uu.seUppsala University Publications
Change search
Refine search result
1234567 1 - 50 of 321
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Ablikim, M.
    et al.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Achasov, M. N.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia..
    Ahmed, S.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Ai, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Albayrak, O.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Albrecht, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Ambrose, D. J.
    Univ Rochester, Rochester, NY 14627 USA..
    Amoroso, A.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia.;Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.;Chinese Acad Sci, Beijing 100049, Peoples R China.;Univ Hawaii, Honolulu, HI 96822 USA.;Univ Punjab, Lahore 54590, Pakistan.;Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    An, F. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    An, Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Bai, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ferroli, R. Baldini
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Ban, Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Bennett, D. W.
    Indiana Univ, Bloomington, IN 47405 USA..
    Bennett, J. V.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Berger, N. B.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Bertani, M.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Bettoni, D.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Bian, J. M.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Bianchi, F.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Boger, E.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Boyko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Briere, R. A.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Cai, H.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Cai, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cakir, O.
    Ankara Univ, TR-06100 Ankara, Turkey..
    Calcaterra, A.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.;Chinese Acad Sci, Beijing 100049, Peoples R China.;Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Cao, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cetin, S. A.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey..
    Chang, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chelkov, G.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Chen, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, H. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Chen, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, M. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, S.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Chen, S. J.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Chen, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Chen, X. R.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Chen, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Cheng, H. P.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Chu, X. K.
    Peking Univ, Beijing 100871, Peoples R China..
    Cibinetto, G.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Dai, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dai, J. P.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Dbeyssi, A.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Dedovich, D.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Deng, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Denig, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Denysenko, I.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Destefanis, M.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    De Mori, F.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Ding, Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Dong, C.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Dong, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, L. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dong, M. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Dou, Z. L.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Du, S. X.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Duan, P. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fan, J. Z.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Fang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Fang, X.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Fang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Farinelli, R.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy.;Univ Ferrara, I-44122 Ferrara, Italy..
    Fava, L.
    Univ Piemonte Orientale, I-15121 Alessandria, Italy.;INFN, I-10125 Turin, Italy..
    Fedorov, O.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Feldbauer, F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Felici, G.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Feng, C. Q.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Fioravanti, E.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Fritsch, M.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany.;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Fu, C. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gao, X. L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Gao, X. Y.
    Beihang Univ, Beijing 100191, Peoples R China..
    Gao, Y.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Gao, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Garzia, I.
    INFN, Sez Ferrara, I-44122 Ferrara, Italy..
    Goetzen, K.
    GSI Helmholtzcentre Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Gong, L.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Gong, W. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gradl, W.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Greco, M.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Gu, M. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Gu, Y. T.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Guan, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, A. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, L. B.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Guo, R. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Guo, Y. P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Haddadi, Z.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Hafner, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Han, S.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Hao, X. Q.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Harris, F. A.
    Univ Hawaii, Honolulu, HI 96822 USA..
    He, K. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Heinsius, F. H.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Held, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Heng, Y. K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Holtmann, T.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Hou, Z. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, C.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Hu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, J. F.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Hu, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Hu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Huang, G. S.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Huang, J. S.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Huang, X. T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Huang, X. Z.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Huang, Y.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Huang, Z. L.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Hussain, T.
    Univ Punjab, Lahore 54590, Pakistan..
    Ji, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, Q. P.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ji, X. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ji, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Jiang, L. W.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Jiang, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Jiang, X. Y.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Jiao, J. B.
    Shandong Univ, Jinan 250100, Peoples R China..
    Jiao, Z.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Jin, D. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Jin, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Johansson, T
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Julin, A.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Kalantar-Nayestanaki, N.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Kang, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Kang, X. S.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Kavatsyuk, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Ke, B. C.
    Carnegie Mellon Univ, Pittsburgh, PA 15213 USA..
    Kiese, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kliemt, R.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Kloss, B.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Kolcu, O. B.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey..
    Kopf, B.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Kornicer, M.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Kupsc, Andrzej
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Khn, W.
    Justus Liebig Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Lange, J. S.
    Justus Liebig Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Lara, M.
    Indiana Univ, Bloomington, IN 47405 USA..
    Larin, P.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Leithoff, H.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Leng, C.
    INFN, I-10125 Turin, Italy..
    Caldeira Balkeståhl, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Li, Cheng
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Li, D. M.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Li, F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, F. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Li, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, H. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, H. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, J. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, Jin
    Seoul Natl Univ, Seoul 151747, South Korea..
    Li, K.
    Hangzhou Normal Univ, Hangzhou 310036, Peoples R China.;Shandong Univ, Jinan 250100, Peoples R China..
    Li, Lei
    Beijing Inst Petrochem Technol, Beijing 102617, Peoples R China..
    Li, P. R.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Li, Q. Y.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, T.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, W. D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, W. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, X. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Li, X. M.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Li, X. N.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Li, X. Q.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Li, Y. B.
    Beihang Univ, Beijing 100191, Peoples R China..
    Li, Z. B.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Liang, H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Liang, J. J.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Liang, Y. F.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Liang, Y. T.
    Justus Liebig Univ Giessen, Phys Inst 2, D-35392 Giessen, Germany..
    Liao, G. R.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Lin, D. X.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Liu, B.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Liu, B. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, C. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, D.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Liu, F. H.
    Shanxi Univ, Taiyuan 030006, Peoples R China..
    Liu, Fang
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, Feng
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Liu, H. B.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Liu, H. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China.;Henan Univ Sci & Technol, Luoyang 471003, Peoples R China..
    Liu, H. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, J. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Liu, J. P.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Liu, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, K.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Liu, K. Y.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Liu, L. D.
    Peking Univ, Beijing 100871, Peoples R China..
    Liu, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, Q.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Liu, S. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Liu, X.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Liu, Y. B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Liu, Y. Y.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Liu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Liu, Zhiqing
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Loehner, H.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Lou, X. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lu, H. J.
    Huangshan Coll, Huangshan 245000, Peoples R China..
    Lu, J. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lu, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lu, Y. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Luo, C. L.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Luo, M. X.
    Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China..
    Luo, T.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Luo, X. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Lyu, X. R.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Ma, F. C.
    Liaoning Univ, Shenyang 110036, Peoples R China..
    Ma, H. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, L. L.
    Shandong Univ, Jinan 250100, Peoples R China..
    Ma, M. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, Q. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, T.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, X. N.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Ma, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ma, Y. M.
    Shandong Univ, Jinan 250100, Peoples R China..
    Maas, F. E.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Maggiora, M.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Malik, Q. A.
    Univ Punjab, Lahore 54590, Pakistan..
    Mao, Y. J.
    Peking Univ, Beijing 100871, Peoples R China..
    Mao, Z. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Marcello, S.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Messchendorp, J. G.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Mezzadri, G.
    Univ Ferrara, I-44122 Ferrara, Italy..
    Min, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Mitchell, R. E.
    Indiana Univ, Bloomington, IN 47405 USA..
    Mo, X. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Mo, Y. J.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Morales, C. Morales
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Muchnoi, N. Yu.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia..
    Muramatsu, H.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Musiol, P.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Nefedov, Y.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Nerling, F.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Nikolaev, I. B.
    GI Budker Inst Nucl Phys SB RAS BINP, Novosibirsk 630090, Russia..
    Ning, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Nisar, S.
    COMSATS Inst Informat Technol, Lahore 54000, Pakistan..
    Niu, S. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Niu, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Olsen, S. L.
    Seoul Natl Univ, Seoul 151747, South Korea..
    Ouyang, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Pacetti, S.
    INFN, I-06100 Perugia, Italy.;Univ Perugia, I-06100 Perugia, Italy..
    Pan, Y.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Patteri, P.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Pelizaeus, M.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Peng, H. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Peters, K.
    GSI Helmholtzcentre Heavy Ion Res GmbH, D-64291 Darmstadt, Germany..
    Pettersson, Jean
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Ping, J. L.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Ping, R. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Poling, R.
    Univ Minnesota, Minneapolis, MN 55455 USA..
    Prasad, V.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qi, H. R.
    Beihang Univ, Beijing 100191, Peoples R China..
    Qi, M.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Qian, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qiao, C. F.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Qin, L. Q.
    Shandong Univ, Jinan 250100, Peoples R China..
    Qin, N.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Qin, X. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qin, Z. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Qiu, J. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rashid, K. H.
    Univ Punjab, Lahore 54590, Pakistan..
    Redmer, C. F.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Ripka, M.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Rong, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Rosner, Ch.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Ruan, X. D.
    Guangxi Univ, Nanning 530004, Peoples R China..
    Sarantsev, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Savrie, M.
    Univ Ferrara, I-44122 Ferrara, Italy..
    Schnier, C.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Schönning, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics. Uppsala University, The Svedberg Laboratory.
    Schumann, S.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Shan, W.
    Peking Univ, Beijing 100871, Peoples R China..
    Shao, M.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Shen, C. P.
    Beihang Univ, Beijing 100191, Peoples R China..
    Shen, P. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Shen, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sheng, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Shi, M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, W. M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Song, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sosio, S.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Spataro, S.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Sun, G. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, J. F.
    Henan Normal Univ, Xinxiang 453007, Peoples R China..
    Sun, S. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, X. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Y. J.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Sun, Y. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Z. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Sun, Z. T.
    Indiana Univ, Bloomington, IN 47405 USA..
    Tang, C. J.
    Sichuan Univ, Chengdu 610064, Peoples R China..
    Tang, X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Tapan, I.
    Uludag Univ, TR-16059 Bursa, Turkey..
    Thorndike, E. H.
    Univ Rochester, Rochester, NY 14627 USA..
    Tiemens, M.
    Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands..
    Uman, I.
    Near East Univ, Nicosia 10, Turkey..
    Varner, G. S.
    Univ Hawaii, Honolulu, HI 96822 USA..
    Wang, B.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Wang, B. L.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Wang, D.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, D. Y.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, L. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, L. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, M.
    Shandong Univ, Jinan 250100, Peoples R China..
    Wang, P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, P. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, S. G.
    Peking Univ, Beijing 100871, Peoples R China..
    Wang, W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, W. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Wang, X. F.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Wang, Y.
    Soochow Univ, Suzhou 215006, Peoples R China..
    Wang, Y. D.
    Helmholtz Inst Mainz, D-55099 Mainz, Germany..
    Wang, Y. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, Y. Q.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wang, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, Z. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wang, Z. H.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Wang, Z. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Weber, T.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wei, D. H.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Wei, J. B.
    Peking Univ, Beijing 100871, Peoples R China..
    Weidenkaff, P.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany..
    Wen, S. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wiedner, U.
    Ruhr Univ Bochum, D-44780 Bochum, Germany..
    Wolke, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Wu, L. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wu, L. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Wu, Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xia, L.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Xia, L. G.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Xia, Y.
    Hunan Univ, Changsha 410082, Peoples R China..
    Xiao, D.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xiao, H.
    Univ South China, Hengyang 421001, Peoples R China..
    Xiao, Z. J.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Xie, Y. G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xiu, Q. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, G. F.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, J. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Xu, Q. J.
    Hangzhou Normal Univ, Hangzhou 310036, Peoples R China..
    Xu, Q. N.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Xu, X. P.
    Soochow Univ, Suzhou 215006, Peoples R China..
    Yan, L.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Yan, W. B.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Yan, W. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Yan, Y. H.
    Hunan Univ, Changsha 410082, Peoples R China..
    Yang, H. J.
    Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China..
    Yang, H. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yang, L.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Yang, Y. X.
    Guangxi Normal Univ, Guilin 541004, Peoples R China..
    Ye, M.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Ye, M. H.
    China Ctr Adv Sci & Technol, Beijing 100190, Peoples R China..
    Yin, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yu, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yu, C. X.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Yu, J. S.
    Lanzhou Univ, Lanzhou 730000, Peoples R China..
    Yuan, C. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuan, W. L.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Yuan, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Yuncu, A.
    Istanbul Bilgi Univ, TR-34060 Istanbul, Turkey..
    Zafar, A. A.
    Univ Punjab, Lahore 54590, Pakistan..
    Zallo, A.
    INFN Lab Nazl Frascati, I-00044 I- Frascati, Italy..
    Zeng, Y.
    Hunan Univ, Changsha 410082, Peoples R China..
    Zeng, Z.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhang, B. X.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, B. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, C.
    Nanjing Univ, Nanjing 210093, Peoples R China..
    Zhang, C. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, D. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, H. H.
    Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China..
    Zhang, H. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, S. Q.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Zhang, X. Y.
    Shandong Univ, Jinan 250100, Peoples R China..
    Zhang, Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, Y. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhang, Y. N.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhang, Y. T.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhang, Yu
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhang, Z. H.
    Cent China Normal Univ, Wuhan 430079, Peoples R China..
    Zhang, Z. P.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhang, Z. Y.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhao, G.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, J. Z.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Lei
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhao, Ling
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, M. G.
    Nankai Univ, Tianjin 300071, Peoples R China..
    Zhao, Q.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Q. W.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, S. J.
    Zhengzhou Univ, Zhengzhou 450001, Peoples R China..
    Zhao, T. C.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Y. B.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhao, Z. G.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhemchugov, A.
    Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia..
    Zheng, B.
    Univ South China, Hengyang 421001, Peoples R China..
    Zheng, J. P.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zheng, W. J.
    Shandong Univ, Jinan 250100, Peoples R China..
    Zheng, Y. H.
    Chinese Acad Sci, Beijing 100049, Peoples R China..
    Zhong, B.
    Nanjing Normal Univ, Nanjing 210023, Peoples R China..
    Zhou, L.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhou, X.
    Wuhan Univ, Wuhan 430072, Peoples R China..
    Zhou, X. K.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhou, X. R.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhou, X. Y.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, K. J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, S. H.
    Univ Sci & Technol Liaoning, Anshan 114051, Peoples R China..
    Zhu, X. L.
    Tsinghua Univ, Beijing 100084, Peoples R China..
    Zhu, Y. C.
    Univ Sci & Technol China, Hefei 230026, Peoples R China..
    Zhu, Y. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhu, Z. A.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zhuang, J.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zotti, L.
    Univ Turin, I-10125 Turin, Italy.;INFN, I-10125 Turin, Italy..
    Zou, B. S.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Zou, J. H.
    Inst High Energy Phys, Beijing 100049, Peoples R China..
    Amplitude analysis of D0 -> K -π+π+π-2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 7, 072010Article in journal (Refereed)
    Abstract [en]

    We present an amplitude analysis of the decay D-0 -> K- pi(+)pi(+)pi(-) based on a data sample of 2.93 fb(-1) acquired by the BESIII detector at the psi(3770) resonance. With a nearly background free sample of about 16000 events, we investigate the substructure of the decay and determine the relative fractions and the phases among the different intermediate processes. Our amplitude model includes the two-body decays D-0 -> (K) over bar*(0)rho(0), D-0 -> K- a(1)(+) (1260) and D-0 -> K-1(-)(1270)pi(+), the three-body decays D-0 -> K-1(-)*(0)pi(+)pi(-) and D-0 -> K- pi(+)rho(0), as well as the four-body nonresonant decay D-0 -> K- pi(+)pi(+)pi(-). The dominant intermediate process is D-0 -> K(-)a(1)(+)(1260)accounting for a fit fraction of 54.6%.

  • 2.
    Afifi, Hala
    et al.
    Institute of Pharmaceutical Science, King’s College London, UK.
    Karlsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Heenan, Richard K.
    ISIS-CCLRC, Rutherford Appleton Laboratory, Chilton, UK.
    Dreiss, Cécile A.
    Institute of Pharmaceutical Science, King’s College London, UK.
    Structural transitions in cholesterol-based wormlike micelles induced by encapsulating alkyl ester oils with varying architecture2012In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 378, no 1, 125-134 p.Article in journal (Refereed)
    Abstract [en]

    The effect of encapsulating oils on the phase behaviour and the microstructure of wormlike micelles formed by polyoxyethylene cholesteryl ether (ChEO10) and triethylene glycol monododecyl ether co-surfactant (C12EO3) was investigated using rheology, Cryo-TEM and small-angle neutron scattering measurements. Six alkyl ester oils bearing small, systematic variations in their molecular structure were encapsulated: ethyl butyrate (EB24), ethyl caproate (ECO26), ethyl caprylate (EC28), methyl enanthate (ME17), methyl caprylate (MC18) and butyl butyrate (BB44), where the subscripts refer to the length of the alkyl chain and fatty acid chain, respectively, on either sides of the ester link. The addition of alkyl ester oils to ChEO10/C12EO3 solutions promotes the longitudinal growth of the surfactant aggregates into wormlike micelles possessing an elliptical cross-section, with rminor 31 Â± 2 Ã… and rmajor varying from 45 to 70 Ã…. At fixed alkyl chain length, oils with longer fatty acid chains were found to be more efficient in inducing wormlike micelle formation or their elongation, following the order: EC28 > ECO26 > EB24. Instead, at fixed fatty acid chain length, increasing the alkyl chain has a negative effect on the longitudinal micellar growth (MC18 > EC28 and EB24 > BB44). At high co-surfactant concentrations and in the presence of EB24, an unusual phase of ring-like micelles was detected. Overall, the orientation of the oil molecules within the micelles enables them to act as co-surfactants with a small head-group, decreasing the average cross-section area and promoting longitudinal growth of the micelles into worms.

  • 3.
    Agalo, Faith
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Synthesis of Insulin-Regulated Aminopeptidase (IRAP) inhibitors2015Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The need for alternative cognitive enhancers has risen due to the fact that clinical trial results of the drugs currently approved for treating these disorders have not been satisfactory.

    IRAP has become a possible drug target for treating cognitive impairment brought about by Alzheimer’s disease, head trauma or cerebral ischemia, among others. This came after the revelation that Angiotensin IV enhances memory and learning. Angiotensin IV, the endogenous ligand of IRAP has been structurally modified with the aim of producing potent IRAP inhibitors. However, the peptidic nature of these inhibitors restricts their use; they are not likely to cross the blood brain barrier.

    Other strategies for generating IRAP inhibitors have been through structure-based design and receptor based virtual screening. These drug-like molecules have exhibited positive results in animal studies.

    IRAP inhibitors have been identified via a HTS of 10500 low-molecular weight compounds to give the hit based on a spirooxindole dihydroquinazolinone scaffold, with an IC50 value of 1.5 µM. In this project, some analogues to this hit compound have successfully been synthesized using a known method, whereas others have been synthesized after additional method development.

    The application of the developed method was found to be limited, because poor yield was obtained when a compound with an electron withdrawing substituent on the aniline was synthesized. As a result of this, modification of this method may be required or new methods may have to be developed to synthesize these types of analogues.

    Inhibition capability of 5 new spirooxindole dihydroquinazolinones was tested through a biochemical assay. Compound 6e emerged as the most potent inhibitor in the series, with an IC50 value of 0.2 µM. This compound will now serve as a lead compound and should be used as a starting point for future optimization in order to generate more potent IRAP inhibitors.

     

  • 4.
    Agmo Hernández, Víctor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Eriksson, Emma K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Ubiquinone-10 alters mechanical properties and increases stability of phospholipid membranes2015In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1848, no 10, 2233-2243 p.Article in journal (Refereed)
    Abstract [en]

    Abstract Ubiquinone-10 is mostly known for its role as an electron and proton carrier in aerobic cellular respiration and its function as a powerful antioxidant. Accumulating evidence suggest, however, that this well studied membrane component could have several other important functions in living cells. The current study reports on a previously undocumented ability of ubiquinone-10 to modulate the mechanical strength and permeability of lipid membranes. Investigations of DPH fluorescence anisotropy, spontaneous and surfactant induced leakage of carboxyfluorescein, and interactions with hydrophobic and hydrophilic surfaces were used to probe the effects caused by inclusion of ubiquinone-10 in the membrane of phospholipid liposomes. The results show that ubiquinone in concentrations as low as 2 mol.% increases the lipid packing order and condenses the membrane. The altered physicochemical properties result in a slower rate of release of hydrophilic components, and render the membrane more resistant towards rupture. As judged from comparative experiments using the polyisoprenoid alcohol solanesol, the quinone moiety is essential for the membrane stabilizing effects to occur. Our findings imply that the influence of ubiquinone-10 on the permeability and mechanical properties of phospholipid membranes is similar to that of cholesterol. The reported data indicate, however, that the molecular mechanisms are different in the two cases.

  • 5.
    Agmo Hernández, Víctor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Lendeckel, Uwe
    Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Germany.
    Scholz, Fritz
    Institut für Biochemie, Universität Greifswald, Germany.
    Electrochemistry of Adhesion and Spreading of Lipid Vesicles on Electrodes2013In: Applications of Electrochemistry in Medicine / [ed] Schlesinger, Mordechay, Springer US , 2013, Vol. 56, 189-247 p.Chapter in book (Other academic)
    Abstract [en]

    Biological membranes have developed to separate different compartments of organisms and cells. There is a large number of rather different functions which membranes have to fulfil: (1) they control the material and energy fluxes of metabolic processes, (2) they provide a wrapping protecting the compartments from chemical and physical attacks of the environment, (3) they provide interfaces at which specific biochemical machineries can operate (e.g., membrane bound enzymes), (4) they are equipped for signal transduction, (5) they possess the necessary stability and flexibility to allow cell division, and endo- and exocytosis as well as migration, (6) they present anchoring structures that enable cell-to-cell and cell-to-matrix physical interactions and intercellular communication. These are certainly not all functions of membranes as new functionalities are continuously reported. Since the biological membranes separate essentially aqueous solutions, such separating borders—if they should possess a reasonable stability and also flexibility combined with selective permeability—have to be built up of hydrophobic molecules exposing to both sides a similar interface. It was one of the most crucial and most lucky circumstances for the development and existence of life that certain amphiphilic molecules are able to assemble in bilayer structures (membranes), which—on one side—possess a rather high physical and chemical stability, and—on the other side—are able to incorporate foreign molecules for modifying both the physical properties as well as the permeability of the membranes for defined chemical species. The importance of the chemical function of membranes and all its constituents, e.g., ion channels, pore peptides, transport peptides, etc., is generally accepted. The fluid-mosaic model proposed by Singer and Nicolson [1] is still the basis to understand the biological, chemical, and physical properties of biological membranes. The importance of the purely mechanical properties of membranes came much later into the focus of research. The reasons are probably the dominance of biochemical thinking and biochemical models among biologists and medical researchers, as well as a certain lack of appropriate methods to probe mechanical properties of membranes. The last decades have changed that situation due to the development of techniques like the Atomic Force Microscopy, Fluorescence Microscopy, Micropipette Aspiration, Raman Microspectroscopy, advanced Calorimetry, etc. This chapter is aimed at elucidating how the properties of membranes can be investigated by studying the interaction of vesicles with a very hydrophobic surface, i.e., with the surface of a mercury electrode. This interaction is unique as it results in a complete disintegration of the bilayer membrane of the vesicles and the formation of an island of adsorbed lipid molecules, i.e., a monolayer island. This process can be followed by current-time measurements (chronoamperometry), which allow studying the complete disintegration process in all its details: the different steps of that disintegration can be resolved on the time scale and the activation parameters can be determined. Most interestingly, the kinetics of vesicle disintegration on mercury share important features with the process of vesicle fusion and, thus, sheds light also on mechanisms of endocytosis and exocytosis. Most importantly, not only artificial vesicles (liposomes) can be studied with this approach, but also reconstituted plasma membrane vesicles and even intact mitochondria. Hence, one can expect that the method may provide in future studies also information on the membrane properties of various other vesicles, including exosomes, and may allow investigating various aspects of drug action in relation to membrane properties (transmembrane transport, tissue targeting, bioavailability, etc.), and also the impact of pathophysiological conditions (e.g., oxidative modification) on membrane properties, on a hitherto not or only hardly accessible level.

  • 6.
    Agmo Hernández, Víctor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Reijmar, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Label-Free Characterization of Peptide-Lipid Interactions Using Immobilized Lipodisks2013In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 85, no 15, 7377-7384 p.Article in journal (Refereed)
    Abstract [en]

    Lipodisks, planar lipid bilayer structures stabilized by PEG-ylated lipids, were in the present study covalently bound and immobilized onto sensors for quartz crystal microbalance with dissipation monitoring (QCM-D) studies. It is shown that the modified sensors can be used to characterize the interaction of lipodisks with α-helical amphiphilic peptides with an accuracy similar to that obtained with well established fluorimetric approximations. The method presented has the great advantage that it can be used with peptides in their native form even if no fluorescent residues are present. The potential of the method is illustrated by determining the parameters describing the association of melittin, mastoparan X, and mastoparan with immobilized lipodisks. Both thermodynamic and kinetic analyses are possible. The presented method constitutes a useful tool for fundamental studies of peptide–membrane interactions and can also be applied to optimize the design of lipodisks, for example, for sustained release of antimicrobial peptides in therapeutic applications.

  • 7.
    Agmo Hernández, Víctor
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Samuelsson, Jörgen
    Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
    Forssén, Patrik
    Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
    Fornstedt, Torgny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Department of Engineering and Chemical Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.
    Enhanced interpretation of adsorption data generated by liquid chromatography and by modern biosensors2013In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1317, no SI, 22-31 p.Article in journal (Refereed)
    Abstract [en]

    In this study we demonstrate the importance of proper data processing in adsorption isotherm estimations. This was done by investigating and reprocessing data from five cases on two closely related platforms: liquid chromatography (LC) and biosensors. The previously acquired adsorption data were reevaluated and reprocessed using a three-step numerical procedure: (i) preprocessing of adsorption data, (ii) adsorption data analysis and (iii) final rival model fit. For each case, we will discuss what we really measure and what additional information can be obtained by numerical processing of the data. These cases clearly demonstrate that numerical processing of LC and biosensor data can be used to gain deeper understanding of molecular interactions with adsorption media. This is important because adsorption data, especially from biosensors, is often processed using old and simplified methods.

  • 8.
    Agmo Hernández, Víctor
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    The theory of metal electronucleation applied to the study of fundamental properties of liposomes2013In: Journal of Solid State Electrochemistry, ISSN 1432-8488, E-ISSN 1433-0768, Vol. 17, no 2 (SI), 299-305 p.Article, review/survey (Refereed)
    Abstract [en]

    This short review describes how the theory of electrochemical metal nucleation considering non-stationary effects due to the activation of latent nucleation sites has been successfully translated and applied to describe phenomena observed on lipid membranes. This rather unexpected connection is merely formal, but has resulted in a completely new approach in liposome research. It has been proposed that hydrophobic active sites spontaneously and constantly appear and disappear on lipid membranes. These sites control the affinity of liposomes for hydrophobic surfaces and determine the permeability of the lipid membrane to small hydrophilic molecules. Thus, the kinetic models for liposome adhesion on hydrophobic substrates and for the spontaneous leakage of liposomal content are identical to that of non-stationary nucleation mentioned above. Therefore, the broad scope of the available work on metal nucleation has facilitated the interpretation of the data obtained in liposome research. Future applications of the nucleation model in the realm of liposomes are also discussed.

  • 9.
    Ahlgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Fondell, Amelie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Swedish Radiat Safety Author, Res Unit, Solna Strandvag 96, SE-17116 Stockholm, Sweden.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    EGF-targeting lipodisks for specific delivery of poorly water-soluble anticancer agents to tumour cells2017In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, no 36, 22178-22186 p.Article in journal (Refereed)
    Abstract [en]

    Concerns regarding poor aqueous solubility, high toxicity and lack of specificity impede the translation of many hydrophobic anticancer agents into safe and effective anticancer drugs. The application of colloidal drug delivery systems, and in particular the use of lipid-based nanocarriers, has been identified as a promising means to overcome these issues. PEG-stabilized lipid nanodisks (lipodisks) have lately emerged as a novel type of biocompatible, nontoxic and adaptable drug nanocarrier. In this study we have explored the potential of lipodisks as a platform for formulation and tumour targeted delivery of hydrophobic anticancer agents. Using curcumin as a model compound, we show that lipodisks can be loaded with substantial amounts of hydrophobic drugs (curcumin/lipid molar ratio 0.15). We demonstrate moreover that by deliberate choice of preparation protocols the lipodisks can be provided with relevant amounts of targeting proteins, such as epidermal growth factor (EGF). Data from in vitro cell studies verify that such EGF-decorated curcumin-loaded lipodisks are capable of EGF-receptor specific targeting of human A-431 tumour cells, and strongly suggest that the interaction between the lipodisks and the tumour cells results in receptor-mediated internalization of the disks and their cargo.

  • 10. Ahlgren, Sara
    et al.
    Reijmar, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    EGF-targeting lipodisks for specific delivery of cationic amphiphilic peptides to tumour cellsManuscript (preprint) (Other academic)
  • 11. Ahlgren, Sara
    et al.
    Reijmar, Karin
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells.2017In: Nanomedicine: Nanotechnology, Biology and Medicine, ISSN 1549-9634, E-ISSN 1549-9642, Vol. 13, no 7, 2325-2328 p., S1549-9634(17)30130-2Article in journal (Refereed)
    Abstract [en]

    Issues concerning non-specificity, degradation and hemolysis severely hamper the development of membranolytic amphiphilic peptides into safe and efficient anticancer agents. To increase the therapeutic potential, we have previously developed a strategy based on formulation of the peptides in biocompatible nanosized lipodisks. Studies using melittin as model peptide show that the proteolytic degradation and hemolytic effect of the peptide are substantially reduced upon loading in lipodisks. Here, we explored the possibilities to increase the specificity and boost the cytotoxicity of melittin to tumor cells by use of targeting lipodisk. We demonstrate that small (~20 nm) EGF-targeted lipodisks can be produced and loaded with substantial amounts of peptide (lipid/peptide molar ratio >7) by means of a simple and straightforward preparation protocol. In vitro cell studies confirm specific binding of the peptide-loaded disks to tumor cells and suggest that cellular internalization of the disks results in a significantly improved cell-killing effect.

  • 12. Ali, M. A. E.
    et al.
    Abdel-Fatah, O. M.
    Janson, Jan-Christer
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Elshafei, A. M.
    Antimicrobial potential of Saccharomyces boulardii extracts and fractions2012In: Journal of Applied Sciences Research, ISSN 1816-157X, Vol. 8, no 8, 4537-4543 p.Article in journal (Refereed)
    Abstract [en]

    Different extracts of viable therapeutic Saccharomyces boulardii cells were evaluated for their antimicrobial activities against Escherichia coli and Candida albicans. Water, methanol, isopropanol, n-butanol and ethanol were used as solvents for extraction. Ethanol-extract exhibited the highest antimicrobial activity towards both strains, followed by water-extract. No antimicrobial activity could be detected on testing methanol-extract towards both strains. Ethanol- and water-extracts, cells remaining after water and ethanol extraction and broth were also tested for their antimicrobial activities against Gram-positive, Gram-negative, non-filamentous and filamentous fungi and showed considerable amounts of antimicrobial activities. Ethanol extracts exhibited the highest antimicrobial activity against all the tested strains, was then fractionated on a Sephadex G-100 column and the obtained fractions were examined using the agar-well diffusion method against Staphylococcus aureus, E.coli, C. albicans and Aspergillus niger. Results obtained indicate the presence of different scattered active fractions with different potencies against the four tested microorganisms. A large scale fermentation process was conducted using a BioFlo benchtop-15L Fermentor/ Bioreactor and the products were evaluated for their antimicrobial activities.

  • 13.
    Almandoz-Gil, Leire
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Welander, Hedvig
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Ihse, Elisabet
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Emami Khoonsari, Payam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Musunuri, Sravani
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lendel, Christofer
    KTH, Royal Institute of Technology, Sweden.
    Sigvardson, Jessica
    BioArctic AB, Sweden.
    Karlsson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences. Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Ingelsson, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Kultima, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Bergström, Joakim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-synuclein through different pathways2017In: Free Radical Biology & Medicine, ISSN 0891-5849, E-ISSN 1873-4596, Vol. 110, 421-431 p.Article in journal (Refereed)
  • 14.
    Almokhtar, Mokhtar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Wikvall, Kjell
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ubhayasekera, S. J. Kumari A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Norlin, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Motor neuron-like NSC-34 cells as a new model for the study of vitamin D metabolism in the brain.2016In: Journal of Steroid Biochemistry and Molecular Biology, ISSN 0960-0760, E-ISSN 1879-1220, Vol. 158, 178-188 p.Article in journal (Refereed)
    Abstract [en]

    Vitamin D-3 is a pro-hormone, which is sequentially activated by 25- and 1 alpha-hydroxylation to form 25-hydroxyvitamin D-3 [25(OH)D-3] and 1 alpha,25-dihydroxyvitamin D-3 [1 alpha,25(OH)2D(3)], respectively. Subsequent inactivation is performed by 24-hydroxylation. These reactions are carried out by a series of CYP450 enzymes. The 25-hydroxylation involves mainly CYP2R1 and CYP27A1, whereas 1 alpha-hydroxylation and 24-hydroxylation are catalyzed by CYP27B1 and CYP24A1, respectively, and are tightly regulated to maintain adequate levels of the active vitamin D hormone, 1 alpha,25(OH)(2)D-3. Altered circulating vitamin D levels, in particular 25(OH)D-3, have been linked to several disorders of the nervous system, e.g., schizophrenia and Parkinson disease. However, little is known about the mechanisms of vitamin D actions in the neurons. In this study, we examined vitamin D metabolism and its regulation in a murine motor neuron-like hybrid cell line, NSC-34. We found that these cells express mRNAs for the four major CYP450 enzymes involved in vitamin D activation and inactivation, and vitamin D receptor (VDR) that mediates vitamin D actions. We also found high levels of CYP24A1-dependent 24,25-dihydroxyvitamin D-3 [24,25(OH)(2)D-3] production, that was inhibited by the well-known CYP enzyme inhibitor ketoconazole and by several inhibitors that are more specific for CYP24A1. Furthermore, CYP24A1 mRNA levels in NSC-34 cells were up-regulated by 1 alpha,25(OH)(2)D-3 and its synthetic analogs, EB1089 and tacalcitol. Our results suggest that NSC-34 cells could be a novel model for the studies of neuronal vitamin D metabolism and its mechanism of actions.

  • 15.
    Andersson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Characterisation of Chromatography Media Aimed for Purification of Biomolecules2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chromatography media (resins) are very important for and widely used by the biopharma industry in large scale production of biopharmaceuticals, e.g. monoclonal antibodies. Today there are several hundred biopharmaceuticals released globally on the healthcare market. This thesis discusses various strategies and methods for the characterisation of chemical and functional stability of chromatography media. In addition, various analytical techniques used in these areas were evaluated and applied. Further, more specific physical and chemical characterisation methods were evaluated and applied to explore different properties of various chromatography media.

    In Papers I-III, established methodologies for performing chemical and functional stability studies were used. Mainly agarose-based chromatography media were investigated. For fast screening of the chemical stability, the total organic carbon analysis technique was evaluated and applied. This technique that measures the carbon leakage from the chromatography media at different conditions, proved to be very suitable and robust. For detection and/or identification of leakage compounds responsible for or for part of the measured carbon leakage, different methods such as (high performance) liquid chromatography and gas chromatography mass spectrometry were used.

    In Papers IV-VII, different properties (i.e. functional performance, ligand content and surface chemistry) were evaluated for different agarose-based chromatography media. Standard chromatographic methods (ion exchange chromatography) and spectroscopic methods (e.g. Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry) were evaluated and applied. Chemometric methods were used for efficient evaluation of data.

    Information of chemical, functional and leakage data of chromatography media are valuable and important for the biopharmaceutical companies to be able to fulfil the regulatory requirements of biopharmaceuticals. In addition, information of various chemical, functional and physical properties of chromatography media is likewise important during development and set up of new biopharmaceutical processes.

    List of papers
    1. The Influence of the Degree of Cross-linking, Type of Ligand and Support on the Chemical Stability of Chromatography Media Intended for protein Purification
    Open this publication in new window or tab >>The Influence of the Degree of Cross-linking, Type of Ligand and Support on the Chemical Stability of Chromatography Media Intended for protein Purification
    1998 (English)In: Process Biochemistry, ISSN 1359-5113, E-ISSN 1873-3298, Vol. 33, no 1, 47-55 p.Article in journal (Refereed) Published
    Abstract [en]

    The release of organic compounds from different liquid chromatography media in static conditions has been analysed with a total organic carbon (TOC) analyser. TOC results show that chemical stability increases with the degree of cross-linking in agarose beaded chromatography media and thus extend the working pH-range of the media. Of the unsubstituted chromatography media investigated, Sepharose® 6B, Sepharose CL-6B, Sepharose 4 Fast Flow, Sepharose 6 Fast Flow and Sepharose High Performance, the latter was the most stable medium. Sepharose High Performance releases only about 0·06% of its total carbon content after 1 week in 0·01 m HCl. Agarose beads are more stable to basic conditions (pH 14) compared with acidic conditions (pH 2). From UV spectroscopic and gel filtration results it was found that all Sepharose media release low amounts of 5-(hydroxymethyl)-2-furaldehyde and agarose fragments in acidic conditions. To investigate the effect of different ligands on chemical stability Q Sepharose 6 Fast Flow, DEAE Sepharose 6 Fast Flow, SP Sepharose 6 Fast Flow, CM Sepharose 6 Fast Flow, Phenyl Sepharose 6 Fast Flow, Octyl Sepharose 4 Fast Flow media were also studied under static conditions. In basic conditions it was found that all these chromatography media release carbon compounds to a higher extent than the unsubstituted Sepharose support. In addition, Hofmann elimination of Q and DEAE groups contributes to the decrease in the carbon content of the corresponding anion exchangers. During exposure to acidic conditions (pH 2) the release of carbon compounds was lower than the release from the support to which the ligands were coupled. The exceptions are Octyl Sepharose 4 Fast Flow and SP Sepharose 6 Fast Flow. In the case of Octyl Sepharose 4 Fast Flow, the ligand did not seem to influence chemical stability, whereas the SP group increases the degradation of the Sepharose support. In the case of SP Sepharose 6 Fast Flow the stability in acidic conditions can be improved by increasing the ionic strength. Anion exchangers based on different support polymers (agarose-, polystyrene-, methacrylate- and polyvinyl-based matrixes) were studied under static conditions. Agarose-based anion exchanger was the most stable in basic conditions (pH 14). In acidic conditions (pH 2) the chemical stability was about the same for many different anion exchangers.

    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234604 (URN)10.1016/S0032-9592(97)00068-X (DOI)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    2. Characterization of the Chemical and Functional Stability of DEAE Sepharose Fast Flow
    Open this publication in new window or tab >>Characterization of the Chemical and Functional Stability of DEAE Sepharose Fast Flow
    1993 (English)In: Process Biochemistry, ISSN 1359-5113, E-ISSN 1873-3298, Vol. 28, no 4, 223-230 p.Article in journal (Refereed) Published
    Abstract [en]

    The release of amines from the ion-exchange groups in DEAE Sepharose® Fast Flow has been studied under static and column conditions. The leakage compounds have been identified and quantified by gas chromatography—mass spectrometry. It was shown that the main leakage product under acidic (pH 1) and basic conditions (pH 14) was N,N,N′,N′-tetraethylethylenediamine. Three other amines were also identified, namely N,N,N′-triethylethylenediamine, diethylaminoethanol and diethylamine. The leakage of amines from DEAE Sepharose Fast Flow treated at pH 1 or 14 for 672 h at 40°C corresponds to a reduction of only 1% of the total ion-exchange capacity.

    The functional stability of DEAE Sepharose Fast Flow was also studied by separation of a protein mixture during repeated cleaning-in-place treatments with 0·10 m HCl or 1·0 m NaOH. The separation behaviour was unaltered after the gel had been treated for a total contact time of 672 h with 0·10 m HCl or 1·0 m NaOH.

    The clearance of ethanol from a DEAE Sepharose Fast Flow column stored in a 20% ethanol aqueous solution was also studied.

    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234606 (URN)10.1016/0032-9592(93)80038-I (DOI)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    3. A Systematic Approach to Screening Ion-Exchange Chromatography Media for Process Development
    Open this publication in new window or tab >>A Systematic Approach to Screening Ion-Exchange Chromatography Media for Process Development
    1996 (English)In: Biopharm, ISSN 1040-8304, Vol. 9, no 8, 42-45 p.Article in journal (Refereed) Published
    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234607 (URN)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    4. Evaluation of Several Anion-exchange Media for process Separations Using a Variety of Proteins and Aromatic Acids
    Open this publication in new window or tab >>Evaluation of Several Anion-exchange Media for process Separations Using a Variety of Proteins and Aromatic Acids
    2001 (English)In: International Journal of Bio-Chromatography, ISSN 1068-0659, Vol. 6, 285-301 p.Article in journal (Refereed) Published
    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234609 (URN)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    5. The multivariate use of vibrational spectroscopy for chemical characterisation of chromatography media
    Open this publication in new window or tab >>The multivariate use of vibrational spectroscopy for chemical characterisation of chromatography media
    2002 (English)In: Vibrational Spectroscopy, ISSN 0924-2031, E-ISSN 1873-3697, Vol. 29, 133-138 p.Article in journal (Refereed) Published
    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234611 (URN)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    6. Surface Chemical Analysis of Carbohydrate Materials Used for Chromatography Media by Time-of-Flight Secondary Ion Mass Spectrometry
    Open this publication in new window or tab >>Surface Chemical Analysis of Carbohydrate Materials Used for Chromatography Media by Time-of-Flight Secondary Ion Mass Spectrometry
    2004 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 76, no 7, 1857-1864 p.Article in journal (Refereed) Published
    Abstract [en]

    The surface chemical structure of two raw materials (agarose and dextran) and four base matrixes used in the manufacture of chromatography media were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results show that the small differences in molecular structure between these materials result in significant differences in the TOF-SIMS spectra and that these differences can be identified and quantified using either of two different approaches. In a novel approach, fragment ion distributions were extracted from the TOF-SIMS spectra for each material, providing an immediate and systematic overview of the spectral features. Difference fragment distributions were used to highlight spectral differences between the materials. The results of the fragment ion distribution analysis, in terms of identification and quantification of spectral variations between different materials, were found to be in agreement with the results from a principal component analysis using the same set of data. Both methods were found capable of (i) distinguishing between agarose and dextran and (ii) detecting and quantifying the degree of cross-linking present in the four base matrix materials. In addition, using a deuterated chemical cross-linker, it was possible to identify spectral features specifically connected to the cross-link molecular structure.

    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234612 (URN)10.1021/ac035457g (DOI)15053644 (PubMedID)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
    7. Chemical characterisation of different separation media based on agarose by static time-of-flight secondary ion mass spectrometry
    Open this publication in new window or tab >>Chemical characterisation of different separation media based on agarose by static time-of-flight secondary ion mass spectrometry
    2004 (English)In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1023, no 1, 49-56 p.Article in journal (Refereed) Published
    Abstract [en]

    In this paper, the novel application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for qualitative and semi-quantitative investigation of the surface chemistry of separation media based on beaded agarose is reported. Five different media were studied: DEAE Sepharose Fast Flow, Q Sepharose Fast Flow, SP Sepharose Fast Flow, Phenyl Sepharose Fast Flow at ligand densities between 7 and 33% (w/w) and the base matrix Sepharose 6 Fast Flow. The obtained TOF-SIMS spectra reveal significant chemical information regarding the ligands (DEAE, Q, SP and Phenyl) which are covalently attached to the agarose-based matrix Sepharose 6 Fast Flow. For the anion-exchange media (DEAE and Q Sepharose Fast Flow), the positive TOF-SIMS spectra yielded several strong characteristic fragment peaks from the amine ligands. Structural information was obtained, e.g. from the peak at m/z 173.20, originating from the ion structure [(C2H5)2NCH2CH2NH(C2H5)2l+, which shows that the ligand in DEAE Sepharose Fast Flow is composed of both tertiary and quaternary amines. The positive spectrum of Phenyl Sepharose Fast Flow contained major fragments both from the base matrix and the ligand. The cation-exchanger (SP Sepharose Fast Flow) gave rise to a positive spectrum resembling that of the base matrix (Sepharose 6 Fast Flow) but with a different intensity pattern of the matrix fragments. In addition, peaks with low intensity at m/z 109.94, 125.94 and 139.95 corresponding to Na2SO2+, Na2SO3+ and Na2SO3CH2+, respectively, were observed. The positive TOF-SIMS spectrum of Sepharose 6 Fast Flow contains a large number of fragments in the mass range up to m/z 200 identified as CxHyOz and CxHy structures. The results clearly show that positive TOF-SIMS spectra of different media based on Sepharose 6 Fast Flow are strongly influenced by the ligand coupled to the matrix. The negative TOF-SIMS spectra contained several ligand-specific, characteristic peaks for the cation-exchanger, having sulphonate as the ion-exchange group. Negative fragments such as S-, SO-, SO2-, SO3-, C2H3SO3-, C3H5SO3- and OC3H5SO3- were observed. Phenyl Sepharose Fast Flow, which has an uncharged group (Phenyl) coupled to the agarose matrix yielded one ligand-related peak corresponding to the C6H5O- fragment. DEAE and Q ligands could only be identified by the appearance of the fragments CN- and CNO- in the negative spectrum. However, a strong peak corresponding to the counter ion (Cl-) was observed. TOF-SIMS analysis can also be used for the investigation of residues from the coupling procedure that bonds the ligands to the matrix. One example is the observation of bromine peaks in the negative spectrum of Q Sepharose Fast Flow. Furthermore, it has also been shown that different ligand concentrations of Phenyl Sepharose Fast Flow can easily be detected by TOF-SIMS analysis. Information regarding the difference between the ligand density on the surface of the beads and in the bulk can also be obtained. However, spectra registered on the outermost surface and on the pore surface (crushed beads) of DEAE Sepharose Fast Flow clearly show that the agarose and the DEAE groups are homogeneously distributed in the beads.

    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-234613 (URN)10.1016/j.chroma.2003.10.008 (DOI)14760849 (PubMedID)
    Available from: 2014-10-23 Created: 2014-10-21 Last updated: 2015-02-03Bibliographically approved
  • 16.
    Andersson, Simon
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Metodutveckling och analys av skumdämpare, ett additiv i vattenburna färgsystem, med vätskekromatografi och masspektrometri2017Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Paints mostly consist of three major components which are binder, pigment/filler andsolvent. Many other components are added in smaller amount and these are calledadditives. One of these additives is defoamers which are added to the paint todecrease foam which can cause defects in the dried paint for example as pores. Thisstudy was about investigating if the defoamers can be identified and quantified withhigh performance liquid chromatography coupled to mass spectrometry. This includessample preparation, chromatographic separation and detector settings. Calibrationcurves where constructed for paints containing different concentrations of defoamerand for a paint with 0% defoamer where different concentration of defoamer whereadded. Standard addition was done for a paint. Matrix effects were investigated bycomparing signal from defoamer in MeOH compared in paint. This study showed thatthe sample preparation of paints should involve dilution in MeOH or water followedby adding of formic acid and centrifugation and filtration to avoid problems in theinstrument. It is possible to identify if a defoamer is present in paint. Quantificationhas not been achieved, due to possible matrix effects and different response whendefoamer is added to the paint before analysis compared to when the defoamer isadded in the manufacturing process.

  • 17.
    Ariöz, Candan
    et al.
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Götzke, Hansjörg
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Lindholm, Ljubica
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Daley, Daniel O.
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Barth, Andreas
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Wieslander, Åke
    The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, Sweden.
    Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes2014In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1838, no 7, 1862-1870 p.Article in journal (Refereed)
    Abstract [en]

    The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellularmembraneswhen overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22 h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE)was detected to be themost affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition.

  • 18.
    Artemenko, Konstantin A
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Mi, Jia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Mass-spectrometry-based characterization of oxidations in proteins2015In: Free radical research, ISSN 1071-5762, Vol. 49, no 5, 477-93 p.Article, review/survey (Refereed)
    Abstract [en]

    Protein modifications such as oxidations have a strong impact on protein function and activity in various organisms. High-resolution mass spectrometric techniques in combination with various sample preparation methodologies allow for the in-detail characterization of protein structures and strongly contribute to a greater understanding of the impact of protein modifications in nature. This paper outlines the general workflows for the characterization of oxidation sites in proteins by mass spectrometry (MS). Different types of oxidations are taken into consideration; both qualitative and quantitative aspects of MS-based approaches are presented with respect to oxidized proteins. Both bottom-up and top-down MS approaches are described and evaluated; a wide range of the particular applications corresponding to these techniques is also presented. Furthermore, the common advantages and downsides of these techniques are assessed. The approaches for enrichment of low-abundance oxidized proteins are extensively presented for different cysteine oxidations and protein carbonylations. A short description about databases and bioinformatic software solutions for oxidative protein prediction, identification, and biological interpretation is also given in this review.

  • 19.
    Artemenko, Konstantin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Horakova, Jana
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Steinberger, Birgit
    Besenfelder, Urban
    Brem, Gottfried
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Mayrhofer, Corina
    A proteomic approach to monitor the dynamic response of the female oviductal epithelial cell surface to male gametes2015In: Journal of Proteomics, ISSN 1874-3919, Vol. 113, 1-14 p.Article in journal (Refereed)
    Abstract [en]

    UNLABELLED: Sophisticated strategies to analyze cell surface proteins are indispensable to study fundamental biological processes, such as the response of cells to environmental changes or cell-cell communication. Herein, we describe a refined mass spectrometry-based approach for the specific characterization and quantitation of cell surface proteins expressed in the female reproductive tract. The strategy is based on in situ biotinylation of rabbit oviducts, affinity enrichment of surface exposed biotin tagged proteins and dimethyl labeling of the obtained tryptic peptides followed by LC-MS/MS analysis. This approach proved to be sensitive enough to analyze small sample amounts (<1mug) and allowed further to trace the dynamic composition of the surface proteome of the oviductal epithelium in response to male gametes. The relative protein expression ratios of 175 proteins were quantified. Thirty-one of them were found to be altered over time, namely immediately, 1h and 2h after insemination compared to the time-matched control groups. Functional analysis demonstrated that structural reorganization of the oviductal epithelial cell surface was involved in the early response of the female organ to semen. In summary, this study outlines a workflow that is capable to monitor alterations in the female oviduct that are related to key reproductive processes in vivo. BIOLOGICAL SIGNIFICANCE: The proper interaction between the female reproductive tract, in particular, the oviduct and the male gametes, is fundamental to fertilization and embryonic development under physiological conditions. Thereby the oviductal epithelial cell surface proteins play an important role. Besides their direct interaction with male gametes, these molecules participate in signal transduction and, thus, are involved in the mandatory cellular response of the oviductal epithelium. In this study we present a refined LC-MS/MS based workflow that is capable to quantitatively analyze the expression of oviductal epithelial cell surface proteins in response to insemination in vivo. A special focus was on the very early interaction between the female organ and the male gametes. At first, this study clearly revealed an immediate response of the surface proteome to semen, which was modulated over time. The described methodology can be applied for studies of further distinct biological events in the oviduct and therefore contribute to a deeper insight into the formation of new life.

  • 20.
    Artemenko, Konstantin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Sui, Ping
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Watanabe, Hiroyuki
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bakalkin, Georgy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lateralized proteome response to the left and right side neuropathic pain in a rat modelManuscript (preprint) (Other academic)
  • 21.
    Asser, Andres
    et al.
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Koks, Sulev
    Univ Tartu, Dept Pathophysiol, Tartu, Estonia..
    Snellman, Anniina
    Univ Turku, Turku PET Ctr, Turku, Finland..
    Haaparanta-Solin, Merja
    Univ Turku, Turku PET Ctr, Turku, Finland..
    Arponen, Eveliina
    Univ Turku, Turku PET Ctr, Turku, Finland..
    Gronroos, Tove
    Univ Turku, Turku PET Ctr, Turku, Finland..
    Nairismagi, Jaak
    Tallinn Univ Technol, Inst Gene Technol, Tallinn, Estonia..
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Soomets, Ursel
    Univ Tartu, Dept Biochem, Tartu, Estonia..
    Piip, Piret
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Eltermaa, Mall
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Sauk, Martin
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Lindmae, Hanna
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Rinne, Juha O.
    Univ Turku, Turku PET Ctr, Turku, Finland.;Turku Univ Hosp, Dept Neurol, Turku, Finland..
    Taba, Pille
    Univ Tartu, Dept Neurol & Neurosurg, Puusepa 8, EE-50409 Tartu, Estonia..
    Increased striatal VMAT2 binding in mice after chronic administration of methcathinone and manganese2016In: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1652, 97-102 p.Article in journal (Refereed)
    Abstract [en]

    Intravenous use of a psychostimulant drug containing methcathinone (ephedrone) and manganese causes an irreversible extrapyramidal syndrome in drug abusers. We aimed to reproduce the syndrome in mice to evaluate dopaminergic damage. C57/B6 mice were intraperitoneally injected once a day with the study drug or saline for a period of 27 weeks. Motor activity was recorded in an automated motility-box. After 13 and 27 weeks of treatment, ex vivo digital autoradiography was performed using [C-11]dihydrotetrabenazine ([C-11]DTBZ). After 27 weeks of treatment [C-11]DTBZ autoradiography demonstrated a significant increase in the striatum to -cerebellum binding ratio compared with saline treated controls. At the same time point, there was no evident change in motor activity. Increased [C-11]DTBZ binding may indicate vesicular monoamine transporter type 2 (VMAT2) function is altered. The lack of extrapyramidal symptoms in animals could be attributed to low dosing regimen or high metabolic rate.

  • 22.
    Awad, Doaa
    et al.
    Department of Biochemistry, Alexandria University, Egypt AND Department of Chemistry, University of Bremen, Germany AND Jacobs University Bremen, Germany.
    Bartok, Melinda
    Department of Chemistry, University of Bremen, Germany AND Jacobs University Bremen, Germany.
    Mostaghimi, Farzin
    Department of Chemistry, University of Bremen, Germany.
    Schrader, Imke
    Department of Chemistry, University of Bremen, Germany.
    Sudumbrekar, Neeti
    Department of Chemistry, University of Bremen, Germany.
    Schaffran, Tanja
    Department of Chemistry, University of Bremen, Germany.
    Jenne, Carsten
    Fachbereich C–Anorganische Chemie, Bergische Universit!t Wuppertal, Germany.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Winterhalter, Mathias
    Jacobs University Bremen, Germany.
    Fritz, Jürgen
    Jacobs University Bremen, Germany.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Gabel, Detlef
    Department of Chemistry, University of Bremen, Germany AND Jacobs University Bremen, Germany.
    Halogenated Dodecaborate Clusters as Agents to Trigger Release of Liposomal Contents2015In: ChemPlusChem, ISSN 2192-6506, Vol. 80, no 4, 656-664 p.Article in journal (Refereed)
    Abstract [en]

    Halogenated dodecaborates, and especially dodecaiodododecaborate(2−), are found to trigger effectively the release of the contents of phospholipid liposomes, including liposomes containing distearoylphosphatidylcholine and cholesterol, which are used clinically in cancer therapy. The basis of the release is studied through differential scanning calorimetry, cryo-transmission electron microscopy, and atomic force microscopy. Upon administration at high concentrations, drastic morphological changes are induced by the dodecaborates. Their possible use in triggered release is suggested.

  • 23.
    Bailly-Chouriberry, Ludovic
    et al.
    Laboratoire des Courses Hippiques (LCH), France.
    Cormant, Florence
    Laboratoire des Courses Hippiques (LCH), France.
    Garcia, Patrice
    Laboratoire des Courses Hippiques (LCH), France.
    Lönnberg, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Szwandt, Simon
    Thermo Fisher Scientific, Hemel Hempstead, UK.
    Bondesson, Ulf
    Dept. of Chemistry, Environment and Feed Hygiene, The National Veterinary Institute (SVA), Uppsala, Sweden.
    Popot, Marie-Agnes
    Laboratoire des Courses Hippiques (LCH), France.
    Bonnaire, Yves
    Laboratoire des Courses Hippiques (LCH), France.
    A new analytical method based on anti-EPO monolith column and LC-FAIMS-MS/MS for the detection of rHuEPOs in horse plasma and urine samples2012In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 137, no 10, 2445-2453 p.Article in journal (Refereed)
    Abstract [en]

    Recombinant human erythropoietin (rHuEPO) is a 30-34 kDa glycoprotein banned by the racing authorities. For some years this molecule has been detected in race horses in USA and in Europe, and even in racing camels. Although direct methods to differentiate horse endogenous EPO and rHuEPO have been developed either by LC-MS/MS or by isoelectric focusing (IEF) with double-blotting, the short confirmation time of such prohibited hormone in plasma remains a problem for horseracing doping control laboratories. In order to improve the rHuEPOs confirmation process in horse plasma or urine in terms of reliability and delay, a small anti-EPO monolith membrane contained in a disposable column (anti-EPO monolith column) has been successfully used and validated (n = 10). This new sample preparation, combined with LC-FAIMS-MS/MS, has been performed on plasma and urine samples collected from one horse which received an Eprex[registered sign] treatment during six consecutive days and a second one with a single injection of Aranesp[registered sign]. This inventive technology allowed the possibility to confirm the presence of rHuEPO within one day with a limit of detection validated for both urine and plasma at 250 pg mL-1 by means of a disposable, ready to use immunoaffinity column. The lower limit of detection (LLOD) obtained for each matrix was 100 pg mL-1. These results provide an important improvement for rHuEPO doping control in horseracing especially the possibility to confirm these banned molecules in both matrices, urine and plasma, with a confidence of two specific target peptides.

  • 24.
    Bakardzhiev, Pavel
    et al.
    Institute of Polymers, Bulgarian Academy of Sciences, 103-A Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
    Momekova, Denitsa
    Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University e Sofia, 2 Dunav St., 1000 Sofia, Bulgaria.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Konstantinov, Spiro
    Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University e Sofia, 2 Dunav St., 1000 Sofia, Bulgaria.
    Rangelov, Stanislav
    Institute of Polymers, Bulgarian Academy of Sciences, 103-A Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
    Novel polyglycidol-lipid conjugates create a stabilizing hydrogen-bonded layer around cholesterol-containing dipalmitoyl phosphatidylcholine liposomes2015In: Journal of Drug Delivery Science and Technology, ISSN 1773-2247, Vol. 29, 90-98 p.Article in journal (Refereed)
    Abstract [en]

    Hybrid liposomes resulting from co-assembly of dipalmitoylphosphatidylcholine and polyglycidol-derivatized lipids were prepared. The latter were composed of a lipid-mimetic residue to which a linear polyglycidol chain (degree of polymerization, DP, in the 23–110 range) was conjugated. Formulations with varying copolymer type and content were prepared by film hydration technique followed by extrusion. The hybrid structures were studied by means of dynamic and electrophoretic light scattering, cryogenic transmission electron microscopy, and fluorescence spectroscopy. Cytotoxicity towards OPM-2 (multiple myeloma) and EJ (human urinary bladder carcinoma) cell lines was assessed as well. Predominantly unilamellar liposomes with mean hydrodynamic diameters in the 113–134 nm range and neutral to slightly negative surface potential were prepared. The integrity of liposomes containing copolymers with DP of the polyglycidol chain 23 and 30 was preserved at copolymer contents up to 10 mol%. Bilayer disks were observed at somewhat lower contents of the copolymers of the highest DP of the polyglycidol chain. The hybrid structures were less leaky than the plain liposomes, which was attributed to formation of a strongly hydrogen-bonded polyglycidol layer around the bilayer membrane. They exhibited low toxicological potential, favorable physicochemical characteristics, and ability to act as containers for sustained release.

  • 25.
    Baumgart, J
    et al.
    Department of Obstetrics and Gynecology, Örebro University Hospital, Sweden.
    Nilsson, K
    Department of Obstetrics and Gynecology, Örebro University Hospital, Sweden.
    Stavreus Evers, Anneli
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Kallak, Theodora Kunovac
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Kushnir, M M
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab. ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab. Department of Pathology, University of Utah School of Medicine, Salt Lake City, USA.
    Sundström Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Obstetrics and Gynaecology.
    Androgen levels during adjuvant endocrine therapy in postmenopausal breast cancer patients2014In: Climacteric, ISSN 1369-7137, E-ISSN 1473-0804, Vol. 17, no 1, 48-54 p.Article in journal (Refereed)
    Abstract [en]

    Objective

    To investigate plasma steroid hormone levels in postmenopausal breast cancer patients with and without adjuvant endocrine therapy and in healthy postmenopausal women.

    Methods

    Steroid hormone levels in postmenopausal breast cancer patients treated with aromatase inhibitors (n = 32) were compared with breast cancer patients treated with tamoxifen (n = 34), breast cancer patients without adjuvant endocrine therapy (n = 15), and healthy postmenopausal women (n = 56). Pregnenolone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, 11-deoxycortisol, cortisol, cortisone, dehydroepiandrosterone (DHEA), androstenedione, total testosterone, dihydrotestosterone, estrone and estradiol were measured using liquid chromatography-tandem mass spectrometry. Sex hormone binding globulin was measured by solid-phase chemiluminescent immunometric assays, and the free androgen index was calculated.

    Results

    Aromatase inhibitor users did not differ in dihydrotestosterone, total testosterone, androstenedione, DHEA, or free androgen index levels from healthy controls or untreated breast cancer patients. The highest total testosterone levels were found in tamoxifen-treated women, who had significantly higher plasma concentrations than both women treated with aromatase inhibitors and breast cancer patients without adjuvant treatment. Concentrations of cortisol and cortisone were significantly greater in aromatase inhibitor users as well as tamoxifen users, in comparison with healthy controls and untreated breast cancer patients. Aromatase inhibitor users had lower estrone and estradiol plasma concentrations than all other groups.

    Conclusion

    Adjuvant treatment with aromatase inhibitors or tamoxifen was associated with increased cortisol and cortisone plasma concentrations as well as decreased estradiol concentrations. Androgen levels were elevated in tamoxifen-treated women but not in aromatase inhibitor users.

  • 26.
    Bello, Gianluca
    et al.
    Institute of Pharmaceutical Science, King’s College London, London, United Kingdom.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Terry, Ann E.
    Rutherford Appleton Laboratory, Harwell, Oxford, United Kingdom.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Lawrence, M. Jayne
    Institute of Pharmaceutical Science, King’s College London, London, United Kingdom.
    Barlow, David J.
    Institute of Pharmaceutical Science, King’s College London, London, United Kingdom.
    Harvey, Richard D
    Institute of Pharmaceutical Science, King’s College London, London, United Kingdom.
    Characterization of the aggregates formed by various bacterial lipopolysaccharides in solution and upon interaction with antimicrobial peptides2015In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 31, no 2, 741-751 p.Article in journal (Refereed)
    Abstract [en]

    The biophysical analysis of the aggregates formed by different chemotypes of bacterial lipopolysaccharides (LPS) before and after challenge by two different anti-endotoxic antimicrobial peptides (LL37 and bovine lactoferricin), was performed in order to determine their effect on the morphology of LPS aggregates. Small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryoTEM) were used to examine the structures formed by both smooth and rough LPS chemotypes and the effect of the peptides, by visualization of the aggregates and analysis of the scattering data by means of both mathematical approximations and defined models. The data showed that the structure of LPS determines the morphology of the aggregates and inuences the binding activity of both peptides. The morphologies of the worm-like micellar aggregates formed by the smooth LPS were relatively unaltered by the presence of the peptides due to their pre-existing high degree of positive curvature being little affected by their association with either peptide. On the other hand the aggregates formed by the rough LPS chemotypes, showed marked morphological changes from lamellar structures to ordered micellar networks, induced by the increase in positive curvature engendered upon association with the peptides. The combined use of cryoTEM and SANS proved to be a very useful tool for studying the aggregation properties of LPS in solution at biologically relevant concentrations.

  • 27.
    Berglund, Erik
    et al.
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Ubhayasekera, Sarojini J.K.A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Karlsson, Fredrik
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Akcakaya, Pinar
    Department of Oncology-Pathology, Cancer Center Karolinska Institutet.
    Aluthgedara, Warunika
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ahlen, Jan
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Fröbom, Robin
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet.
    Nilsson, Inga-Lena
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Lui, Weng-Onn
    Department of Oncology-Pathology, Cancer Center Karolinska Institutet.
    Larsson, Catharina
    Department of Oncology-Pathology, Cancer Center Karolinska Institutet.
    Zedenius, Jan
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bränström, Robert
    Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet AND Department of Breast and Endocrine Surgery, Karolinska University Hospital.
    Intracellular concentration of the tyrosine kinase inhibitor imatinib in gastrointestinal stromal tumor cells.2014In: Anti-Cancer Drugs, ISSN 0959-4973, E-ISSN 1473-5741, Vol. 25, no 4, 415-22 p.Article in journal (Refereed)
    Abstract [en]

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract. In most GISTs, the underlying mechanism is a gain-of-function mutation in the KIT or the PDGFRA gene. Imatinib is a tyrosine kinase inhibitor that specifically blocks the intracellular ATP-binding sites of these receptors. A correlation exists between plasma levels of imatinib and progression-free survival, but it is not known whether the plasma concentration correlates with the intracellular drug concentration. We determined intracellular imatinib levels in two GIST cell lines: the imatinib-sensitive GIST882 and the imatinib-resistant GIST48. After exposing the GIST cells to imatinib, the intracellular concentrations were evaluated using LC-MS (TOF). The concentration of imatinib in clinical samples from three patients was also determined to assess the validity and reliability of the method in the clinical setting. Determination of imatinib uptake fits within detection levels and values are highly reproducible. The GIST48 cells showed significantly lower imatinib uptake compared with GIST882 in therapeutic doses, indicating a possible difference in uptake mechanisms. Furthermore, imatinib accumulated in the tumor tissues and showed intratumoral regional differences. These data show, for the first time, a feasible and reproducible technique to measure intracellular imatinib levels in experimental and clinical settings. The difference in the intracellular imatinib concentration between the cell lines and clinical samples indicates that drug transporters may contribute toward resistance mechanisms in GIST cells. This highlights the importance of further clinical studies to quantify drug transporter expression and measure intracellular imatinib levels in GIST patients.

  • 28.
    Bergman, Hilde-Marléne
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Applications of nanospray desorption electrospray ionization mass spectrome: Analysis of lipids and metabolites in brain tissue sections and single cells2016Licentiate thesis, comprehensive summary (Other academic)
    List of papers
    1. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization
    Open this publication in new window or tab >>Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization
    2016 (English)In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 141, no 12, 3686-3695 p.Article in journal (Refereed) Published
    Abstract [en]

    Small molecule neurotransmitters are essential for the function of the nervous system, and neurotransmitter imbalances are often connected to neurological disorders. The ability to quantify such imbalances is important to provide insights into the biochemical mechanisms underlying the disorder. This proof-of-principle study presents online quantification of small molecule neurotransmitters, specifically acetylcholine, γ-aminobutyric acid (GABA) and glutamate, in rat brain tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging. By incorporating deuterated internal standards in the nano-DESI solvent we show identification, accurate mapping, and quantification of these small neurotransmitters in rat brain tissue without introducing any additional sample preparation steps. We find that GABA is about twice as abundant in the medial septum-diagonal band complex (MSDB) as in the cortex, while glutamate is about twice as abundant in the cortex as compared to the MSDB. The study shows that nano-DESI is well suited for imaging of small molecule neurotransmitters in health and disease.

    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-281314 (URN)10.1039/c5an02620b (DOI)000378942900021 ()26859000 (PubMedID)
    Funder
    Swedish Research Council, VR 621-2013-4231Swedish Foundation for Strategic Research , SSF ICA-6
    Available from: 2016-03-22 Created: 2016-03-22 Last updated: 2016-11-28Bibliographically approved
    2. Detection of endogenous lipids and metabolites in single cells using nano-DESI
    Open this publication in new window or tab >>Detection of endogenous lipids and metabolites in single cells using nano-DESI
    (English)Manuscript (preprint) (Other academic)
    National Category
    Analytical Chemistry
    Identifiers
    urn:nbn:se:uu:diva-291338 (URN)
    Available from: 2016-05-01 Created: 2016-05-01 Last updated: 2016-11-28
  • 29.
    Bergman, Hilde-Marléne
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Lundin, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Andersson, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lanekoff, Ingela
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization2016In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 141, no 12, 3686-3695 p.Article in journal (Refereed)
    Abstract [en]

    Small molecule neurotransmitters are essential for the function of the nervous system, and neurotransmitter imbalances are often connected to neurological disorders. The ability to quantify such imbalances is important to provide insights into the biochemical mechanisms underlying the disorder. This proof-of-principle study presents online quantification of small molecule neurotransmitters, specifically acetylcholine, γ-aminobutyric acid (GABA) and glutamate, in rat brain tissue sections using nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging. By incorporating deuterated internal standards in the nano-DESI solvent we show identification, accurate mapping, and quantification of these small neurotransmitters in rat brain tissue without introducing any additional sample preparation steps. We find that GABA is about twice as abundant in the medial septum-diagonal band complex (MSDB) as in the cortex, while glutamate is about twice as abundant in the cortex as compared to the MSDB. The study shows that nano-DESI is well suited for imaging of small molecule neurotransmitters in health and disease.

  • 30.
    Bergman, Nina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ingvar Eidhammer, Harald Barsnes, Geir Egil Eide, and Lennart Martens:: Computational and statistical methods for protein quantification by mass spectrometry2014In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 406, no 6, 1575-1576 p.Article, book review (Refereed)
  • 31.
    Bergman, Nina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Recent developments in proteomic methods and disease biomarkers2014In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 139, 3836-3851 p.Article in journal (Refereed)
    Abstract [en]

    Proteomic methodologies for identification and analysis of biomarkers have gained more attention during recent years and have evolved rapidly. Identification and detection of disease biomarkers are important to foresee outbreaks of certain diseases thereby avoiding surgery and other invasive and expensive medical treatments for patients. Thus, more research into discovering new biomarkers and new methods for faster and more accurate detection is needed. It is often difficult to detect and measure biomarkers because of their low concentrations and the complexity of their respective matrices. Therefore it is hard to find and validate methods for accurate screening methods suitable for clinical use. The most recent developments during the last three years and also some historical considerations of proteomic methodologies for identification and validation of disease biomarkers are presented in this review.

  • 32.
    Bergman, Nina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Shevchenko, Denys
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry2014In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 406, no 1, 49-61 p.Article, review/survey (Refereed)
    Abstract [en]

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  • 33.
    Bergman, Nina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Thapper, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Styring, Stenbjorn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Shevchenko, Denys
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Quantitative determination of the Ru(bpy)(3)(2+) cation in photochemical reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry2014In: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 6, no 21, 8513-8518 p.Article in journal (Refereed)
    Abstract [en]

    The coordination compound of Ru(II) with three 2,2'-bipyridine ligands possesses a potent photosensitization capacity for electron- and energy-transfer processes. In combination with salts of peroxydisulfate acid as sacrificial electron acceptors, Ru(bpy)(3)(2+) is widely used for photocatalytic oxidative transformations in organic synthesis and water splitting. The drawback of this system is that bipyridine degrades under the resulting strongly oxidative conditions, the concentration of Ru(bpy)(3)(2+) diminishes, and the photocatalytic reaction eventually stops. A commonly employed assay for the determination of Ru(bpy)(3)(2+), UV-Vis spectroscopy, has low selectivity and does not distinguish between the intact complex and its decayed forms. Here, we report a matrix assisted laser desorption/ionisation mass spectrometric method for the quantitative analysis of Ru(bpy)(3)(2+) in photochemical reaction mixtures. The developed method was successfully used for the determination of intact Ru(bpy)(3)(2+) during the course of the water photooxidation reaction. The significant difference between the results of MALDI MS and UV-Vis analyses was observed.

  • 34.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Proteomics to Understand the Degenerative Matter2014In: Free Radical Biology & Medicine, ISSN 0891-5849, E-ISSN 1873-4596, Vol. 75, S10-S10 p.Article in journal (Other academic)
  • 35.
    Bergquist, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Baykut, Gökhan
    Bruker Daltonik GmbH, 28359 Bremen, Germany.
    Bergquist, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Witt, Matthias
    Bruker Daltonik GmbH, 28359 Bremen, Germany.
    Mayer, Franz-Josef
    Bruker Daltonik GmbH, 28359 Bremen, Germany.
    Baykut, Doan
    Institute of Biophysics, University of Frankfurt, 60438 Frankfurt/M, Germany.
    Human Myocardial Protein Pattern Reveals Cardiac Diseases2012In: International Journal of Proteomics, ISSN 2090-2174, Vol. 2012, 342659- p.Article in journal (Refereed)
    Abstract [en]

    Proteomic profiles of myocardial tissue in two different etiologies of heart failure were investigated using high performance liquid chromatography (HPLC)/Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Right atrial appendages from 10 patients with hemodynamically significant isolated aortic valve disease and from 10 patients with isolated symptomatic coronary heart disease were collected during elective cardiac surgery. As presented in an earlier study by our group (Baykut et al., 2006), both disease forms showed clearly different pattern distribution characteristics. Interesting enough, the classification patterns could be used for correctly sorting unknown test samples in their correct categories. However, in order to fully exploit and also validate these findings there is a definite need for unambiguous identification of the differences between different etiologies at molecular level. In this study, samples representative for the aortic valve disease and coronary heart disease were prepared, tryptically digested, and analyzed using an FT-ICR MS that allowed collision-induced dissociation (CID) of selected classifier masses. By using the fragment spectra, proteins were identified by database searches. For comparison and further validation, classifier masses were also fragmented and analyzed using HPLC-/Matrix-assisted laser desorption ionization (MALDI) time-offlight/time-of-flight (TOF/TOF) mass spectrometry. Desmin and lumican precursor were examples of proteins found in aortic samples at higher abundances than in coronary samples. Similarly, adenylate kinase isoenzyme was found in coronary samples at a higher abundance. The described methodology could also be feasible in search for specific biomarkers in plasma or serum for diagnostic purposes.

  • 36.
    Bergsaker, H.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;KTH Royal Inst Technol, Sch Elect Engn, Dept Fus Plasma Phys, SE-10405 Stockholm, Sweden..
    Bykov, I.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;KTH Royal Inst Technol, Sch Elect Engn, Dept Fus Plasma Phys, SE-10405 Stockholm, Sweden..
    Zhou, Y.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;KTH Royal Inst Technol, Sch Elect Engn, Dept Fus Plasma Phys, SE-10405 Stockholm, Sweden..
    Petersson, P.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;KTH Royal Inst Technol, Sch Elect Engn, Dept Fus Plasma Phys, SE-10405 Stockholm, Sweden..
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandem Laboratory. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Likonen, J.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland..
    Pettersson, Jean
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Koivuranta, S.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland..
    Widdowson, A. M.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Deep deuterium retention and Be/W mixing at tungsten coated surfaces in the JET divertor2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, 014061Article in journal (Refereed)
    Abstract [en]

    Surface samples from a full poloidal set of divertor tiles exposed in JET through operations 2010-2012 with ITER-like wall have been investigated using SEM, SIMS, ICP-AES analysis and micro beam nuclear reaction analysis (mu-NRA). Deposition of Be and retention of D is microscopically inhomogeneous. With careful overlaying of mu-NRA elemental maps with SEM images, it is possible to separate surface roughness effects from depth profiles at microscopically flat surface regions, without pits. With (He-3, p) mu-NRA at 3-5 MeV beam energy the accessible depth for D analysis in W is about 9 mu m, sufficient to access the W/Mo and Mo/W interfaces in the coatings and beyond, while for Be in W it is about 6 mu m. In these conditions, at all plasma wetted surfaces, D was found throughout the whole accessible depth at concentrations in the range 0.2-0.7 at% in W. Deuterium was found to be preferentially trapped at the W/Mo and Mo/W interfaces. Comparison is made with SIMS profiling, which also shows significant D trapping at the W/Mo interface. Mixing of Be and W occurs mainly in deposited layers.

  • 37.
    Bergström, L. Magnus
    et al.
    Department of Chemistry, Surface, and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
    Skoglund, Sara
    Department of Chemistry, Surface, and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Grillo, Isabelle
    Institut Laue Langevin, DS/LSS, 6 rue Jules Horowitz, BP156, 38042 Grenoble Cedex 9, France.
    Self-Assembly in Mixtures of an Anionic and a Cationic Surfactant: A Comparison between Small-Angle Neutron Scattering and Cryo-Transmission Electron Microscopy2013In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 29, no 38, 11834-11848 p.Article in journal (Refereed)
    Abstract [en]

    The self-assembly in SOS-rich mixtures of the anionic surfactant sodium octyl sulfate (SOS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) has been investigated with the complementary techniques small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). Both techniques confirm the simultaneous presence of open and closed bilayer structures in highly diluted samples as well as the existence of small globular and large elongated micelles at higher concentrations. However, the two techniques sometimes differ with respect to which type of aggregates is present in a particular sample. In particular, globular or wormlike micelles are sometimes observed with cryo-TEM in the vicinity of the micelle-to-bilayer transition, although only bilayers are present according to SANS and the samples appear bluish to the eye. A similar discrepancy has previously been reported but could not be satisfactorily rationalized. On the basis of our comparison between in situ (SANS) and ex situ (cryo-TEM) experimental techniques, we suggest that this discrepancy appears mainly as a result of the non-negligible amount of surfactant adsorbed at interfaces of the thin sample film created during the cryo-TEM specimen preparation. Moreover, from our detailed SANS data analysis, we are able to observe the unusually high amount of free surfactant monomers present in SOS-rich mixtures of SOS and CTAB, and the experimental results give excellent agreement with model calculations based on the Poisson?Boltzmann mean field theory. Our careful comparison between model calculations and experiments has enabled us to rationalize the dramatic microstructural transformations frequently observed upon simply diluting mixtures of an anionic and a cationic surfactant.

  • 38.
    Bergström, L. Magnus
    et al.
    School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Sweden.
    Skoglund, Sara
    School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology, Sweden.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Grillo, Isabelle
    Institut Laue Langevin, DS/LSS, 6 rue Jules Horowitz, B.P. 156, 38042 Grenoble Cedex 9, France.
    Spontaneous Transformations between Surfactant Bilayers of Different Topologies Observed in Mixtures of Sodium Octyl Sulfate and Hexadecyltrimethylammonium Bromide2014In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, no 14, 3928-3938 p.Article in journal (Refereed)
    Abstract [en]

    The influence of adding salt on the self-assembly in sodium octyl sulfate (SOS)-rich mixtures of the anionic surfactant SOS and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been investigated with the two complementary techniques, small-angle neutron scattering (SANS) and cryo-transmission electron microscopy. We are able to conclude that addition of a substantial amount of inert salt, NaBr, mainly has three effects on the structural behaviors: (i) the micelles become much larger at the transition from micelles to bilayers, (ii) the fraction of bilayer disks increases at the expense of vesicles, and (iii) bilayer aggregates perforated with holes are formed in the most diluted samples. A novel form factor valid for perforated bilayer vesicles and disks is introduced for the first time and, as a result, we are able to directly observe the presence of perforated bilayers by means of fitting SANS data with an appropriate model. Moreover, we are able to conclude that the morphology of bilayer aggregates changes according to the following sequence of different bilayer topologies, vesicles ? disks ? perforated bilayers, as the electrolyte concentration is increased and surfactant mole fraction in the bilayer aggregates approaches equimolarity. We are able to rationalize this sequence of transitions as a result of a monotonous increase of the bilayer saddle-splay constant (k?cbi) with decreasing influence from electrostatics, in agreement with theoretical predictions as deduced from the Poisson?Boltzmann theory.

  • 39.
    Bergström Lind, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Artemenko, Konstantin A
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Elfineh, Lioudmila
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Zhao, Yanhong
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pettersson, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The phosphoproteome of the adenovirus type 2 virion2012In: Virology, ISSN 0042-6822, E-ISSN 1096-0341, Vol. 433, no 1, 253-261 p.Article in journal (Refereed)
    Abstract [en]

    We have used a proteomics approach to identify sites of phosphorylation in the structural proteins of the Adenovirus type 2 particle. This protein modification might play an important role during infection. Peptides from highly purified virus were enriched for phosphorylations and analyzed by liquid chromatography-high-resolving mass spectrometry. Phosphorylations were identified in 11 structural peptides and 29 non-redundant phosphorylation sites were unambiguously assigned to specific amino acid. An unexpected result was the finding of phosphotyrosine in two of the viral polypeptides. The most highly phosphorylated protein was pIIIa with 12 identified phosphorylation sites. An identified preference for proline or leucine residue flanking the phosphorylation sites downstream suggests that cellular kinases are involved in many of the phosphorylations. Structural modeling showed that one site in the hexon is located on the outer side of the virus and could be of importance for the virus when attaching and entering cells.

  • 40.
    Bergström Lind, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    Artemenko, Konstantin A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Pettersson, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    A strategy for identification of protein tyrosine phosphorylation2012In: Methods, ISSN 1046-2023, E-ISSN 1095-9130, Vol. 56, no 2, 275-283 p.Article in journal (Refereed)
    Abstract [en]

    To develop methods for studying phosphorylation of protein tyrosine residues is an important task since this protein modification regulates many cellular functions and often is involved in oncogenesis. An optimal protocol includes enrichment of tyrosine phosphorylated (pTyr) peptides or proteins, followed by a high resolving analytical method for identification of the enriched components. In this Methods paper, we describe a working strategy on how immunoaffinity enrichments, using anti-pTyr antibodies, combined with mass spectrometric (MS) analysis can be used to study the pTyr proteome. We describe in detail how our procedure was used to characterize the pTyr proteome of K562 leukemia cells. Important questions concerning the use of different anti-pTyr antibodies, enrichments performed at the peptide and/or the protein level, pooling of enrichments and requirements for the MS characterization are discussed.

  • 41. Bergvall, Ulrika A.
    et al.
    Co, Michelle
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Bergstrom, Roger
    Sjöberg, Per J. R.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Waldebäck, Monica
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Turner, Charlotta
    Anti-browsing effects of birch bark extract on fallow deer2013In: European Journal of Forest Research, ISSN 1612-4669, E-ISSN 1612-4677, Vol. 132, no 5-6, 717-725 p.Article in journal (Refereed)
    Abstract [en]

    A major problem within forest industry is unwanted browsing on seedlings from mammalian herbivores. The aim of this study was to evaluate the effects of birch bark extracts as repellents towards fallow deer. Birch bark was extracted in a conventional way with ethanol as solvent at ambient temperature and with a new method, liquid CO2 extraction. An analysis of the ethanol-extracted birch bark showed that it contained large amounts of terpenoids, of which the most abundant was betulin. In seven different treatment trials, we used 15 individually handled fallow deer. To investigate the binary taste preferences, birch bark extract was added to food and presented in two bowls in typical two-choice tests. We found that the amount of a food type consumed during a trial and the number of shifts between food bowls were dependent on the amount of the birch extract the food contained. Concentrations of above 1 % by dry weight of birch extract acted as a repellent. In addition, such concentrations produced shorter feeding bouts by a greater willingness to change bowls. Therefore, our conclusion is that birch bark extract acts as a repellent towards fallow deer and is therefore likely to act as a repellent against other deer species. In addition, we show that birch bark extract produced by the new and more environmentally sustainable method employing liquid CO2 mixed with ethanol has the same repellent effect as the traditional ethanol extraction.

  • 42.
    Berndtson, Emma
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Qualitative analysis of LGD-4033 and its metabolites in equine plasma using UHPLC-MS(MS) for doping control purposes2017Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A new class of drugs has been developed for treatment of muscle and bone mass wasting diseases called non-steroidal selective androgen receptor modulators (SARMs). Because of their positive androgenic effects such as muscle gain, they are desirable as performance enhancers.

    One of those substances is LGD-4033 (4-[(2R)-2-[(1R)-2,2,2-trifluoro-1-hydroxyethyl]pyrrolidin-1-yl]-2-(trifluoromethyl)- benzonitrile). It has been detected in human samples in routine doping control and another SARM has been detected in an equine blood sample in routine doping control. It is therefore indicated that SARMs need to be screened for in routine testing in equestrian sport.

    The aim of this project was to identify what metabolites were found in equine plasma after an intra venous administration of LGD-4033 using UHPLC coupled with QToF-MS and determine whether the parent compound or any of its metabolites were most suitable for doping control.

    With the sample preparation method protein precipitation, six possible metabolites were identified in samples from three horses. Two of the metabolites were identified as phase I-metabolites (monohydroxylated and dihydroxylated). Four of the metabolites were identified as phase II-metabolites, where glucuronidation had occurred.

    The most suitable species for doping control were determined based on a semi- quantification and were M1a, M2 and M3a. 

  • 43.
    Berrier, Audrey
    et al.
    Universität Stuttgart, Physikalisches Institut, Germany.
    Schaafsma, Martijn C.
    FOM Institute AMOLF, Centre for Nanophotonics, c/o Philips Research Laboratories, Eindhoven, Netherlands.
    Nonglaton, Guillaume
    CEA Leti, MINATEC Campus, Department of microtechnologies for Biology and Healthcare, France.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Rivas, Jaime Gómez
    FOM Institute AMOLF, Centre for Nanophotonics, c/o Philips Research Laboratories AND COBRA Research Institute, Eindhoven University of Technology, Netherlands .
    Selective detection of bacterial layers with terahertz plasmonic antennas2012In: Biomedical Optics Express, ISSN 2156-7085, Vol. 3, no 11, 2937-2949 p.Article in journal (Refereed)
    Abstract [en]

    Current detection and identification of micro-organisms is based on either rather unspecific rapid microscopy or on more accurate complex, time-consuming procedures. In a medical context, the determination of the bacteria Gram type is of significant interest. The diagnostic of microbial infection often requires the identification of the microbiological agent responsible for the infection, or at least the identification of its family (Gram type), in a matter of minutes. In this work, we propose to use terahertz frequency range antennas for the enhanced selective detection of bacteria types. Several microorganisms are investigated by terahertz time-domain spectroscopy: a fast, contactless and damage-free investigation method to gain information on the presence and the nature of the microorganisms. We demonstrate that plasmonic antennas enhance the detection sensitivity for bacterial layers and allow the selective recognition of the Gram type of the bacteria.

  • 44.
    Bertilsson, Sarah
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Glycanmapping of glycoproteins with UPLC-FLR-MALDI/TOF-MS2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 45.
    Bivehed, Erik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Strömvall, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Bakalkin, Georgy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Andersson, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry2017In: Peptides, ISSN 0196-9781, E-ISSN 1873-5169, Vol. 87, 20-27 p.Article in journal (Refereed)
    Abstract [en]

    Brain region-specific expression of proteolytic enzymes can control the biological activity of endogenous neuropeptides and has recently been targeted for the development of novel drugs, for neuropathic pain, cancer, and Parkinson's disease. Rapid and sensitive analytical methods to profile modulators of enzymatic activity are important for finding effective inhibitors with high therapeutic value. Combination of in situ enzyme histochemistry with MALDI imaging mass spectrometry allowed developing a highly sensitive method for analysis of brain-area specific neuropeptide conversion of synthetic and endogenous neuropeptides, and for selection of peptidase inhibitors that differentially target conversion enzymes at specific anatomical sites. Conversion and degradation products of Dynorphin B as model neuropeptide and effects of peptidase inhibitors applied to native brain tissue sections were analyzed at different brain locations. Synthetic dynorphin B (2 pmol) was found to be converted to the N-terminal fragments on brain sections whereas fewer C-terminal fragments were detected. N-ethylmaleimide (NEM), a non-selective inhibitor of cysteine peptidases, almost completely blocked the conversion of dynorphin B to dynorphin B(1-6; Leu-Enk-Arg), (1-9), (2-13), and (7-13). Proteinase inhibitor cocktail, and also incubation with acetic acid displayed similar results. Bioconversion of synthetic dynorphin B was region-specific producing dynorphin B(1-7) in the cortex and dynorphin B (2-13) in the striatum. Enzyme inhibitors showed region-and enzyme-specific inhibition of dynorphin bioconversion. Both phosphoramidon (inhibitor of the known dynorphin converting enzyme neprilysin) and opiorphin (inhibitor of neprilysin and aminopeptidase N) blocked cortical bioconversion to dynorphin B(1-7), wheras only opiorphin blocked striatal bioconversion to dynorphin B(2-13). This method may impact the development of novel therapies with aim to strengthen the effects of endogenous neuropeptides under pathological conditions such as chronic pain. Combining histochemistry and MALDI imaging MS is a powerful and sensitive tool for the study of inhibition of enzyme activity directly in native tissue sections. (C) 2016 The Authors. Published by Elsevier Inc.

  • 46.
    Blom, Magnus
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Norrehed, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Andersson, Claes-Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Light, Mark E.
    Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Grennberg, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Synthesis and Properties of Bis-Porphyrin Molecular Tweezers: Effects of Spacer Flexibility on Binding and Supramolecular Chirogenesis2016In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 21, no 1Article in journal (Refereed)
    Abstract [en]

    Abstract: Ditopic binding of various dinitrogen compounds to three bisporphyrin molecular tweezers with spacers of varying conformational rigidity, incorporating the planar ene-diyne (1), the helical stiff stilbene (2), or the semirigid glycoluril motif fused to  the porphyrins (3) are compared. Binding constants Ka = 10^4 to 10^6 M^-1 reveal subtle  differences between these tweezers, that are discussed in terms of porphyrin dislocation  modes. Exciton coupled circular dichroism (ECCD) of complexes with chiral dinitrogen  guests provides experimental evidence for the conformational properties of the tweezers. The results are further supported and rationalized by conformational analysis.

  • 47.
    Bodvik, Rasmus
    et al.
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, Sweden.
    Karlson, Lief
    Akzo Nobel Functional Chemicals AB, Sweden.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Thormann, Esben
    KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, Sweden.
    Claesson, Per Martin
    FRIAS, School of Soft Matter Research, University of Freiburg, Germany AND KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, Sweden.
    Aggregation of modified celluloses in aqueous solution: transition from methylcellulose to hydroxypropylmethylcellulose solution properties induced by a low molecular weight oxyethylene additive2012In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, no 38, 13562-13569 p.Article in journal (Refereed)
    Abstract [en]

    Temperature effects on viscosity and aggregation behaviour of aqueous solutions of three different cellulose ethers: methylcellulose (MC), hydroxypropylmethylcellulose (HPMC) and ethyl(hydroxyethyl)cellulose (EHEC), were investigated using viscosity and dynamic light scattering measurements as well as Cryo-TEM. In all cases increasing temperature reduces the solvent quality of water, which induces aggregation. It was found that the aggregation rate followed the order EHEC > HPMC > MC, suggesting that cellulose ethers containing some bulky and partly hydrophilic substituents assemble into large aggregates more readly than methylcellulose. This finding is discussed in terms of the organization of the structures formed by the different cellulose ethers. The temperature-dependent association behavior of cellulose ethers was also investigated in a novel way by adding diethyleneglycolmonobutylether (BDG) to methylcellulose aqueous solutions. When the concentration of BDG was at and above 5 wt%, methylcellulose adopted HPMC-like solution behaviour. In particular, a transition temperature where the viscosity was decreasing, prior to increasing at higher temperatures, appeared and the aggregation rate increased. This observation is rationalized by the ability of the amphiphilic BDG to accumulate at non-polar interfaces, and thus also to associate with hydrophobic regions of methylcellulose. In effect BDG is suggested to act as a physisorbed hydrophilic and bulky substituent inducing similar constraints on aggregation as the chemically attached hydroxypropyl groups in HPMC and oligo(ethyleneoxide) chains in EHEC.

  • 48. Boge, Lucas
    et al.
    Bysell, Helena
    Ringstad, Lovisa
    Wennman, David
    Umerska, Anita
    Cassisa, Viviane
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Joly-Guillou, Marie-Laure
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Andersson, Martin
    Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect2016In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 17, 4217-4228 p.Article in journal (Refereed)
    Abstract [en]

    The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, zeta-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded with peptide LL-37 displayed a loss in its broad-spectrum bactericidal properties. AMP-loaded hexosomes showed a reduction in antimicrobial activity.

  • 49. Boge, Lukas
    et al.
    Umerska, Anita
    Matougui, Nada
    Bysell, Helena
    Ringstad, Lovisa
    Davoudi, Mina
    Eriksson, Jonny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Edwards, Katarina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Andersson, Martin
    Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability.2017In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 526, no 1-2, 400-412 p.Article in journal (Refereed)
    Abstract [en]

    Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements. AMPs impact on the cubosome structure was investigated using small angle x-ray scattering and cryogenic transmission electron microscopy. The antimicrobial effect of the AMP loaded cubosomes was studied in vitro by minimum inhibitory concentration and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay. Different association efficacy onto the cubosomes was observed among the AMPs, with LL-37 showing greatest association (>60%). AP114 loaded cubosomes displayed a preserved antimicrobial effect, whereas for LL-37 the broad spectrum bacterial killing was reduced to only comprise Gram-negative bacteria. Interestingly, DPK-060 loaded cubosomes showed a slight enhanced effect against S. aureus and E. coli strains. Moreover, the cubosomes were found to protect LL-37 from proteolytic degradation, resulting in a significantly better bactericidal effect after being subjected to elastase, compared to unformulated peptide.

  • 50. Bonnet, Cecilia
    et al.
    Rusz, Jan
    Megrelishvili, Marika
    Sieger, Tomas
    Matouskova, Olga
    Okujava, Michael
    Brozova, Hana
    Nikolai, Tomas
    Hanuska, Jaromir
    Kapianidze, Mariam
    Mikeladze, Nina
    Botchorishvili, Nazi
    Khatiashvili, Irine
    Janelidze, Marina
    Serranova, Tereza
    Fiala, Ondrej
    Roth, Jan
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Jech, Robert
    Rivaud-Pechoux, Sophie
    Gaymard, Bertrand
    Ruzicka, Evzen
    Eye Movements in Ephedrone-Induced Parkinsonism2014In: PLoS ONE, ISSN 1932-6203, Vol. 9, no 8, e104784- p.Article in journal (Refereed)
    Abstract [en]

    Patients with ephedrone parkinsonism (EP) show a complex, rapidly progressive, irreversible, and levodopa non-responsive parkinsonian and dystonic syndrome due to manganese intoxication. Eye movements may help to differentiate parkinsonian syndromes providing insights into which brain networks are affected in the underlying disease, but they have never been systematically studied in EP. Horizontal and vertical eye movements were recorded in 28 EP and compared to 21 Parkinson's disease (PD) patients, and 27 age- and gender-matched healthy subjects using standardized oculomotor tasks with infrared videooculography. EP patients showed slow and hypometric horizontal saccades, an increased occurrence of square wave jerks, long latencies of vertical antisaccades, a high error rate in the horizontal antisaccade task, and made more errors than controls when pro-and antisaccades were mixed. Based on oculomotor performance, a direct differentiation between EP and PD was possible only by the velocity of horizontal saccades. All remaining metrics were similar between both patient groups. EP patients present extensive oculomotor disturbances probably due to manganese-induced damage to the basal ganglia, reflecting their role in oculomotor system.

1234567 1 - 50 of 321
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf