the environment influenced the biodiversity-ecosystem functioning relationship. 

    Nationell ämneskategori
    Biologiska vetenskaper
    Forskningsämne
    Mikrobiologi
    Identifikatorer
    urn:nbn:se:uu:diva-331693 (URN)
    Tillgänglig från: 2017-10-17 Skapad: 2017-10-17 Senast uppdaterad: 2017-10-23
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (jpg)
    preview image
  • 28.
    Andersson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Spectroscopic data / carbon quality measurements1987Dataset
    Ladda ner fulltext (xlsx)
    dataset
  • 29.
    Andersson, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Berga, Mercè
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Lindström, Eva S.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Langenheder, Silke
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    The spatial structure of bacterial communities is influenced by historical environmental conditions2014Ingår i: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 95, nr 5, s. 1134-1140Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The spatial structure of ecological communities, including that of bacteria, is often influenced by species sorting by contemporary environmental conditions. Moreover, historical processes, i.e., ecological and evolutionary events that have occurred at some point in the past, such as dispersal limitation, drift, priority effects, or selection by past environmental conditions, can be important, but are generally investigated much less. Here, we conducted a field study using 16 rock pools, where we specifically compared the importance of past vs. contemporary environmental conditions for bacterial community structure by correlating present differences in bacterial community composition among pools to environmental conditions measured on the same day, as well as to those measured 2, 4, 6, and 8 d earlier. The results prove that selection by past environmental conditions exists, since we were able to show that bacterial communities are, to a greater extent, an imprint of past compared to contemporary environmental conditions. We suggest that this is the result of a combination of different mechanisms, including priority effects that cause rapid adaptation to new environmental conditions of taxa that have been initially selected by past environmental conditions, and slower rates of turnover in community composition compared to environmental conditions.

  • 30.
    Andersson, Martin G. I.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Catalán, Núria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. ICRA, Catalan Institute of Water Research, Girona, Spain.
    Rahman, Zeeshanur
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Tranvik, Lars J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Lindström, Eva S.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Effects of sterilization on dissolved organic carbon (DOC) composition and bacterial utilization of DOC from lakes2018Ingår i: Aquatic Microbial Ecology, ISSN 0948-3055, E-ISSN 1616-1564, Vol. 82, nr 2, s. 199-208Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sterilization of dissolved organic carbon (DOC) is an essential step in research on interactions between DOC and organisms, for example where the effect of different microbial communities on DOC is studied or vice versa. However, few studies have gone beyond acknowledging that sterilization of DOC influences its characteristics. Here, we aimed to provide further knowledge that enables scientists to better tailor their sterilization methods to their research question. To meet this aim, we conducted a sterilization experiment with DOC from 4 boreal lakes treated with 4 sterilization methods, i.e. 2 filtrations (0.2 µm, 0.1 µm) and 2 autoclaving approaches (single and double autoclaving with a single pH adjustment). Quantity and spectroscopic properties of DOC, before and after sterilization, were studied, and DOC was further tested as a substrate for bacterial growth. We found that the filtration methods better preserved the different DOC measures. In contrast, autoclaving caused major inconsistent shifts in both qualitative and quantitative measures of DOC, as well as an increase of the maximum abundance of bacteria in growth experiments. Nonetheless, there remains a trade-off between retaining the quality of DOC and achieving sterile conditions. Therefore, the sterilization method of choice should be guided by the scientific question at hand.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Andersson, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Rahman, Zeeshanur
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Catalán, Núria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Catalan Institute for Water Research (ICRA).
    Lindström, Eva
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    The relative importance of richness and BCC for DOC degradationManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The importance of biodiversity has been of primary interest for ecologist the last 20 years, giving rise to biodiversity ecosystem function (BEF) studies. Within the traditional field of ecology reoccurring patterns have emerged but within microbial ecology the importance of species richness for functioning is still poorly understood with few consistent patterns. In this study we examined the effect of species richness for dissolved organic matter degradation in lakes. This was examined within a smaller span of species richness compared to what is typically in microbial BEF experiments. Bacterial communities of reduced species richness were exposed to a range of DOC environments to test if reduced richness changed the functioning of communities and if the effect was similar among DOC environments. This was conducted in a full factorial design of 3 levels, with 6 dilutions, 5 media and 3 inocula resulting in 90 treatments. Overall, richness and community composition appeared to have effects on DOC degradation, but these effects were minor compared to the variation caused by the different DOC sources. Further, the importance of species richness varied among media and, thus, the chemical complexity of the environment influenced the biodiversity-ecosystem functioning relationship. 

  • 32.
    Andersson, Martin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Rahman, Zeeshanur
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Applied Microbiology and Biotechnology Laboratory, Department of Botany, University of Delhi.
    Catalán, Núria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Catalan Institute for Water Research (ICRA).
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Langenheder, Silke
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Lindström, Eva
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Response and effect interactions between bacterial communities and organic matterManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The interaction between bacteria and dissolved organic matter (DOM) is crucial for the global carbon cycling. Despite decades of research there are, however, few consistent patterns regarding the relationship between bacterial diversity and community composition and DOM. Here we hypothesized that one reason for such inconsistences among studies is that bacterial communities can adapt to a DOM source over time, whereby a change in the functioning of a community can be, at least partly, decoupled from its composition and diversity. To test this idea we performed a reciprocal transplant experiment with medium (i.e. DOM source) and bacterial communities from two boreal lakes. In this experiment the two communities were allowed to adapt to their indigenous and their foreign source of DOM over 42 days. Bacterial community composition (BCC) was measured throughout the experiment. In addition we measured the capacity of the communities to use DOM, in repeated short (5 days) separated bioassays. The results show a response of bacterial community composition to the DOM sources which was influenced by the origin of the community. In contrast, we could not show an effect of BCC on DOM-processing and functional performance. Indeed, communities of different origin processed the two DOM sources equally well even at the beginning of the experiment. This work demonstrates that the DOM pool can be a strong selective force for BCC but not vice versa. 

  • 33.
    Andersson, Matilda L.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Fish population responses to climate change: Causes and consequences2021Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Lake environments are heterogeneous, and animals show a variety of adaptations to deal with this heterogeneity. Fish often show intraspecific variation in diet, metabolism, and behavior, corresponding to their habitat use. Studies on climate change often ignore this heterogeneity and its importance in determining population-level responses to climate change. 

    This thesis can be broken into two interacting pieces. First, my goal was to assess how water color and temperature changes impact the size, number, and distribution of a common predator, Eurasian perch (Perca fluviatilis), in Swedish lakes. Second, I aimed to examine whether metabolism and resource use differed between lake habitats, corresponding with documented patterns of polymorphism and whether diet differences were maintained along a thermal and water color gradient. By combining the information gleaned from these studies, the overarching goal of my thesis is to better understand how climate change will impact fish populations and how intraspecific variance in these responses will impact ecosystem functioning. 

    I found that warming and browning will likely decrease fish biomass but via different mechanisms. Warming reduces average fish size through its impact on metabolism and energy requirements. Browning decreases fish abundance likely due to its negative effects on resource abundance, increasing mortality, and decreasing reproductive effort. Though warming decreases biomass at the lake level, pelagic perch abundance increases. I found that these pelagic perch have higher metabolic rates and, especially in darker lakes, rely heavily on pelagic resources. As more fish shift into the pelagic habitat, this will increase top-down pressure on pelagic resources and decrease energy transfer from littoral to pelagic habitats altering energy flow within lakes. 

    Variation in metabolic phenotype across habitats, combined with the positive scaling of metabolic rates with temperature, will likely determine which fish can persist under climate change scenarios. Studies that measure this variation rely heavily on respirometry to measure fish metabolism. I found that current respirometry methods underestimate maximum metabolic rate and suggest an updated method to improve the accuracy of future studies. 

    Overall, I conclude that habitats should be examined separately to better understand population-level responses to climate change. Perch caught in different habitats have different energy requirements and respond differently to warming and browning. These differences will affect the distribution of top-down pressure and habitat coupling within lake ecosystems, with implications for broader ecosystem functioning in the future. 

    Delarbeten
    1. Habitat specific impacts of warming and browning on a generalist freshwater predator
    Öppna denna publikation i ny flik eller fönster >>Habitat specific impacts of warming and browning on a generalist freshwater predator
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Mobile generalist predators are important components of community food webs because they can forage over a large spatial range and provide links that mediate ecosystem responses to climate change. However, many species show intraspecific variation in habitat and resource use. By evaluating the effects of increased temperature and water color on a predator fish living in two contiguous habitats, we can better understand how climate change effects can be mediated by specific ecotypes’ responses, and the implications for future ecosystem functioning.

    Using a space for time approach, our study examines the impact of increased temperature and water color of inland waters on European perch (Perca fluviatilis) populations, differentiating between the effects on perch inhabiting littoral and pelagic habitats. We found that littoral perch abundance decreased with increasing water color, likely as a result of decreased fecundity and prey availability. Average littoral perch size decreased with increasing temperatures reinforcing the negative effects of browning in reducing littoral perch biomass. In contrast, the biomass of pelagic perch increased with increasing temperature due to increased abundance and was not impacted by water color. Combined, this resulted in a shift towards a higher proportion of the perch population occupying the pelagic habitat in warmer lakes. These shifts in size and abundance at the lake level and between habitats are likely to impact ecosystem functioning and stability as the climate continues to change and will also affect fisheries and recreation. 

    Nyckelord
    Brownification, DOC, Fish, Perch, Polymorphism, Warming
    Nationell ämneskategori
    Ekologi
    Identifikatorer
    urn:nbn:se:uu:diva-450549 (URN)
    Forskningsfinansiär
    Forskningsrådet Formas, Dnr. 942–2015-365
    Tillgänglig från: 2021-08-16 Skapad: 2021-08-16 Senast uppdaterad: 2021-08-16
    2. Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystems
    Öppna denna publikation i ny flik eller fönster >>Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystems
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Generalist predators play an essential role in lake ecosystems by linking spatially distinct habitats, a process known as habitat coupling. By eating a wide array of resources and moving between littoral and pelagic habitats, they link food webs and provide critical habitat stability. As climate change is expected to affect ecosystem stability, our attention should focus on how habitat coupling in these predator-stabilized systems is altered by climate change.

    Expected climate change effects in boreal regions are increases in temperature and dissolved organic carbon (DOC) concentrations. Therefore, we used stable isotopes and a space-for-time approach to examine the impact of DOC and temperature on resource use in a generalist predator, European perch (Perca fluviatilis), in 17 lakes in Sweden and Germany. We found that the impact of DOC on habitat coupling depended on fish ecotype, while both ecotypes showed increases in pelagic resource use, this will increase coupling by littoral fish, while decreasing coupling by pelagic fish. Though we found no direct effect of temperature on resource use, we did find that fish size, which decreases with warming, has an impact. We show that in the future, as fish size decreases and DOC increases, generalist predators will couple habitats less and have a more narrow dietary niche width. This shows that while perch will respond flexibly to changes in resource availability, stability may decrease in the process. 

    Nyckelord
    browning, climate change, niche width, perch, resource use, stable isotopes
    Nationell ämneskategori
    Ekologi
    Identifikatorer
    urn:nbn:se:uu:diva-450550 (URN)
    Forskningsfinansiär
    Forskningsrådet Formas, Dnr. 942–2015-365
    Tillgänglig från: 2021-08-16 Skapad: 2021-08-16 Senast uppdaterad: 2021-08-16
    3. The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species
    Öppna denna publikation i ny flik eller fönster >>The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species
    2022 (Engelska)Ingår i: Ecology and Evolution, E-ISSN 2045-7758, Vol. 12, nr 8Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    1.      Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviours that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interact with the larger suite of traits to ultimately determine individual fitness.

    2.      We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden.

    3.      Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations was lower in pelagic perch.

    4.      This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats.

    Ort, förlag, år, upplaga, sidor
    John Wiley & SonsWiley Online Library, 2022
    Nyckelord
    intraspecific variation, metabolic rate, morphometrics, plasticity, Perca fluviatilis, resource use, respirometry, stable isotopes
    Nationell ämneskategori
    Ekologi
    Identifikatorer
    urn:nbn:se:uu:diva-450551 (URN)10.1002/ece3.9129 (DOI)000833916500001 ()35923943 (PubMedID)
    Forskningsfinansiär
    Forskningsrådet Formas, Dnr. 942-2015-365
    Tillgänglig från: 2021-08-16 Skapad: 2021-08-16 Senast uppdaterad: 2024-01-17Bibliografiskt granskad
    4. Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis
    Öppna denna publikation i ny flik eller fönster >>Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis
    2020 (Engelska)Ingår i: Journal of Fish Biology, ISSN 0022-1112, E-ISSN 1095-8649, Vol. 97, nr 6, s. 1644-1650Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no‐chase control. We used a repeated‐measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no‐chase control; (b) a 3‐min exhaustive chase; and (c) a 3‐min exhaustive chase followed by 1‐min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no‐chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no‐chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.

    Nyckelord
    aerobic scope, climate change, exhaustive chase, intermittent-flow respirometry, methods, standard metabolic rate
    Nationell ämneskategori
    Zoologi Ekologi
    Identifikatorer
    urn:nbn:se:uu:diva-427664 (URN)10.1111/jfb.14519 (DOI)000577623500001 ()32889736 (PubMedID)
    Forskningsfinansiär
    Forskningsrådet Formas, 942-2015-365
    Tillgänglig från: 2020-12-09 Skapad: 2020-12-09 Senast uppdaterad: 2023-10-31Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    UUThesis_M-L-Andersson-2021
    Ladda ner (jpg)
    presentationsbild
  • 34.
    Andersson, Matilda L.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Holmgren, Kerstin
    Eklöv, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Habitat specific impacts of warming and browning on a generalist freshwater predatorManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Mobile generalist predators are important components of community food webs because they can forage over a large spatial range and provide links that mediate ecosystem responses to climate change. However, many species show intraspecific variation in habitat and resource use. By evaluating the effects of increased temperature and water color on a predator fish living in two contiguous habitats, we can better understand how climate change effects can be mediated by specific ecotypes’ responses, and the implications for future ecosystem functioning.

    Using a space for time approach, our study examines the impact of increased temperature and water color of inland waters on European perch (Perca fluviatilis) populations, differentiating between the effects on perch inhabiting littoral and pelagic habitats. We found that littoral perch abundance decreased with increasing water color, likely as a result of decreased fecundity and prey availability. Average littoral perch size decreased with increasing temperatures reinforcing the negative effects of browning in reducing littoral perch biomass. In contrast, the biomass of pelagic perch increased with increasing temperature due to increased abundance and was not impacted by water color. Combined, this resulted in a shift towards a higher proportion of the perch population occupying the pelagic habitat in warmer lakes. These shifts in size and abundance at the lake level and between habitats are likely to impact ecosystem functioning and stability as the climate continues to change and will also affect fisheries and recreation. 

  • 35.
    Andersson, Matilda L.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Scharnweber, Kristin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Eklöv, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    The interaction between metabolic rate, habitat choice, and resource use in a polymorphic freshwater species2022Ingår i: Ecology and Evolution, E-ISSN 2045-7758, Vol. 12, nr 8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    1.      Resource polymorphism is common across taxa and can result in alternate ecotypes with specific morphologies, feeding modes, and behaviours that increase performance in a specific habitat. This can result in high intraspecific variation in the expression of specific traits and the extent to which these traits are correlated within a single population. Although metabolic rate influences resource acquisition and the overall pace of life of individuals it is not clear how metabolic rate interact with the larger suite of traits to ultimately determine individual fitness.

    2.      We examined the relationship between metabolic rates and the major differences (habitat use, morphology, and resource use) between littoral and pelagic ecotypes of European perch (Perca fluviatilis) from a single lake in Central Sweden.

    3.      Standard metabolic rate (SMR) was significantly higher in pelagic perch but did not correlate with resource use or morphology. Maximum metabolic rate (MMR) was not correlated with any of our explanatory variables or with SMR. Aerobic scope (AS) showed the same pattern as SMR, differing across habitats, but contrary to expectations was lower in pelagic perch.

    4.      This study helps to establish a framework for future experiments further exploring the drivers of intraspecific differences in metabolism. In addition, since metabolic rates scale with temperature and determine predator energy requirements, our observed differences in SMR across habitats will help determine ecotype-specific vulnerabilities to climate change and differences in top-down predation pressure across habitats.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Andersson, Matilda L.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Scharnweber, Kristin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Holmgren, Kerstin
    Mehner, Thomas
    Eklöv, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Habitat coupling is modified by dissolved organic carbon but not temperature in lake ecosystemsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Generalist predators play an essential role in lake ecosystems by linking spatially distinct habitats, a process known as habitat coupling. By eating a wide array of resources and moving between littoral and pelagic habitats, they link food webs and provide critical habitat stability. As climate change is expected to affect ecosystem stability, our attention should focus on how habitat coupling in these predator-stabilized systems is altered by climate change.

    Expected climate change effects in boreal regions are increases in temperature and dissolved organic carbon (DOC) concentrations. Therefore, we used stable isotopes and a space-for-time approach to examine the impact of DOC and temperature on resource use in a generalist predator, European perch (Perca fluviatilis), in 17 lakes in Sweden and Germany. We found that the impact of DOC on habitat coupling depended on fish ecotype, while both ecotypes showed increases in pelagic resource use, this will increase coupling by littoral fish, while decreasing coupling by pelagic fish. Though we found no direct effect of temperature on resource use, we did find that fish size, which decreases with warming, has an impact. We show that in the future, as fish size decreases and DOC increases, generalist predators will couple habitats less and have a more narrow dietary niche width. This shows that while perch will respond flexibly to changes in resource availability, stability may decrease in the process. 

  • 37.
    Andersson, Matilda L.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Sundberg, Fredrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik.
    Eklöv, Peter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Chasing away accurate results: exhaustive chase protocols underestimate maximum metabolic rate estimates in European perch Perca fluviatilis2020Ingår i: Journal of Fish Biology, ISSN 0022-1112, E-ISSN 1095-8649, Vol. 97, nr 6, s. 1644-1650Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metabolic rates are one of many measures that are used to explain species' response to environmental change. Static respirometry is used to calculate the standard metabolic rate (SMR) of fish, and when combined with exhaustive chase protocols it can be used to measure maximum metabolic rate (MMR) and aerobic scope (AS) as well. While these methods have been tested in comparison to swim tunnels and chambers with circular currents, they have not been tested in comparison with a no‐chase control. We used a repeated‐measures design to compare estimates of SMR, MMR and AS in European perch Perca fluviatilis following three protocols: (a) a no‐chase control; (b) a 3‐min exhaustive chase; and (c) a 3‐min exhaustive chase followed by 1‐min air exposure. We found that, contrary to expectations, exhaustive chase protocols underestimate MMR and AS at 18°C, compared to the no‐chase control. This suggests that metabolic rates of other species with similar locomotorty modes or lifestyles could be similarly underestimated using chase protocols. These underestimates have implications for studies examining metabolic performance and responses to climate change scenarios. To prevent underestimates, future experiments measuring metabolic rates should include a pilot with a no‐chase control or, when appropriate, an adjusted methodology in which trials end with the exhaustive chase instead of beginning with it.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Arndt, D. S.
    et al.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Blunden, J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Dunn, R. J. H.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Aaron-Morrison, Arlene P.
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Abdallah, A.
    Agence Natl Aviat Civile & Meteorol, Moroni, Comoros.
    Ackerman, Steven A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Adler, Robert
    Univ Maryland, College Pk, MD USA.
    Alfaro, Eric J.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Allan, Richard P.
    Univ Reading, Reading, Berks, England.
    Allan, Rob
    Met Off Hadley Ctr, Exeter, Devon, England.
    Alvarez, Luis A.
    Inst Hidrol Meteorol & Estudios Ambientales Colom, Bogota, Colombia.
    Alves, Lincoln M.
    Inst Nacl Pesquisas Espaciais, Ctr Ciencias Sistema Terrestre, Sao Paulo, Brazil.
    Amador, Jorge A.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Andreassen, L. M.
    Norwegian Water Resources & Energy Directorate, Sect Glaciers Ice & Snow, Oslo, Norway.
    Arce, Dayana
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Argueez, Anthony
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arndt, Derek S.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arzhanova, N. M.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Augustine, John
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Awatif, E. M.
    Egyptian Meteorol Author, Cairo Numer Weather Predict, Dept Seasonal Forecast & Climate Res, Cairo, Egypt.
    Azorin-Molina, Cesar
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Baez, Julian
    Direcc Meteorol & Hidrol DINAC, Asuncion, Paraguay.
    Bardin, M. U.
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Barichivich, Jonathan
    Ctr Climate & Resilience Res, Santiago, Chile;Pontificia Univ Catolica Valparaiso, Inst Geog, Valparaiso, Chile;Univ Austral Chile, Inst Conservac Biodiversidad & Terr, Valdivia, Chile.
    Baringer, Molly O.
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Barreira, Sandra
    Argentine Naval Hydrog Serv, Buenos Aires, DF, Argentina.
    Baxter, Stephen
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Beck, H. E.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Becker, Andreas
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany.
    Bedka, Kristopher M.
    NASA Langley Res Ctr, Hampton, VA USA.
    Behrenfeld, Michael J.
    Oregon State Univ, Corvallis, OR USA.
    Bell, Gerald D.
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Belmont, M.
    Seychelles Natl Meteorol Serv, Pointe Larue, Mahe, Seychelles.
    Benedetti, Angela
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Bernhard, G. H.
    Biospher Instruments, San Diego, CA USA.
    Berrisford, Paul
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Berry, David I.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Bettolli, Maria L.
    Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ciencias Atmosfera & Oceanos, Buenos Aires, DF, Argentina.
    Bhatt, U. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Bidegain, Mario
    Inst Uruguayo Meteorol, Montevideo, Uruguay.
    Biskaborn, B.
    Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Potsdam, Germany.
    Bissolli, Peter
    Deutscher Wetterdienst, WMO RA VI Reg Climate Ctr Network, Offenbach, Germany.
    Bjerke, J.
    Norwegian Inst Nat Res, Tromso, Norway.
    Blake, Eric S.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Blunden, Jessica
    Bosilovich, Michael G.
    NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA.
    Boucher, Olivier
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Boudet, Dagne
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Box, J. E.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    Boyer, Tim
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Braathen, Geir O.
    WMO Atmospher Environm Res Div, Geneva, Switzerland.
    Brimelow, Julian
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Bromwich, David H.
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Brown, R.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Buehler, S.
    Univ Hamburg, Hamburg, Germany.
    Bulygina, Olga N.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Burgess, D.
    Geol Survey Canada, Ottawa, ON, Canada.
    Calderon, Blanca
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica.
    Camargo, Suzana J.
    Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Campbell, Jayaka D.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Cappelen, J.
    Danish Meteorol Inst, Copenhagen, Denmark.
    Caroff, P.
    RSMC La Reunion, Meteo France, La Reunion, France.
    Carrea, Laura
    Univ Reading, Dept Meteorol, Reading, England.
    Carter, Brendan R.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Chambers, Don P.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Chandler, Elise
    Bur Meteorol, Melbourne, Vic, Australia.
    Cheng, Ming-Dean
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Christiansen, Hanne H.
    Univ Ctr Svalbard, Dept Geol, Longyearbyen, Norway.
    Christy, John R.
    Univ Alabama Huntsville, Huntsville, AL USA.
    Chung, Daniel
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Chung, E. -S
    Clem, Kyle R.
    Victoria Univ Wellington, Sch Geography Environm & Earth Sci, Wellington, New Zealand.
    Coelho, Caio A. S.
    CPTEC INPE, Ctr Weather Forecasts & Climate Studies, Cachoeira Paulista, Brazil.
    Coldewey-Egbers, Melanie
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Colwell, Steve
    British Antarctic Survey, Cambridge, England.
    Cooper, Owen R.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Copland, L.
    Univ Ottawa, Dept Geography, Ottawa, ON, Canada.
    Cross, J. N.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Crouch, Jake
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Cutie, Virgen
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Davis, Sean M.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    de Eyto, Elvira
    Marine Inst, Newport, Ireland.
    de Jeu, Richard A. M.
    VanderSat BV, Haarlem, Netherlands.
    de Laat, Jos
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    DeGasperi, Curtis L.
    King Cty Water & Land Resources Div, Seattle, WA USA.
    Degenstein, Doug
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Demircan, M.
    Turkish State Meteorol Serv, Ankara, Turkey.
    Derksen, C.
    Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada.
    Di Girolamo, Larry
    Univ Illinois, Urbana, IL USA.
    Diamond, Howard J.
    NOAA OAR Air Resources Lab, Silver Spring, MD USA.
    Dindyal, S.
    Mauritius Meteorological Serv, Vacoas, Mauritius.
    Dlugokencky, Ed J.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Dohan, Kathleen
    Earth & Space Res, Seattle, WA USA.
    Dokulil, Martin T.
    Univ Innsbruck, Res Inst Limnology, Mondsee, Austria.
    Dolman, A. Johannes
    Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands.
    Domingues, Catia M.
    Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia;Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Donat, Markus G.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Dong, Shenfu
    Cooperat Inst Marine & Atmospher Sci, Miami, FL USA.
    Dorigo, Wouter A.
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Drozdov, D. S.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Dunn, Robert J. H.
    Duran-Quesada, Ana M.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Dutton, Geoff S.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    ElKharrim, M.
    Direction Meteorol Natl Maroc, Rabat, Morocco.
    Elkins, James W.
    Epstein, H. E.
    Univ Virginia, Dept Environm Sci, Charlottesville, VIRGINIA.
    Espinoza, Jhan C.
    Inst Geofisico Peru, Lima, Peru.
    Etienne-LeBlanc, Sheryl
    Meteorol Dept St Maarten, St Maarten, Netherlands.
    Famiglietti, James S.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Farrell, S.
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA.
    Fateh, S.
    Islamic Republic Iranian Meteorol, Tehran, Iran.
    Fausto, R. S.
    Geolog Survey Denmark & Greenland, Copenhagen, Denmark.
    Feely, Richard A.
    Feng, Z.
    FCSD ASGC Pacific Northwest Natl Lab, Richland, WA USA.
    Fenimore, Chris
    Fettweis, X.
    Univ Liege, Liege, Belgium.
    Fioletov, Vitali E.
    Flannigan, Mike
    Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.
    Flemming, Johannes
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Fogt, Ryan L.
    Ohio Univ, Dept Geography, Athens, Ohio.
    Folland, Chris
    Met Off Hadley Ctr, Exeter, Devon, England;Univ Southern Queensland, Int Ctr Appl Climate Sci, Toowoomba, Queensland, Australia;Univ East Anglia, Sch Environm Sci, Norwich, England.
    Fonseca, C.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Forbes, B. C.
    Univ Lapland, Arctic Ctr, Rovaniemi, Finland.
    Foster, Michael J.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Francis, S. D.
    Nigerian Meteorol Agcy, Natl Weather Forecast & Climate Res Ctr, Abuja, Nigeria.
    Franz, Bryan A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Frey, Richard A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Frith, Stacey M.
    Sci Syst & Appl Inc, Greenbelt, MD USA;NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Froidevaux, Lucien
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Ganter, Catherine
    Bur Meteorol, Melbourne, Vic, Australia.
    Gerland, S.
    Norwegian Polar Res Inst, Fram Ctr, Tromso, Norway.
    Gilson, John
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Gobron, Nadine
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Goldenberg, Stanley B.
    Goni, Gustavo
    Gonzalez, Idelmis T.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Goto, A.
    Japan Meteorol Agcy, Tokyo, Japan.
    Greenhough, Marianna D.
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Grooss, J. -U
    Gruber, Alexander
    Guard, Charles
    NOAA NWS Weather Forecast Off, Mangilao, GU USA.
    Gupta, S. K.
    Sci Syst & Applicat Inc, Hampton, VA USA.
    Gutierrez, J. M.
    CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain.
    Haas, C.
    York Univ, Earth & Space Sci & Engn, Toronto, ON, Canada;Alfred Wegener Inst, Bremerhaven, Germany.
    Hagos, S.
    Pacific Northwest Natl Lab, FCSD ASGC Climate Phys Grp, Richland, WA USA.
    Hahn, Sebastian
    Haimberger, Leo
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Hall, Brad D.
    Halpert, Michael S.
    Hamlington, Benjamin D.
    Old Dominion Univ, Ctr Coastal Phys Oceanography, Norfolk, VA USA.
    Hanna, E.
    Univ Sheffield, Dept Geography, Sheffield, S Yorkshire, England.
    Hanssen-Bauer, I
    Norwegian Meteorol Inst, Blindern, Oslo, Norway.
    Hare, Jon
    NOAA NMFS Northeast Fisheries Sci Ctr, Woods Hole, MA USA.
    Harris, Ian
    Univ East Anglia, Natl Ctr Atmospheric Sci, Norwich, NY USA;Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Heidinger, Andrew K.
    NOAA NESDIS STAR Univ Wisconsin Madison, Madison, WI USA.
    Heim, Richard R., Jr.
    NOAA NESDIS Natl Ctr, Asheville, NC USA.
    Hendricks, S.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Hernandez, Marieta
    Climate Ctr, Inst Meteorol, Havana, Cuba.
    Hernandez, Rafael
    Inst Nacl Meteorol & Hidrolog Venezuela, Caracas, Venezuela.
    Hidalgo, Hugo G.
    Ho, Shu-peng
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Hobbs, William R.
    Univ Tasmania, Antarctic Climate & Ecosystems, Hobart, Australia.
    Huang, Boyin
    Huelsing, Hannah K.
    SUNY Albany, Albany, NY USA.
    Hurst, Dale F.
    Ialongo, I.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Ijampy, J. A.
    Nigerian Meteorol Agcy, Abuja, Nigeria.
    Inness, Antje
    European Ctr Medium Range, Reading, Berks, England.
    Isaksen, K.
    Norwegian Meteorolog Inst, Oslo, Norway.
    Ishii, Masayoshi
    Japan Meteorolog Agcy, Climat Res Dept, Meteorolog Res Inst, Tsukuba, Ibaraki, Japan.
    Jevrejeva, Svetlana
    Jimenez, C.
    Estellus, Paris, France;PSL Res Univ, LERMA, Observatoire Paris, Paris, France.
    Xiangze, Jin
    John, Viju
    Met Off Hadley Ctr, Exeter, Devon, England;EUMETSAT, Darmstadt, Germany.
    Johns, William E.
    Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Johnsen, B.
    Norwegian Radiat Protect Authority, Osteras, Norway.
    Johnson, Bryan
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Johnson, Gregory C.
    Johnson, Kenneth S.
    Monterey Bay Aquarium Res Inst, Moss Landing, CA USA.
    Jones, Philip D.
    Univ East Anglia, Climat Res Unit, Sch Environm Sci, Norwich, England.
    Jumaux, Guillaume
    Meteo France, Direct Interreg Ocean Indien, St Denis, Reunion, France.
    Kabidi, Khadija
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Kaiser, J. W.
    Max Planck Inst Chem, Mainz, Germany.
    Kass, David
    California Inst Technol, Jet Propulsion Lab, Pasadena, CA USA.
    Kato, Seiji
    Kazemi, A.
    Islamic Republic Iran Meteorolog Org, Tehran, Iran.
    Kelem, G.
    Ethiopian Meteorolog Agcy, Addis Ababa, Ethiopia.
    Keller, Linda M.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Kelly, B. P.
    Ctr Blue Economy, Middlebury Inst Int Studies, Monterey, CA USA;Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA;Study Environm Arctic Change SEARCH, Fairbanks, AK USA.
    Kendon, Mike
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kennedy, John
    Kerr, Kenneth
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Kholodov, A. L.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Khoshkam, Mahbobeh
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Killick, Rachel
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kim, Hyungjun
    Univ Tokyo, Inst Ind Sci, Tokyo 1138654, Japan.
    Kim, S. -J
    Kimberlain, Todd B.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Klotzbach, Philip J.
    Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA.
    Knaff, John A.
    NOAA NESDIS Ctr Satellite Applicat & Res, Ft Collins, CO USA.
    Kochtubajda, Bob
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Kohler, J.
    Norwegian Polar Res Inst, Tromso, Norway.
    Korhonen, Johanna
    Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
    Korshunova, Natalia N.
    World Data Ctr, All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Kramarova, Natalya
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Kratz, D. P.
    NASA Langley Res Ctr, Hampton, VA USA.
    Kruger, Andries
    South African Weather Serv, Pretoria, South Africa.
    Kruk, Michael C.
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Krumpen, T.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Lakatos, M.
    Hungarian Meteorol Serv, Climatol Div, Budapest, Hungary.
    Lakkala, K.
    Finnish Meteorol Inst, Arctic Res Ctr, Sodankyla, Finland.
    Lanckmann, J. -P
    Lander, Mark A.
    Univ Guam, Mangilao, GU USA.
    Landschuetzer, Peter
    Max Planck Inst Meteorol, Hamburg, Germany.
    Landsea, Chris W.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Lankhorst, Matthias
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Lantz, Kathleen
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Lazzara, Matthew A.
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA;Madison Area Tech Coll, Dept Phys Sci, Sch Arts & Sci, Madison, WI USA.
    Leuliette, Eric
    NOAA, NWS NCWCP Lab Satellite Altimetry, College Pk, MD USA.
    Lewis, Stephen R.
    Open Univ, Sch Phys Sci, Fac Sci Technol Engn & Math, Milton Keynes, Bucks, England.
    L'Heureux, Michelle
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Lieser, Jan L.
    Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Lin, I-I
    Natl Taiwan Univ, Taipei, Taiwan.
    Liu, Hongxing
    Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA.
    Liu, Yinghui
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Locarnini, Ricardo
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Loeb, Norman G.
    NASA Langley Res Ctr, Hampton, VA USA.
    Long, Craig S.
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Loranty, M.
    Colgate Univ, Dept Geog, Hamilton, NY USA.
    Lorrey, Andrew M.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Loyola, Diego
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Lu, Mong-Ming
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Lumpkin, Rick
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Luo, Jing-Jia
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Luojus, K.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Lyman, John M.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Macara, Gregor
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Macdonald, Alison M.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Macias-Fauria, M.
    Univ Oxford, Sch Geog & Environm, Oxford, England.
    Malkova, G. V.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Manney, G.
    New Mexico Inst Mining & Technol, Socorro, NM USA;NorthWest Res Ass, Socorro, NM USA.
    Marchenko, S. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Marengo, Jose A.
    Ctr Nacl Monitoramento Alertas Desastres Nat, Cachoeira Paulista, SP, Brazil.
    Marra, John J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Marszelewski, Wlodzimierz
    Nicolaus Copernicus Univ, Dept Hydrol & Water Management, Torun, Poland.
    Martens, B.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Martinez-Gueingla, Rodney
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Massom, Robert A.
    Univ Tasmania, Antarctic Climate & Ecosystems Cooperat Res Ctr, Hobart, Tas, Australia;Univ Tasmania, Australian Antarctic Div, Hobart, Tas, Australia.
    Mathis, Jeremy T.
    NOAA, OAR Arctic Res Program, Silver Spring, MD USA.
    May, Linda
    Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland.
    Mayer, Michael
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Mazloff, Matthew
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    McBride, Charlotte
    South African Weather Serv, Pretoria, South Africa.
    McCabe, M. F.
    King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Water Desalinat & Reuse Ctr, Thuwal, Saudi Arabia.
    McCarthy, Gerard
    Natl Oceanog Ctr, Southampton, Hants, England.
    McCarthy, M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    McDonagh, Elaine L.
    McGree, Simon
    Bur Meteorol, Melbourne, Vic, Australia.
    McVicar, Tim R.
    CSIRO Land & Water Flagship, Canberra, ACT, Australia;Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia;Australian Capital Territory, Sydney, NSW, Australia.
    Mears, Carl A.
    Remote Sensing Syst, Santa Rosa, CA USA.
    Meier, W.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mekonnen, A.
    North Carolina A&T State Univ, Dept Energy & Environm Syst, Greensboro, NC USA.
    Menezes, V. V.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Mengistu Tsidu, G.
    Botswana Int Univ Sci & Technol, Dept Earth & Environm Sci, Palapye, Botswana;Addis Ababa Univ, Dept Phys, Addis Ababa, Ethiopia. Univ Reading, Natl Ctr Earth Observat, Reading RG6 2AH, Berks, England.
    Menzel, W. Paul
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA.
    Merchant, Christopher J.
    Meredith, Michael P.
    British Antarctic Survey, Cambridge, England.
    Merrifield, Mark A.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Minnis, Patrick
    NASA Langley Res Ctr, Hampton, VA USA.
    Miralles, Diego G.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Mistelbauer, T.
    Earth Observing Data Ctr GmbH, Vienna, Austria.
    Mitchum, Gary T.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Mitro, Srkani
    Meteorol Serv Suriname, Paramaribo, Surinam.
    Monselesan, Didier
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Montzka, Stephen A.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Mora, Natalie
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Morice, Colin
    Met Off Hadley Ctr, Exeter, Devon, England.
    Morrow, Blair
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Mote, T.
    Univ Georgia, Dept Geog, Athens, GA 30602 USA.
    Mudryk, L.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Muehle, Jens
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Mullan, A. Brett
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Mueller, R.
    Forschungszentrum Julich, Julich, Germany.
    Nash, Eric R.
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Nerem, R. Steven
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    Newman, Louise
    Univ Tasmania, Inst Marine & Antarctic Studies, SOOS Int Project Off, Hobart, Tas 7001, Australia.
    Newman, Paul A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Nieto, Juan Jose
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Noetzli, Jeannette
    WSL Inst Snow & Avalanche Res, Davos, Switzerland.
    O'Neel, S.
    USGS, Alaska Sci Ctr, Anchorage, AK USA.
    Osborn, Tim J.
    Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Overland, J.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Oyunjargal, Lamjav
    Natl Agcy Meteorol, Inst Meteorol & Hydrol, Hydrol & Environ Monitoring, Ulaanbaatar, Mongol Peo Rep.
    Parinussa, Robert M.
    VanderSat BV, Haarlem, Netherlands.
    Park, E-hyung
    Korea Meteorol Adm, Seoul, South Korea.
    Pasch, Richard J.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Pascual-Ramirez, Reynaldo
    Natl Meteorol Serv Mexico, Mexico City, DF, Mexico.
    Paterson, Andrew M.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Pearce, Petra R.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Pellichero, V.
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France.
    Pelto, Mauri S.
    Nichols Coll, Dudley, MA USA.
    Peng, Liang
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Perkins-Kirkpatrick, Sarah E.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Perovich, D.
    Dartmouth Coll, Thayer Sch Eng, Hanover, NH USA;USACE, ERDC, Cold Reg Res & Engn Lab, Hanover, NH USA.
    Petropavlovskikh, Irina
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Pezza, Alexandre B.
    Greater Wellington Reg Council, Wellington, New Zealand.
    Phillips, C.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Phillips, David
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Phoenix, G.
    Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
    Pinty, Bernard
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Pitts, Michael C.
    NASA Langley Res Ctr, Hampton, VA USA.
    Pons, M. R.
    Agencia Estatal Meteorol, Santander, Spain.
    Porter, Avalon O.
    Cayman Isl Natl Weather Serv, Grand Cayman, Cayman Islands.
    Quintana, Juan
    Direcc Meteorol Chile, Santiago, Chile.
    Rahimzadeh, Fatemeh
    Atmospher Sci & Meteorol Res Ctr, Tehran, Iran.
    Rajeevan, Madhavan
    Minist Earth Sci, Earth System Sci Org, New Delhi, India.
    Rayner, Darren
    Natl Oceanog Ctr, Southampton, Hants, England.
    Raynolds, M. K.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Razuvaev, Vyacheslav N.
    All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Read, Peter
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England.
    Reagan, James
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA;NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Reid, Phillip
    CAWRC, Hobart, Tas, Australia;Australian Bur Meteorol, Melbourne, Vic, Australia.
    Reimer, Christoph
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria;EODC, Vienna, Austria.
    Remy, Samuel
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Renwick, James A.
    Victoria Univ Wellington, Wellington, New Zealand.
    Revadekar, Jayashree V.
    Indian Inst Trop Meteorol, Pune, Maharashtra, India.
    Richter-Menge, J.
    Univ Alaska Fairbanks, Fairbanks, AK USA.
    Rimmer, Alon
    Israel Oceanog & Limnol Res, Yigal Allon Kinneret Limnol Lab, Migdal, Israel.
    Robinson, David A.
    Rutgers State Univ, Dept Geog, Piscataway, NJ 08855 USA.
    Rodell, Matthew
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.
    Rollenbeck, Ruetger
    Univ Marburg, Fac Geog, Lab Climatol Remote Sensing, Marburg, Germany.
    Romanovsky, Vladimir E.
    Tyumen State Univ, Tyumen, Russia;Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Ronchail, Josyane
    Univ Paris Diderot, Lab LOCEAN IPSL, Paris, France.
    Roquet, F.
    Stockholm Univ MISU, Dept Meteorol, Stockholm, Sweden.
    Rosenlof, Karen H.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Roth, Chris
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Rusak, James A.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Sallee, Jean-Bapiste
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France;British Antarctic Survey, Cambridge, England.
    Sanchez-Lugo, Ahira
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Santee, Michelle L.
    NASA Jet Propuls Lab, Pasadena, CA USA.
    Sarmiento, Jorge L.
    Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA.
    Sawaengphokhai, P.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Sayouri, Amal
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Scambos, Ted A.
    Univ Colorado Boulder, Natl Snow & Ice Data Ctr, Boulder, CO USA.
    Schemm, Jae
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Schladow, S. Geoffrey
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Schmid, Claudia
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Schmid, Martin
    Swiss Federal Inst Aquat Sci & Technol, Eawag, Kastanienbaum, Switzerland.
    Schoeneich, P.
    Univ Grenoble Alpes, Inst Geog Alpine, Grenoble, France.
    Schreck, Carl J., III
    N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC USA.
    Schuur, Ted
    No Arizona Univ, Ctr Ecosystem Sci & Soc, Flagstaff, AZ 86011 USA.
    Selkirk, H. B.
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Send, Uwe
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Sensoy, Serhat
    Turkish State Meteorol Serv, Ankara, Turkey.
    Sharp, M.
    Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada.
    Shi, Lei
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Shiklomanov, Nikolai I.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Shimaraeva, Svetlana V.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Siegel, David A.
    Univ Calif Santa Barbara, Santa Barbara, CA USA.
    Signorini, Sergio R.
    Sci Applicat Int Corp, Beltsville, MD USA.
    Silov, Eugene
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Sima, Fatou
    Dept Water Resources, Div Meteorol, Banjul, Gambia.
    Simmons, Adrian J.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Smeed, David A.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Smeets, C. J. P. P.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    Smith, Adam
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Smith, Sharon L.
    Nat Resources Canada, Geol Survey Canada, Ottawa, ON, Canada.
    Soden, B.
    Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Spence, Jaqueline M.
    Meteorol Serv, Kingston, Jamaica.
    Srivastava, A. K.
    Indian Meteorol Dept, Jaipur, Rajasthan, India.
    Stackhouse, Paul W., Jr.
    NASA Langley Res Ctr, Hampton, VA USA.
    Stammerjohn, Sharon
    Univ Colorado Boulder, Inst Arctic & Alpine Res, Boulder, CO USA.
    Steinbrecht, Wolfgang
    German Weather Serv DWD, Hohenpeissenberg, Germany.
    Stella, Jose L.
    Serv Meteorol Nacl, Buenos Aires, DF, Argentina.
    Stennett-Brown, Roxann
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Stephenson, Tannecia S.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Strahan, Susan
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Streletskiy, Dimitri A.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Sun-Mack, Sunny
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Swart, Sebastiaan
    CSIR Southern Ocean Carbon & Climate Observ, Stellenbosch, South Africa.
    Sweet, William
    NOAA NOS Ctr Operat Oceanog Products & Serv, Silver Spring, MD USA.
    Tamar, Gerard
    Grenada Airports Author, St Georges, Grenada.
    Taylor, Michael A.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Tedesco, M.
    NASA Goddard Inst Space Studies, New York, NY USA;Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Thoman, R. L.
    NOAA Natl Weather Serv, Fairbanks, AK USA.
    Thompson, L.
    Simon Fraser Univ, Dept Earth Sci, Burnaby, BC, Canada.
    Thompson, Philip R.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Timmermans, M. -L
    Timofeev, Maxim A.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Tirnanes, Joaquin A.
    Univ Santiago Compostela, Lab Syst, Technol Res Inst, Santiago De Compostela, Spain.
    Tobin, Skie
    Bur Meteorol, Melbourne, Vic, Australia.
    Trachte, Katja
    Philipps Univ, Lab Climatol & Remote Sensing, Marburg, Germany.
    Trewin, Blair C.
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Trotman, Adrian R.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Tschudi, M.
    Univ Colorado Boulder, Aerospace Engn Sci, Boulder, CO USA.
    Tweedy, Olga
    Johns Hopkins Univ, Baltimore, MD USA.
    van As, D.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    van de Wal, R. S. W.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    van der Schalie, Robin
    VanderSat BV, Haarlem, Netherlands.
    van der Schrier, Gerard
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    van der Werf, Guido R.
    Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands.
    van Meerbeeck, Cedric J.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Velicogna, I.
    Univ Calif Irvine, Irvine, CA 92717 USA.
    Verburg, Piet
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Vieira, G.
    Univ Lisbon, Inst Geog & Ordenamento Territorio, P-1699 Lisbon, Portugal.
    Vincent, Lucie A.
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Voemel, Holger
    Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO USA.
    Vose, Russell S.
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Wagner, Wolfgang
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Wahlin, Anna
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Walker, D. A.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Walsh, J.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wang, Bin
    Univ Hawaii, SOEST, Dept Meteorol, Honolulu, HI USA;IPRC, Honolulu, HI USA.
    Wang, Chunzai
    South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Peoples R China.
    Wang, Junhong
    SUNY Albany, Albany, NY USA.
    Wang, Lei
    Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA USA.
    Wang, M.
    Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Wang, Sheng-Hung
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Wanninkhof, Rik
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Watanabe, Shohei
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Weber, Mark
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Univ Bremen, Bremen, Germany..
    Weller, Robert A.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Weyhenmeyer, Gesa A.
    Whitewood, Robert
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Wiese, David N.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wijffels, Susan E.
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Wilber, Anne C.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Wild, Jeanette D.
    NOAA Climate Predict Ctr, INNOVIM, College Pk, MD USA.
    Willett, Kate M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Willie, Shem
    St Lucia Meteorol Serv, St Lucia, Qld, Australia.
    Willis, Josh K.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wolken, G.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wong, Takmeng
    NASA Langley Res Ctr, Hampton, VA USA.
    Wood, E. F.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Woolway, R. Iestyn
    Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England.
    Wouters, B.
    Univ Bristol, Sch Geog Sci, Bristol BS8 1TH, Avon, England.
    Xue, Yan
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Yim, So-Young
    Korea Meteorol Adm, Seoul, South Korea.
    Yin, Xungang
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Yu, Lisan
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Zambrano, Eduardo
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Zhang, Huai-Min
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Zhang, Peiqun
    Beijing Climate Ctr, Beijing, Peoples R China.
    Zhao, Guanguo
    Univ Illinois, Urbana, IL USA.
    Zhao, Lin
    Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China.
    Ziemke, Jerry R.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA;Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD USA.
    Zilberman, Nathalie
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    State of the Climate in 20162017Ingår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 98, nr 8, s. S1-S280Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.

  • 39. Arnold, M. C.
    et al.
    Bier, R. L.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Lindberg, T. T.
    Bernhardt, E. S.
    Di Giulio, R. T.
    Biofilm mediated uptake of selenium in streams with mountaintop coal mine drainage2017Ingår i: Limnologica, ISSN 0075-9511, E-ISSN 1873-5851, Vol. 65, s. 10-13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Selenium (Se) may cause reproductive toxicity, yet the characteristics of Se bioaccumulation in aquatic food webs are understudied. Stream biofilms were grown in two reaches of Mud River, West Virginia (WV), including one downstream of a coal mine complex and an adjacent, unmined watershed. Mined stream biofilms contained significantly higher Se concentrations compared to unmined biofilms. An inverse relationship between water Se concentrations and biofilm accumulation factors was observed; mined-stream biofilms had an average bioconcentration factor (BCF) of 688 ± 350 fold while unmined-stream biofilms had an average BCF of 14505 ± 2700 fold.

  • 40. Arnott, Shelley E.
    et al.
    Fugère, Vincent
    Symons, Celia C.
    Melles, Stephanie J.
    Beisner, Beatrix E.
    Cañedo-Argüelles, Miguel
    Hébert, Marie-Pier
    Brentrup, Jennifer A.
    Downing, Amy L.
    Gray, Derek K.
    Greco, Danielle
    Hintz, William D.
    McClymont, Alexandra
    Relyea, Rick A.
    Rusak, James A.
    Searle, Catherine L.
    Astorg, Louis
    Baker, Henry K.
    Ersoy, Zeynep
    Espinosa, Carmen
    Franceschini, Jaclyn M.
    Giorgio, Angelina T.
    Göbeler, Norman
    Hassal, Emily
    Huynh, Mercedes
    Hylander, Samuel
    Jonasen, Kacie L.
    Kirkwood, Andrea
    Langenheder, Silke
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Langvall, Ola
    Laudon, Hjalmar
    Lind, Lovisa
    Lundgren, Maria
    Moffett, Emma R.
    Proia, Lorenzo
    Schuler, Matthew S.
    Shurin, Jonathan B.
    Steiner, Christopher F.
    Striebel, Maren
    Thibodeau, Simon
    Urrutia Cordero, Pablo
    Vendrell-Puigmitja, Lidia
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Derry, Alison M.
    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance2023Ingår i: Limnology and Oceanography Letters, E-ISSN 2378-2242, Vol. 8, nr 1, s. 8-18Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl−) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl− tolerance is present among populations? (2) What factors predict intraspecific variation in Cl− tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl− tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC50s from published laboratory studies. We found high variation in LC50s for Cl− tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl− tolerance.

    Ladda ner fulltext (pdf)
    fulltext
  • 41. Arvola, Lauri
    et al.
    George, Glen
    Livingstone, David M.
    Järvinen, Marko
    Blenckner, Thorsten
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution.
    Dokulil, Martin T.
    Jennings, Eleanor
    Aonghusa, Caitriona Nic
    Nõges, Peeter
    Nõges, Tiina
    Weyhenmeyer, Gesa. A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    The impact of changing climate on the thermal characteristics of lakes2010Ingår i: The impact of climate change on European lakes / [ed] D.G. George, Springer , 2010, s. 85-101Kapitel i bok, del av antologi (Övrigt vetenskapligt)
  • 42.
    Attermeyer, Katrin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Andersson, Sara
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Catalán, Núria
    Catalan Institute for Water Research (ICRA), Girona, Spain.
    Einarsdóttir, Karólina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Groeneveld, Marloes M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Szekely, Anna J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Potential terrestrial influence on transparent exopolymer particle (TEP) concentrations in boreal freshwaters2019Ingår i: Journal of limnology, ISSN 1129-5767, E-ISSN 1723-8633, Vol. 64, nr 6, s. 2455-2466Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transparent exopolymer particles (TEP) are ubiquitous in aquatic ecosystems and contribute, for example, to sedimentation of organic matter in oceans and freshwaters. Earlier studies indicate that the formation of TEP is related to the in situ activity of phytoplankton or bacteria. However, terrestrial sources of TEP and TEP precursors are usually not considered. We investigated TEP concentration and its driving factors in boreal freshwaters, hypoth- esizing that TEP and TEP precursors can enter freshwaters via terrestrial inputs. In a field survey, we measured TEP concentrations and other environmental factors across 30 aquatic ecosystems in Sweden. In a mesocosm experi- ment, we further investigated TEP dynamics over time after manipulating terrestrial organic matter input and light conditions. The TEP concentrations in boreal freshwaters ranged from 83 to 4940 μg Gum Xanthan equivalent L−1, which is comparable to other studies in freshwaters. The carbon fraction in TEP in the sampled boreal freshwaters is much higher than the phytoplanktonic carbon, in contrast to previous studies in northern temperate and Medi- terranean regions. Boreal TEP concentrations were mostly related to particulate organic carbon, dissolved organic carbon, and optical indices of terrestrial influence but less influenced by bacterial abundance, bacterial production, and chlorophyll a. Hence, our results do not support a major role of the phytoplankton community or aquatic bac- teria on TEP concentrations and dynamics. This suggests a strong external control of TEP concentrations in boreal freshwaters, which can in turn affect particle dynamics and sedimentation in the recipient aquatic ecosystem.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Attermeyer, Katrin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. WasserCluster Lunz Biol Stn, Lunz Am See, Austria; Univ Vienna, Dept Funct & Evolutionary Ecol, Vienna, Austria.
    Casas-Ruiz, Joan Pere
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain..
    Fuss, Thomas
    Univ Innsbruck, Dept Ecol, Fluvial Ecosyst Ecol, Innsbruck, Austria..
    Pastor, Ada
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain.;Aarhus Univ, Dept Biol, Aarhus C, Denmark..
    Cauvy-Fraunie, Sophie
    Ctr Lyon Villeurbanne, UR Riverly, INRAE, Villeurbanne, France..
    Sheath, Danny
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England.;Univ Geneva, Fac Med, Inst Global Hlth, Campus Biotech, Geneva, Switzerland..
    Nydahl, Anna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Doretto, Alberto
    Univ Piemonte Orientale, Dept Sci & Technol Innovat, Alessandria, Italy.;ALPSTREAM Alpine Stream Res Ctr, Ostana, Italy..
    Portela, Ana Paula
    Univ Porto, Res Ctr Biodivers & Genet Resources CIBIO InBIO, Vila Do Conde, Portugal.;Univ Porto, Fac Sci, Porto, Portugal..
    Doyle, Brian C.
    Dundalk Inst Technol, Ctr Freshwater & Environm Studies, Dundalk, Co Louth, Ireland..
    Simov, Nikolay
    Bulgarian Acad Sci, Natl Museum Nat Hist, Sofia, Bulgaria..
    Roberts, Catherine Gutmann
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England..
    Niedrist, Georg H.
    Univ Innsbruck, Dept Ecol River & Conservat Res, Innsbruck, Austria..
    Timoner, Xisca
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain..
    Evtimova, Vesela
    Bulgarian Acad Sci, Inst Biodivers & Ecosyst Res, Dept Aquat Ecosyst, Sofia, Bulgaria..
    Barral-Fraga, Laura
    Univ Girona UdG, Girona, Spain..
    Basic, Tea
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England.;Ctr Environm Fisheries & Aquaculture Sci Cefas, Lowestoft, Suffolk, England..
    Audet, Joachim
    Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden.;Aarhus Univ, Dept Biosci, Silkeborg, Denmark..
    Deininger, Anne
    Umeå Univ, Dept Ecol & Environm Sci, Umeå, Sweden.;Norwegian Inst Water Res, Oslo, Norway..
    Busst, Georgina
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England..
    Fenoglio, Stefano
    ALPSTREAM Alpine Stream Res Ctr, Ostana, Italy.;Univ Turin, Dept Life Sci & Syst Biol, Turin, Italy..
    Catalan, Nuria
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain.;UVSQ, CEA, CNRS, Lab Sci Climat & Environm LSCE, Gif Sur Yvette, France.;US Geol Survey, Boulder, CO USA..
    de Eyto, Elvira
    Marine Inst, Furnace, Newport, Co Mayo, Ireland..
    Pilotto, Francesca
    Umeå Univ, Dept Ecol & Environm Sci, Umeå, Sweden.;Umeå Univ, Dept Hist Philosoph & Religious Studies, Environm Archaeol Lab, Umeå, Sweden..
    Mor, Jordi-Rene
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Barcelona UB, Fac Biol, Dept Evolutionary Biol Ecol & Environm Sci, Barcelona, Spain..
    Monteiro, Juliana
    Fletcher, David
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England..
    Noss, Christian
    Univ Koblenz Landau, Inst Environm Sci, Landau, Germany..
    Colls, Miriam
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain..
    Nagler, Magdalena
    Univ Innsbruck, Inst Microbiol, Innsbruck, Austria..
    Liu, Liu
    Univ Koblenz Landau, Inst Environm Sci, Landau, Germany.;Leibniz Inst Freshwater Ecol & Inland Fisheries I, Expt Limnol, Stechlin, Germany..
    Gonzalez-Quijano, Clara Romero
    Leibniz Inst Freshwater Ecol & Inland Fisheries I, Ecohydrol, Berlin, Germany..
    Romero, Ferran
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain..
    Pansch, Nina
    Leibniz Inst Freshwater Ecol & Inland Fisheries I, Expt Limnol, Stechlin, Germany..
    Ledesma, Jose L. J.
    Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Uppsala, Sweden.;Spanish Natl Res Council, Ctr Adv Studies Blanes, Blanes, Spain.;Karlsruhe Inst Technol, Inst Geog & Geoecol, Karlsruhe, Germany..
    Pegg, Josephine
    Bournemouth Univ, Dept Life & Environm Sci, Poole, Dorset, England.;South African Inst Aquat Biodivers, Makhanda, South Africa..
    Klaus, Marcus
    Umeå Univ, Dept Ecol & Environm Sci, Umeå, Sweden.;Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umeå, Sweden..
    Freixa, Anna
    Catalan Inst Water Res ICRA, Girona, Spain.;Univ Girona UdG, Girona, Spain..
    Ortega, Sonia Herrero
    Leibniz Inst Freshwater Ecol & Inland Fisheries I, Expt Limnol, Stechlin, Germany..
    Mendoza-Lera, Clara
    Ctr Lyon Villeurbanne, UR Riverly, INRAE, Villeurbanne, France.;Univ Koblenz Landau, Inst Environm Sci, Landau, Germany..
    Bednarik, Adam
    PalackV Univ Olomouc, Dept Ecol & Environm Sci, Olomouc, Czech Republic.;Czech Acad Sci, Global Change Res Inst, Brno, Czech Republic..
    Fonvielle, Jeremy A.
    Leibniz Inst Freshwater Ecol & Inland Fisheries I, Expt Limnol, Stechlin, Germany..
    Gilbert, Peter J.
    Univ Highlands & Isl UHI, Environm Res Inst, Thurso, Scotland..
    Kenderov, Lyubomir A.
    Sofia Univ St Kliment Ohridski, Dept Gen & Appl Hydrobiol, Sofia, Bulgaria..
    Rulik, Martin
    PalackV Univ Olomouc, Dept Ecol & Environm Sci, Olomouc, Czech Republic..
    Bodmer, Pascal
    Univ Lisbon, Fac Ciencias, Ctr Ecol Evolut & Environm Changes cE3c, Lisbon, Portugal.;Univ Koblenz Landau, Inst Environm Sci, Landau, Germany.;Leibniz Inst Freshwater Ecol & Inland Fisheries, Chem Analyt & Biogeochem, Berlin, Germany.;Univ Quebec Montreal, Grp Rech Interuniv Limnol, Dept Sci Biol, Montreal, PQ, Canada..
    Carbon dioxide fluxes increase from day to night across European streams2021Ingår i: Communications Earth & Environment, E-ISSN 2662-4435, Vol. 2, nr 1, artikel-id 118Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 44.
    Attermeyer, Katrin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. WasserCluster Lunz, Lunz Am See, Austria.
    Catalan, Nuria
    Catalan Inst Water Res ICRA, Girona, Spain.
    Einarsdóttir, Karólina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Freixa, Anna
    Catalan Inst Water Res ICRA, Girona, Spain.
    Groeneveld, Marloes M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Hawkes, Jeffrey A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Bergquist, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Tranvik, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Organic Carbon Processing During Transport Through Boreal Inland Waters: Particles as Important Sites2018Ingår i: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, nr 8, s. 2412-2428Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The degradation and transformation of organic carbon (C) in inland waters result in significant CO2 emissions from inland waters. Even though most of the C in inland waters occurs as dissolved organic carbon (DOC), studies on particulate organic carbon (POC) and how it influences the overall reactivity of organic C in transport are still scarce. We sampled 30 aquatic ecosystems following an aquatic continuum including peat surface waters, streams, rivers, and lakes. We report DOC and POC degradation rates, relate degradation patterns to environmental data across these systems, and present qualitative changes in dissolved organic matter and particulate organic matter during degradation. Microbial degradation rates of POC were approximately 15 times higher compared to degradation of DOC, with POC half-lives of only 17 +/- 3 (mean +/- SE) days across all sampled aquatic ecosystems. Rapid POC decay was accompanied by a shift in particulate C: N ratios, whereas dissolved organic matter composition did not change at the time scale of incubations. The faster degradation of the POC implies a constant replenishment to sustain natural POC concentrations. We suggest that degradation of organic matter transported through the inland water continuum might occur to a large extent via transition of DOC into more rapidly cycling POC in nature, for example, triggered by light. In this way, particles would be a dominant pool of organic C processing across the boreal aquatic continuum, partially sustained by replenishment via flocculation of DOC.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Attermeyer, Katrin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Leibniz Inst Freshwater Ecol & Inland Fisheries C, Muggelseedamm 310, D-12587 Berlin, Germany..
    Flury, S.
    Leibniz Inst Freshwater Ecol & Inland Fisheries C, Muggelseedamm 310, D-12587 Berlin, Germany.;Univ Geneva, Fac Sci, Blvd Carl Vogt 66, CH-1211 Geneva, Switzerland..
    Jayakumar, R.
    IITM, IGCS, Madras 600036, Tamil Nadu, India.;IITM, Environm & Water Resources Engn Div, Dept Civil Engn, Madras 600036, Tamil Nadu, India..
    Fiener, P.
    Univ Augsburg, Dept Geog, Alter Postweg 118, D-86159 Augsburg, Germany..
    Steger, K.
    IITM, IGCS, Madras 600036, Tamil Nadu, India..
    Arya, V.
    IITM, Environm & Water Resources Engn Div, Dept Civil Engn, Madras 600036, Tamil Nadu, India..
    Wilken, F.
    Univ Augsburg, Dept Geog, Alter Postweg 118, D-86159 Augsburg, Germany.;BTU, Chair Soil Protect & Recultivat, Konrad Wachsmann Allee 6, D-03013 Cottbus, Germany..
    van Geldern, R.
    Univ Erlangen Nurnberg, GeoZentrum Nordbayern, Schlossgarten 5, D-91054 Erlangen, Germany..
    Premke, K.
    Leibniz Inst Freshwater Ecol & Inland Fisheries C, Muggelseedamm 310, D-12587 Berlin, Germany.;Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Biogeochem, Eberswalder Str 84, D-15374 Muncheberg, Germany..
    Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake2016Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 6, artikel-id 20424Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km(2)) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.

  • 46.
    Attermeyer, Katrin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Chemical Analytics and Biogeochemistry, Germany.
    Grossart, Hans-Peter
    Leibniz-Institute of Freshwater Ecology and InlandFisheries, Experimental Limnology, Germany; Institute for Biochemistry and Biology, Potsdam University, Germany.
    Flury, Sabine
    Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Chemical Analytics and Biogeochemistry, Germany; Faculty of Science, University of Geneva, Switzerland.
    Premke, Katrin
    Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Chemical Analytics and Biogeochemistry, Germany; Leibniz Centre for Agricultural Landscape Research (ZALF), Institute for Landscape Biogeochemistry, Germany.
    Bacterial processes and biogeochemical changes in the water body of kettle holes: mainly driven by autochthonous organic matter?2017Ingår i: Aquatic Sciences, ISSN 1015-1621, E-ISSN 1420-9055, Vol. 79, nr 3, s. 675-687Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Kettle holes are small inland waters formed from glacially-created depressions often situated in agricultural landscapes. Due to their high perimeter-to-area ratio facilitating a high aquatic-terrestrial coupling, kettle holes can accumulate high concentrations of organic carbon and nutrients, fueling microbial activities and turnover rates. Thus, they represent hotspots of carbon turnover in the landscape, but their bacterial activities and controlling factors have not been well investigated. Therefore, we aimed to assess the relative importance of various environmental factors on bacterial and biogeochemical processes in the water column of kettle holes and to disentangle their variations. In the water body of ten kettle holes in north-eastern Germany, we measured several physico-chemical and biological parameters such as carbon quantity and quality, as well as bacterial protein production (BP) and community respiration (CR) in spring, early summer and autumn 2014. Particulate organic matter served as an indicator of autochthonous production and represented an important parameter to explain variations in BP and CR. This notion is supported by qualitative absorbance indices of dissolved molecules in water samples and C:N ratios of the sediments, which demonstrate high fractions of autochthonous organic matter (OM) in the studied kettle holes. In contrast, dissolved chemical parameters were less important for bacterial activities although they revealed strong differences throughout the growing season. Pelagic bacterial activities and dynamics might thus be regulated by autochthonous OM in kettle holes implying a control of important biogeochemical processes by internal primary production rather than facilitated exchange with the terrestrial surrounding due to a high perimeter-to-area ratio.

  • 47.
    Ayala, Ana I.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Modelling impact climate-related change on the thermal responses of lakes2023Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    In response to climate-related changes, lakes worldwide have experienced warmer surface water temperatures, shorter ice cover periods and changes in lake stratification. As these aspects of lake dynamics exert substantial control over nutrient availability, oxygenation and biogeochemical cycling, predicting changes in lake water temperature and stratification dynamics can improve our understanding of the consequences of warming on lake ecosystems. This thesis investigates the long-term and short-term (extreme event) effects of climate change on lake thermal dynamics using 1D hydrodynamic lake models.

    Long-term lake water temperature simulations showed that water temperatures and thermal stratification metrics were projected to clearly shift toward lake thermal conditions that are consistent with a warmer climate at the end of the 21st century, i.e. warmer surface and bottom temperatures and a stronger and longer duration of summer thermal stratification as a result of an earlier onset of stratification and later fall overturn. The simulated lake thermal structure was controlled by energy exchange between the lake surface and the atmosphere (surface heat fluxes) and wind stress. The individual surface heat flux components were projected to change substantially under future climate scenarios. However, the combined changes showed compensating effects, leading to a small overall change in total surface heat flux, that was still sufficient to lead to important changes in whole-lake temperature. On a seasonal scale, spring heating and autumnal cooling were projected to decrease, while only small changes were projected in winter and summer. An extended analysis during summer using 47 lakes showed that while all lakes gained heat during summer under all scenarios, differences in the amount of heat gained during historical and future conditions were small. Additionally, hydrodynamic lake models performed well in reproducing the magnitude and direction of changes in lake temperature and stratification metrics during storms and heatwaves. However, the lake model performance decreased in accuracy compared to non-extreme condition, which should be taken into account. 

    1D hydrodynamic lake models have been shown to be powerful tools to predict long-term and short-term climate-related changes in lake thermal dynamics, making an in-depth analysis of the surface heat fluxes possible. 

    Delarbeten
    1. Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
    Öppna denna publikation i ny flik eller fönster >>Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
    2020 (Engelska)Ingår i: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 24, nr 6, s. 3311-3330Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    This paper, as a part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), assesses the impacts of different levels of global warming on the thermal structure of Lake Erken (Sweden). The General Ocean Turbulence Model (GOTM) one-dimensional hydrodynamic model was used to simulate water temperature when using ISIMIP2b bias-corrected climate model projections as input. These projections have a daily time step, while lake model simulations are often forced at hourly or shorter time steps. Therefore, it was necessary to first test the ability of GOTM to simulate Lake Erken water temperature using daily vs hourly meteorological forcing data. In order to do this, three data sets were used to force the model as follows: (1) hourly measured data, (2) daily average data derived from the first data set, and (3) synthetic hourly data created from the daily data set using generalised regression artificial neural network methods. This last data set is developed using a method that could also be applied to the daily time step ISIMIP scenarios to obtain hourly model input if needed. The lake model was shown to accurately simulate Lake Erken water temperature when forced with either daily or synthetic hourly data. Long-term simulations forced with daily or synthetic hourly meteorological data suggest that by the late 21st century the lake will undergo clear changes in thermal structure. For the representative concentration pathway (RCP) scenario, namely RCP2.6, surface water temperature was projected to increase by 1.79 and 1.36 C when the lake model was forced at daily and hourly resolutions respectively, and for RCP6.0 these increases were projected to be 3.08 and 2.31 C. Changes in lake stability were projected to increase, and the stratification duration was projected to be longer by 13 and 11 d under RCP2.6 scenario and 22 and 18 d under RCP6.0 scenario for daily and hourly resolutions. Model changes in thermal indices were very similar when using either the daily or synthetic hourly forcing, suggesting that the original ISIMIP climate model projections at a daily time step can be sufficient for the purpose of simulating lake water temperature.

    Nationell ämneskategori
    Oceanografi, hydrologi och vattenresurser
    Identifikatorer
    urn:nbn:se:uu:diva-416654 (URN)10.5194/hess-24-3311-2020 (DOI)000545720400002 ()
    Forskningsfinansiär
    EU, Horisont 2020, H2020-MSCA-ITN-2016EU, Horisont 2020, 722518Forskningsrådet Formas, 2016-00006Forskningsrådet Formas, 2017-01738
    Tillgänglig från: 2020-07-27 Skapad: 2020-07-27 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
    2. Climate Change Impacts on Surface Heat Fluxes in a Deep Monomictic Lake
    Öppna denna publikation i ny flik eller fönster >>Climate Change Impacts on Surface Heat Fluxes in a Deep Monomictic Lake
    Visa övriga...
    2023 (Engelska)Ingår i: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 128, nr 11Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Turbulent and radiative energy exchanges between lakes and the atmosphere play an importantrole in determining the process of lake-mixing and stratification, including how lakes respond to climate andto climate change. Here we used a one-dimensional hydrodynamic lake model to assess seasonal impacts ofclimate change on individual surface heat flux components in Lough Feeagh, Ireland, a deep, monomictic lake.We drove the lake model with an ensemble of outputs from four climate models under three future greenhousegas scenarios from 1976 to 2099. In these experiments, the results showed significant increases in the radiativebudget that were largely counteracted by significant increases in the turbulent fluxes. The combined change inthe individual surface heat fluxes led to a change in the total surface heat flux that was small, but sufficient tolead to significant changes in the volume-weighted average lake temperature. The largest projected changes intotal surface heat fluxes were in spring and autumn. Both spring heating and autumnal cooling significantlydecreased under future climate conditions, while changes to total surface heat fluxes in winter and summerwere an order of magnitude lower. This led to counter-intuitive results that, in a warming world, there wouldbe less heat not more entering Lough Feeagh during the springtime, and little change in net heating over thesummer or winter compared to natural climate conditions, projected increases in the volume-weighted averagelake temperature were found to be largely due to reduced heat loss during autumn.

    Nyckelord
    Modelling, climate change, ISIMIP2b, Simstrat, Lough Feeagh, heat budget, turbulent heat fluxes, radiative surface fluxes
    Nationell ämneskategori
    Klimatforskning
    Identifikatorer
    urn:nbn:se:uu:diva-498248 (URN)10.1029/2022JD038355 (DOI)
    Tillgänglig från: 2023-03-12 Skapad: 2023-03-12 Senast uppdaterad: 2023-06-14Bibliografiskt granskad
    3. Analysis of summer heat budget of lakes under a changing climate across a geographic gradient
    Öppna denna publikation i ny flik eller fönster >>Analysis of summer heat budget of lakes under a changing climate across a geographic gradient
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Warming surface water temperature is the most direct consequence of climate change in lakes and therefore, predicting the heat exchange at the air-water interface is important to understand how atmospheric forcing will affect lake temperature and thermal structure. Here, we forced a one-dimensional hydrodynamic lake model with outputs from four different climate models under three future greenhouse gas emission scenarios from 1976 to 2099. To investigate the changes in summer (June to August or December to February in the northern or southern hemisphere, respectively) net surface heat flux and the individual flux components for 47 lakes with varying in size and geographic location were analysed. The results show that in the most extreme case (RCP 8.5) summer lake surface temperature is projected to increase by 4.72±0.70 °C by the end of the 21st century, due to increasing absorption of solar radiation (17.40±8.81 W m-2) and of long-wave radiation (33.01±5.44 W m-2). The increased lake surface temperature, also lead to higher heat losses to the atmosphere by outgoing long-wave radiation (27.54±4.07 W m-2) and by latent heat flux (25.10±7.37 W m-2), while a lower heat loss by sensible heat flux is projected (-3.20±1.94 W m-2). Altogether, the net heat balance and thus the accumulation of heat in the lakes over summer remains almost unchanged. However, a shift in the contributions of the individuals heat fluxes is projected, with the latent heat flux gaining relative importance.

    Nyckelord
    Modelling, climate change, ISIMIP2b, Simstrat, total surface heat flux, surface heat flux components, outgoing long-wave radiation, sensible heat flux, latent heat flux
    Nationell ämneskategori
    Klimatforskning
    Identifikatorer
    urn:nbn:se:uu:diva-498249 (URN)
    Forskningsfinansiär
    EU, Horisont 2020, 722518EU, Horisont 2020, 101017861
    Tillgänglig från: 2023-03-12 Skapad: 2023-03-12 Senast uppdaterad: 2023-03-13Bibliografiskt granskad
    4. Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events
    Öppna denna publikation i ny flik eller fönster >>Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events
    Visa övriga...
    2020 (Engelska)Ingår i: Environmental Modelling & Software, ISSN 1364-8152, E-ISSN 1873-6726, Vol. 133, artikel-id 104852Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Numerical lake models are useful tools to study hydrodynamics in lakes, and are increasingly applied to extreme weather events. However, little is known about the accuracy of such models during these short-term events. We used high-frequency data from three lakes to test the performance of three one-dimensional (1D) hydrodynamic models (Simstrat, GOTM, GLM) during storms and heatwaves. Models reproduced the overall direction and magnitude of changes during the extreme events, with accurate timing and little bias. Changes in volume-averaged and surface temperatures and Schmidt stability were simulated more accurately than changes in bottom temperature, maximum buoyancy frequency, or mixed layer depth. However, in most cases the model error was higher (30-100%) during extreme events compared to reference periods. As a consequence, while 1D lake models can be used to study effects of extreme weather events, the increased uncertainty in the simulations should be taken into account when interpreting results.

    Nyckelord
    Storm, Heatwave, Model validation, Simstrat, GOTM, General lake model
    Nationell ämneskategori
    Ekologi
    Identifikatorer
    urn:nbn:se:uu:diva-424624 (URN)10.1016/j.envsoft.2020.104852 (DOI)000580633100026 ()
    Forskningsfinansiär
    EU, Horisont 2020, 722518
    Tillgänglig från: 2020-11-09 Skapad: 2020-11-09 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    UUThesis_A-Ayala-2023
    Ladda ner (jpg)
    preview image
  • 48.
    Ayala, Ana I.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Univ Geneva, Inst Environm Sci, Geneva, Switzerland..
    de Eyto, Elvira
    Marine Inst, Newport, Mayo, Ireland..
    Jennings, Eleanor
    Dundalk Inst Technol, Ctr Freshwater & Environm Studies, Dundalk, Louth, Ireland..
    Goyette, Stephane
    Univ Geneva, Inst Environm Sci, Geneva, Switzerland..
    Pierson, Don
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    GLOBAL WARMING WILL CHANGE THE THERMAL STRUCTURE OF LOUGH FEEAGH, A SENTINEL LAKE IN THE IRISH LANDSCAPE, BY THE END OF THE TWENTY-FIRST CENTURY2023Ingår i: Biology and Environment (Dublin), ISSN 0791-7945, E-ISSN 2009-003X, Vol. 123B, nr 3, s. 147-165Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent developments in impact modelling of global warming on lakes have resulted in a greater understanding of how these vital ecosystems are likely to respond. However, there has been little quantitative analysis of this in an Irish context, despite the importance of lakes in the island's landscape. Here, we explore the impact of global warming on the hydrodynamics and thermal structure of a sentinel Irish lake under future climate scenarios. A 1D lake model, Simstrat, was calibrated and validated using water temperature data collected from Lough Feeagh, a site of long-term ecological research in the west of Ireland. Once validated, the model was then driven by daily climate model projections to generate informative thermal metrics for the time period of 2006-2099. Despite the moderating influence of the Atlantic, projections indicate that global warming will have a marked effect on the thermal structure of Feeagh, with surface water temperatures set to warm by 0.75 degrees C under a more stringent mitigation pathway (RCP 2.6) and 2.42 degrees C under a non-mitigation pathway (RCP 8.5).While warming was projected to be greatest in summer in the epilimnion, winter warming was greater than in other seasons in the hypolimnion. Stratification is projected to become more stable and earlier, and the growing season to be longer by 11 to 47 days, depending on mitigation pathways. Future studies could use a similar modelling workflow to investigate the possible implications of global warming on other Irish lakes, particularly those of specific societal importance or those of conservation interest.

  • 49.
    Ayala, Ana I.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Mesman, Jorrit P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Jones, Ian D.
    Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
    de Eyto, Elvira
    Marine Institute, Furnace, Newport, Co. Mayo, Ireland.
    Jennings, Eleanor
    Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.
    Goyette, Stéphane
    Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Pierson, Donald C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Climate Change Impacts on Surface Heat Fluxes in a Deep Monomictic Lake2023Ingår i: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 128, nr 11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Turbulent and radiative energy exchanges between lakes and the atmosphere play an importantrole in determining the process of lake-mixing and stratification, including how lakes respond to climate andto climate change. Here we used a one-dimensional hydrodynamic lake model to assess seasonal impacts ofclimate change on individual surface heat flux components in Lough Feeagh, Ireland, a deep, monomictic lake.We drove the lake model with an ensemble of outputs from four climate models under three future greenhousegas scenarios from 1976 to 2099. In these experiments, the results showed significant increases in the radiativebudget that were largely counteracted by significant increases in the turbulent fluxes. The combined change inthe individual surface heat fluxes led to a change in the total surface heat flux that was small, but sufficient tolead to significant changes in the volume-weighted average lake temperature. The largest projected changes intotal surface heat fluxes were in spring and autumn. Both spring heating and autumnal cooling significantlydecreased under future climate conditions, while changes to total surface heat fluxes in winter and summerwere an order of magnitude lower. This led to counter-intuitive results that, in a warming world, there wouldbe less heat not more entering Lough Feeagh during the springtime, and little change in net heating over thesummer or winter compared to natural climate conditions, projected increases in the volume-weighted averagelake temperature were found to be largely due to reduced heat loss during autumn.

    Ladda ner fulltext (pdf)
    fulltext
  • 50.
    Ayala, Ana I.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Mesman, Jorrit P.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Jones, Ian D.
    Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
    Schmid, Martin
    Department of Surface Waters Research and Management, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
    Råman Vinnå, Love
    Department of Surface Waters Research and Management, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
    Woolway, R. Iestyn
    Goyette, Stéphane
    Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland.
    Pierson, Donald C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi.
    Analysis of summer heat budget of lakes under a changing climate across a geographic gradientManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Warming surface water temperature is the most direct consequence of climate change in lakes and therefore, predicting the heat exchange at the air-water interface is important to understand how atmospheric forcing will affect lake temperature and thermal structure. Here, we forced a one-dimensional hydrodynamic lake model with outputs from four different climate models under three future greenhouse gas emission scenarios from 1976 to 2099. To investigate the changes in summer (June to August or December to February in the northern or southern hemisphere, respectively) net surface heat flux and the individual flux components for 47 lakes with varying in size and geographic location were analysed. The results show that in the most extreme case (RCP 8.5) summer lake surface temperature is projected to increase by 4.72±0.70 °C by the end of the 21st century, due to increasing absorption of solar radiation (17.40±8.81 W m-2) and of long-wave radiation (33.01±5.44 W m-2). The increased lake surface temperature, also lead to higher heat losses to the atmosphere by outgoing long-wave radiation (27.54±4.07 W m-2) and by latent heat flux (25.10±7.37 W m-2), while a lower heat loss by sensible heat flux is projected (-3.20±1.94 W m-2). Altogether, the net heat balance and thus the accumulation of heat in the lakes over summer remains almost unchanged. However, a shift in the contributions of the individuals heat fluxes is projected, with the latent heat flux gaining relative importance.

1234567 1 - 50 av 947
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf