Myalgic encephalitis/chronic fatigue syndrome (ME/CFS) is a severe systemic disorder characterized by neurological, gastrointestinal, inflammatory symptoms and fatigue. Disregulation in tryptophan (TRP) metabolism and excessive kynurenine pathway activation may cause these symptoms. Thus, this thesis investigates TRP in ME/CFS. TRP, a key amino acid, regulates nervous system, immune system, endocrine system, and energy metabolism. The main pathway of TRP metabolism is kynurenine, with a minor percentage shuttled towards serotonin biosynthesis, a brain-essential neurotransmitter. Kynurenine metabolism generates kynurenic acid (neuroprotective) and quinolinic acid (neurotoxic).
Our current knowledge of TRP metabolism in ME/CFS is insufficient. Few studies have quantified TRP in ME/CFS, and even fewer have employed high-resolution mass spectrometry, essential for accurate measurements and comprehensive metabolomics. Additionally, many studies disregarded factors like age and sex, which influence TRP metabolite levels. Lastly, preclinical research on the neuroprotective effects of KYN as a potential treatment is notably lacking
To address these research questions, we developed an accurate and comprehensive analytical method using liquid chromatography coupled with high-resolution mass spectrometry. This method quantifies TRP and its metabolites, along with the vitamins B2 and B6, essential for the enzymes in this pathway. Additionally, we measured the oxidative marker hypoxanthine and the amino acids tyrosine and phenylalanine, which compete with TRP to cross the blood-brain barrier, and limit its availability in the brain. We then employed the, TRP method and untargeted metabolomics, to compare the metabolic profiles of ME/CFS patients with those of healthy individuals, considering age and sex. Moreover, the effects of the menstrual cycle on TRP levels were examined by correlating 11 steroids with TRP metabolites. Additionally, the tissue distribution of kynurenine was investigated following both acute and chronic administration in a preclinical model.
The untargeted study found alterations in the vitamin B3, arginine-proline, aspartate-asparagine, L-Adrenaline and S-Adenosyl-L-homocysteine pathways . While, the targeted approach revealed decreased levels of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in ME/CFS patients. In addition, hypoxanthine and phenylalanine was elevated in ME/CFS patients, suggesting hypoxia and altered amino acid metabolism. The study found strong relationships between TRP metabolites and steroids during the menstrual cycle, suggesting hormones affect this pathway. Preclinical findings showed that kynurenine administration resulted in region-specific effects, with a potential neuroprotective effect in the hippocampus. These studies open avenues for further exploration of TRP metabolism, particularly in relation to ME/CFS and the impact of steroid hormones on this metabolic pathway.