uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
12345 1 - 50 of 250
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Anders, Brakestad
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Ab Initio Characterization of Conical Intersections Related to Chemiluminescence in Methylated 1,2-Dioxetanes2017Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
  • 2.
    Andersson, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Theoretical study of the reactionPH3 + H → TS‡ → PH2 + H22012Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
  • 3.
    Aquilante, Francesco
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, IT-40126 Bologna, Italy..
    Autschbach, Jochen
    SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA..
    Carlson, Rebecca K.
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA..
    Chibotaru, Liviu F.
    Katholieke Univ Leuven, Div Quantum & Phys Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.;Katholieke Univ Leuven, INPAC, Inst Nanoscale Phys & Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium..
    Delcey, Mickael G.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    De Vico, Luca
    Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen O, Denmark..
    Fernández Galván, Ignacio
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Ferre, Nicolas
    Univ Aix Marseille, CNRS, Inst Chim Radicalaire, Campus Etoile St Jerome Case 521,Ave Esc, F-13397 Marseille 20, France..
    Frutos, Luis Manuel
    Univ Alcala De Henares, Unidad Docente Quim Fis, E-28871 Madrid, Spain..
    Gagliardi, Laura
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA..
    Garavelli, Marco
    Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, IT-40126 Bologna, Italy.;Univ Lyon, CNRS, Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 07, France..
    Giussani, Angelo
    Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, IT-40126 Bologna, Italy..
    Hoyer, Chad E.
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA..
    Li Manni, Giovanni
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA.;Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany..
    Lischka, Hans
    Texas Tech Univ, Dept Chem & Biochem, Mem Circle & Boston, Lubbock, TX 79409 USA.;Univ Vienna, Inst Theoret Chem, Wahringerstr 17, A-1090 Vienna, Austria..
    Ma, Dongxia
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA.;Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany..
    Malmqvist, Per Ake
    Lund Univ, Ctr Chem, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden..
    Mueller, Thomas
    Forschungszentrum Julich, IAS, JSC, Wilhelm Johnen Str, D-52425 Julich, Germany..
    Nenov, Artur
    Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, IT-40126 Bologna, Italy..
    Olivucci, Massimo
    Univ Siena, Dept Biotechnol Chem & Pharm, Via Aldo Moro 2, I-53100 Siena, Italy.;Bowling Green State Univ, Dept Chem, 141 Overman Hall, Bowling Green, OH 43403 USA.;Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS UMR 7504, 23 Rue Loess, F-67034 Strasbourg, France.;Univ Strasbourg, Labex NIE, CNRS, UMR 7504, 23 Rue Loess, F-67034 Strasbourg, France.;Hebrew Univ Jerusalem, Inst Chem, Fritz Haber Ctr Mol Dynam, IL-91904 Jerusalem, Israel..
    Pedersen, Thomas Bondo
    Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, POB 1033 Blindern, N-0315 Oslo, Norway..
    Peng, Daoling
    S China Normal Univ, Coll Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China..
    Plasser, Felix
    Univ Vienna, Inst Theoret Chem, Wahringerstr 17, A-1090 Vienna, Austria..
    Pritchard, Ben
    SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA..
    Reiher, Markus
    ETH, Phys Chem Lab, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland..
    Rivalta, Ivan
    Univ Lyon, CNRS, Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 07, France..
    Schapiro, Igor
    Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS UMR 7504, 23 Rue Loess, F-67034 Strasbourg, France.;Univ Strasbourg, Labex NIE, CNRS, UMR 7504, 23 Rue Loess, F-67034 Strasbourg, France..
    Segarra-Marti, Javier
    Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, IT-40126 Bologna, Italy..
    Stenrup, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Truhlar, Donald G.
    Univ Minnesota, Inst Supercomp, Dept Chem, Minneapolis, MN 55455 USA.;Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA..
    Ungur, Liviu
    Katholieke Univ Leuven, Div Quantum & Phys Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.;Katholieke Univ Leuven, INPAC, Inst Nanoscale Phys & Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium..
    Valentini, Alessio
    Univ Siena, Dept Biotechnol Chem & Pharm, Via Aldo Moro 2, I-53100 Siena, Italy..
    Vancoillie, Steven
    Lund Univ, Ctr Chem, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden..
    Veryazov, Valera
    Lund Univ, Ctr Chem, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden..
    Vysotskiy, Victor P.
    Lund Univ, Ctr Chem, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden..
    Weingart, Oliver
    Univ Dusseldorf, Inst Theoret Chem & Computerchem, Univ Str 1, D-40225 Dusseldorf, Germany..
    Zapata, Felipe
    Univ Alcala De Henares, Unidad Docente Quim Fis, E-28871 Madrid, Spain..
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table2016Inngår i: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, nr 5, s. 506-541Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.

  • 4.
    Aquilante, Francesco
    et al.
    Univ Bologna, Dipartimento Chim G Ciamician, Bologna, Italy..
    Delcey, Mickael G.
    Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA.;Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA..
    Pedersen, Thomas Bondo
    Univ Oslo, Dept Chem, Ctr Theoret & Computat Chem, Oslo, Norway..
    Fernández Galván, Ignacio
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Uppsala Univ, Dept Chem Angstrom, Theoret Chem Programme, Uppsala, Sweden..
    Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry2017Inngår i: Molecular Physics, ISSN 0026-8976, E-ISSN 1362-3028, Vol. 115, nr 17-18, s. 2052-2064Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The density-fitting technique for approximating electron-repulsion integrals relies on the quality of auxiliary basis sets. These are commonly obtained through data fitting, an approach that presents some shortcomings. On the other hand, it is possible to derive auxiliary basis sets by removing elements from the product space of both contracted and primitive orbitals by means of a particular form of inner projection technique that has come to be known as Cholesky decomposition (CD). This procedure allows for on-the-fly construction of auxiliary basis sets that may be used in conjunction with any quantum chemical method, i.e. unbiased auxiliary basis sets. One key feature of these sets is that they represent the electron-repulsion integral matrix in atomic orbital basis with an accuracy that can be systematically improved. Another key feature is represented by the fact that locality of fitting coefficients is obtained even with the long-ranged Coulomb metric, as result of integral accuracy. Here we report on recent advances in the development of the CD-based density fitting technology. In particular, the implementation of analytical gradients algorithms is reviewed and the present status of local formulations - potentially linear scaling - is analysed in detail.

  • 5.
    Aquilante, Francesco
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Pedersen, Thomas Bondo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Veryazov, Valera
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    MOLCAS—a software for multiconfigurational quantum chemistry calculations2013Inngår i: Wiley Interdisciplinary Reviews: Computational Molecular Science, ISSN 1759-0876, Vol. 3, nr 2, s. 143-149Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    At variance, with most of the quantum chemistry software presently available, MOLCAS is a package that is specialized in multiconfigurational wave function theory (MC-WFT) rather than density functional theory (DFT). Given the much higher algorithmic complexity of MC-WFT versus DFT, an extraordinary effort needs to be made from the programming point of view to achieve state-of-the-art performance for large-scale calculations. In particular, a robust and efficient implementation of the Cholesky decomposition techniques for handling two-electron integrals has been developed which is unique to MOLCAS. Together with this 'Cholesky infrastructure', a powerful and multilayer graphical and scripting user interface is available, which is an essential ingredient for the setup of MC-WFT calculations. These two aspects of the MOLCAS software constitute the focus of the present report.

  • 6.
    Aspuru-Guzik, Alan
    et al.
    Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.;Canadian Inst Adv Res CIFAR, Toronto, ON M5G 1Z8, Canada..
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Uppsala Univ, Theoret Chem Programme, Dept CUppsala Univ, Uppsala Ctr Computat Chem UC3, Box 518, S-75120 Uppsala, Sweden..
    Reiher, Markus
    Swiss Fed Inst Technol, Phys Chem Lab, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland..
    The Matter Simulation (R)evolution2018Inngår i: ACS CENTRAL SCIENCE, ISSN 2374-7943, Vol. 4, nr 2, s. 144-152Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To date, the program for the development of methods and models for atomistic and continuum simulation directed toward chemicals and materials has reached an incredible degree of sophistication and maturity. Currently, one can witness an increasingly rapid emergence of advances in computing, artificial intelligence, and robotics. This drives us to consider the future of computer simulation of matter from the molecular to the human length and time scales in a radical way that deliberately dares to go beyond the foreseeable next steps in any given discipline. This perspective article presents a view on this future development that we believe is likely to become a reality during our lifetime.

  • 7.
    Atsumi, Michiko
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Gonzalez, Leticia
    Gourlaouen, Christophe
    Daniel, Chantal
    Ab initio and DFT analysis of the low-lying electronic states of metal dihalides: quantum chemical calculations on the neutral BrMCl (M = Cu, Ag, Au)2013Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 15, nr 25, s. 10151-10157Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The electronic configuration of the electronic ground and low-lying doublet excited states of neutral metal dihalides BrMCl (M = Cu, Ag, Au) has been investigated on the basis of CASSCF/CASPT2 methods taking into account scalar relativistic effects. A preliminary study of the electronic problem in BrAgCl, based on DFT and CASSCF/CASPT2 approaches and using various basis sets, namely relativistic all-electron basis sets, effective core potentials and ab initio model potentials (AIMP), as well as non-relativistic AIMP is discussed. It is shown that single-determinant methods are not flexible enough to describe the bonding of the neutral species in the electronic ground state regardless of the basis set. The failure to allocate the single electron of BrAgCl correlates with a wrong charge distribution within the complex, which is more accentuated when using pseudopotential basis sets. The inclusion of static and dynamic correlation effects by means of CASSCF/CASPT2 methods using large relativistic all-electron basis sets provides a correct qualitative picture of the electronic structure of the BrMCl series (M = Cu, Ag, Au). The spin unrestricted KS-DFT approach leads to a reasonable description of the degenerate electronic ground state ((2)Sigma/(2)Pi) bonding in these complexes with negligible spin contamination providing comparative spin densities in the series of molecules under investigation.

  • 8.
    Augusto, Felipe A.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Av Prof Lineu Prestes 748, Sao Paulo, Brazil..
    Francés-Monerris, Antonio
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Univ Valencia, Inst Ciencia Mol, POB 22085, Valencia 46071, Spain..
    Fdez. Galván, Ignacio
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Roca-Sanjuán, Daniel
    Univ Valencia, Inst Ciencia Mol, POB 22085, Valencia 46071, Spain..
    Bastos, Erick L.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Av Prof Lineu Prestes 748, Sao Paulo, Brazil..
    Baader, Wilhelm J.
    Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Av Prof Lineu Prestes 748, Sao Paulo, Brazil..
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetanes and 1,2-dioxetanones2017Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 5, s. 3955-3962Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Almost all chemiluminescent and bioluminescent reactions involve cyclic peroxides. The structure of the peroxide and reaction conditions determine the quantum efficiency of light emission. Oxidizable fluorophores, the so-called activators, react with 1,2-dioxetanones promoting the former to their first singlet excited state. This transformation is inefficient and does not occur with 1,2-dioxetanes; however, they have been used as models for the efficient firefly bioluminescence. In this work, we use the SA-CASSCF/CASPT2 method to investigate the activated chemiexcitation of the parent 1,2-dioxetane and 1,2-dioxetanone. Our findings suggest that ground state decomposition of the peroxide competes efficiently with the chemiexcitation pathway, in agreement with the available experimental data. The formation of non-emissive triplet excited species is proposed to explain the low emission efficiency of the activated decomposition of 1,2-dioxetanone. Chemiexcitation is rationalized considering a peroxide/activator supermolecule undergoing an electron-transfer reaction followed by internal conversion.

  • 9.
    Azimi Mousolou, Vahid
    et al.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Canali, Carlo M.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Non-Abelian off-diagonal geometric phases in nano-engineered four-qubit systems2013Inngår i: Europhysics letters, ISSN 0295-5075, E-ISSN 1286-4854, Vol. 103, nr 6, s. 60011-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The concept of off-diagonal geometric phase (GP) has been introduced in order to recover interference information about the geometry of quantal evolution where the standard GPs are not well-defined. In this Letter, we propose a physical setting for realizing non-Abelian off- diagonal GPs. The proposed non-Abelian off-diagonal GPs can be implemented in a cyclic chain of four qubits with controllable nearest-neighbor interactions. Our proposal seems to be within reach in various nano-engineered systems and therefore opens up for first experimental test of the non-Abelian off-diagonal GP. 

  • 10.
    Azimi Mousolou, Vahid
    et al.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Canali, Carlo M.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Centre for Quantum Technologies, NUS, Singapore.
    Unifying Geometric Entanglement and Geometric Phase in a Quantum Phase Transition2013Inngår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 88, nr 1, s. 012310-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Geometric measure of entanglement and geometric phase have recently been used to analyze quantum phase transition in the XY spin chain. We unify these two approaches by showing that the geometric entanglement and the geometric phase are respectively the real and imaginary parts of a complex-valued geometric entanglement, which can be investigated in typical quantum interferometry experiments. We argue that the singular behavior of the complex-value geometric entanglement at a quantum critical point is a characteristic of any quantum phase transition, by showing that the underlying mechanism is the occurrence of level crossings associated with the underlying Hamiltonian.

  • 11.
    Azimi Mousolou, Vahid
    et al.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Canali, Carlo M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för fysikalisk och analytisk kemi, Teoretisk kemi. School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Universal Non-adiabatic Holonomic Gates in Quantum Dots and Single-Molecule Magnets2014Inngår i: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, artikkel-id 013029Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Geometric manipulation of a quantum system offers a method for fast, universal, and robust quantum information processing. Here, we propose a scheme for universal all-geometric quantum computation using non-adiabatic quantum holonomies. We propose three different realizations of the scheme based on an unconventional use of quantum dot and single-molecule magnet devices, which offer promising scalability and robust efficiency. 

  • 12.
    Azimi Mousolou, Vahid
    et al.
    School of Computer Science, Physics and Mathematics, Linnaeus Univ., Sweden.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Non-Abelian geometric phases in a system of coupled quantum bits2014Inngår i: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 89, nr 2, s. 022117-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A common strategy to measure the Abelian geometric phase for a qubit is to let it evolve along an `orange slice' shaped path connecting two antipodal points on the Bloch sphere by two different semi-great circles. Since the dynamical phases vanish for such paths, this allows for direct interference measurement of the geometric phase. Here, we generalize the orange slice setting to the non-Abelian case. The proposed method to measure the non-Abelian geometric phase can be implemented in a cyclic chain of four qubits with controllable nearest-neighbor interactions.

  • 13.
    Banerjee, D.
    et al.
    ETH, Zurich, Switzerland..
    Biraben, F.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Charlton, M.
    Swansea Univ, Swansea, W Glam, Wales..
    Clade, P.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Comini, P.
    Ctr Spectrometrie Nucl & Spectrometrie Masse, Orsay, France.;ETH, Zurich, Switzerland..
    Crivelli, P.
    ETH, Zurich, Switzerland..
    Dalkarov, O.
    PN Lebedev Phys Inst, Moscow, Russia..
    Debu, P.
    CEA Saclay, IRFU, Saclay, France..
    Dodd, L.
    Swansea Univ, Swansea, W Glam, Wales..
    Douillet, A.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France.;Univ Evry, Comue Paris Saclay, Evry, France..
    Dufour, G.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Dupre, P.
    Inst Phys & Chem Res, Wako, Saitama, Japan..
    Eriksson, S.
    Swansea Univ, Swansea, W Glam, Wales..
    Froelich, Piotr
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Grandemange, P.
    CERN, CH-1211 Geneva 23, Switzerland..
    Guellati, S.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Guerout, R.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Heinrich, M.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Hervieux, P. -A
    Hilico, L.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France.;Univ Evry, Comue Paris Saclay, Evry, France..
    Husson, A.
    Ctr Spectrometrie Nucl & Spectrometrie Masse, Orsay, France..
    Indelicato, P.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Jonsell, S.
    Stockholm Univ, Stockholm, Sweden..
    Karr, J. -P
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France.
    Khabarova, K.
    PN Lebedev Phys Inst, Moscow, Russia..
    Kim, S. K.
    Seoul Natl Univ, Seoul, South Korea..
    Kim, Y.
    Inst for Basic Sci Korea, Daejon, South Korea..
    Kolachevsky, N.
    PN Lebedev Phys Inst, Moscow, Russia..
    Kuroda, N.
    Univ Tokyo, Inst Phys, Komaba, Japan..
    Lambrecht, A.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Leite, A. M. M.
    CEA Saclay, IRFU, Saclay, France..
    Liszkay, L.
    CEA Saclay, IRFU, Saclay, France..
    Lotrus, P.
    CEA Saclay, IRFU, Saclay, France..
    Lunney, D.
    Ctr Spectrometrie Nucl & Spectrometrie Masse, Orsay, France..
    Madsen, N.
    Swansea Univ, Swansea, W Glam, Wales..
    Manfredi, G.
    Inst Phys & Chim Mat Strasbourg, Strasbourg, France..
    Mansouli, B.
    CEA Saclay, IRFU, Saclay, France..
    Matsuda, Y.
    Univ Tokyo, Inst Phys, Komaba, Japan..
    Mohri, A.
    Kyoto Univ, Kyoto, Japan..
    Mornacchi, G.
    CERN, CH-1211 Geneva 23, Switzerland..
    Nesvizhevsky, V.
    Inst Laue Langevin, Grenoble, France..
    Nez, F.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Perez, P.
    CEA Saclay, IRFU, Saclay, France..
    Regenfus, C.
    ETH, Zurich, Switzerland..
    Rey, J. -M
    Reymond, J. -M
    Rousse, J-Y
    CEA Saclay, IRFU, Saclay, France..
    Reynaud, S.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Rubbia, A.
    ETH, Zurich, Switzerland..
    Sacquin, Y.
    CEA Saclay, IRFU, Saclay, France..
    Schmidt-Kaler, F.
    Johannes Gutenberg Univ Mainz, Mainz, Germany..
    Sillitoe, N.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Staszczak, M.
    Natl Ctr Nucl Res, Otwock, Poland..
    Torii, H.
    Univ Tokyo, Inst Phys, Komaba, Japan..
    Heinrich, J. M.
    ENS PSL Res Univ, UPMC Sorbonne Univ, Lab Kastler Brossel, CNRS,Coll France, Paris, France..
    Vallage, B.
    CEA Saclay, IRFU, Saclay, France..
    Valdes, M.
    Inst Phys & Chim Mat Strasbourg, Strasbourg, France..
    van der Werf, D. P.
    CEA Saclay, IRFU, Saclay, France.;Swansea Univ, Swansea, W Glam, Wales..
    Voronin, A.
    PN Lebedev Phys Inst, Moscow, Russia..
    Walz, J.
    Johannes Gutenberg Univ Mainz, Mainz, Germany..
    Wolf, S.
    Johannes Gutenberg Univ Mainz, Mainz, Germany..
    Wronka, S.
    Natl Ctr Nucl Res, Otwock, Poland..
    Yamazaki, Y.
    Inst Phys & Chem Res, Wako, Saitama, Japan..
    Towards a test of the Weak Equivalence Principle of gravity using anti-hydrogen at CERN2016Inngår i: 2016 Conference On Precision Electromagnetic Measurements (CPEM 2016), 2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The aim of the GBAR (Gravitational Behavior of Antimatter at Rest) experiment is to measure the free fall acceleration of an antihydrogen atom, in the terrestrial gravitational field at CERN and therefore test the Weak Equivalence Principle with antimatter. The aim is to measure the local gravity with a 1% uncertainty which can be reduced to few parts of 10(-3).

  • 14. Barata-Morgado, Rute
    et al.
    Luz Sanchez, M.
    Fernández Galván, Ignacio
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Corchado, Jose C.
    Elena Martin, M.
    Munoz-Losa, Aurora
    Aguilar, Manuel A.
    Theoretical study of the conformational equilibrium of 1,4-dioxane in gas phase, neat liquid, and dilute aqueous solutions2013Inngår i: Theoretical Chemistry accounts, ISSN 1432-881X, E-ISSN 1432-2234, Vol. 132, nr 10, s. 1390-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conformational equilibrium of 1,4-dioxane in the gas phase, in the pure liquid, and in aqueous solution has been studied by means of the Average Solvent Electrostatic Potential from Molecular Dynamics (ASEP/MD) method and the Integral Equation Formalism for the Polarizable Continuum Model (IEF-PCM). The dioxane molecule was described at the DFT(B3LYP)/aug-cc-pVTZ level. In the three phases, the equilibrium is almost completely shifted toward the chair conformer, with populations of the twist-boat conformers lower than 0.01 %. The equilibrium is dominated by the internal energy of the molecule, as the solute-solvent interaction free energies are very similar in the three conformers considered (chair, 1,4 twist-boat, and 2,5 twist-boat). In the pure liquid, where the dioxane-dioxane interaction is dominated by the Lennard-Jones term, the structure is characteristic of a van der Waals liquid. However, the decrease in the C-H distance from gas phase to solution, the increase in the C-H vibrational frequencies, and the presence of a shoulder in the O-Haxial pair radial distribution function point to the presence of a weak C-H-O hydrogen bond. The analysis of the occupancy maps of water oxygen and hydrogen atoms around the 1,4-dioxane molecule confirms this conclusion. Contrary to what is found in small water-dioxane clusters, in the liquid, there is a preference for oxygen atoms to interact with axial hydrogen atoms to form C-H-O hydrogen bonds. Comparison of ASEP/MD and IEF-PCM results indicates that including specific interactions is very important for an adequate description of the solute-solvent interaction; however, the influence of these interactions does not translate in changes in the relative stability of the conformers because it cancels out when energy differences are calculated.

  • 15.
    Bengtson, Charlotta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Nonlocality in biomolecular systems2013Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
  • 16.
    Bengtson, Charlotta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Quantum Resources for Efficient Excitation Energy Transfer in Natural and Artificial Pigment-Protein Molecular Aggregates2018Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Recently, long-lasting quantum effects in a number of photosynthetic complexes, which are pigment-protein molecular aggregates (PPMAs), were experimentally verified. These findings created an interest in trying to connect the known highly efficient excitation energy transfer (EET) in these systems to the existence of quantum effects such as quantum coherence and quantum correlations. It also raised the question of how these sensitive quantum effects can survive in such a macroscopic system.

    This thesis explores the existence and possible role of quantum effects in the EET in PPMAs. These systems can be modeled as non-Markovian open quantum systems and quantum effects can be investigated and quantified by methods developed in quantum information theory.

    Firstly, it is found that quantum nonlocal correlations in the EET in the Fenna-Matthews-Olson complex - a PPMA found in nature - are unlikely to exist when the initial excitation occurs in a natural manner. When the initial excitation occurs in an artificial manner by localization of the excitation on one pigment, nonlocal correlations exist on a short time scale. It is further found that in order for nonlocal correlations to be preserved in such a system, the excitation must be trapped on two pigments at the time and these pigments must not interact strongly with other pigments in the complex.

    Secondly, it is shown that quantum coherence is not in general a resource for efficient EET in model systems consisting of a network of pigments; systems optimized with respect to the amount of coherence do not coincide with systems with optimal EET efficiency between two end-site pigments.

    Thirdly, it is found that environmental effects and system-environment interactions can be tuned to optimize the EET efficiency in model PPMAs. The features of optimal environments highly depends on the structure of the pigment system and in particular, the relationship between the pigments excitation energies. It is further shown that a non-Markovian dynamics cannot be connected to an increased EET efficiency in these systems.

    Delarbeid
    1. Quantum nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex
    Åpne denne publikasjonen i ny fane eller vindu >>Quantum nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex
    2016 (engelsk)Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 116, s. 1763-1771Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The Fenna-Matthews-Olson (FMO) complex - a pigment protein complex involved in photosynthesis in green sulfur bacteria - is remarkably efficient in transferring excitation energy from light harvesting antenna molecules to a reaction center. Recent experimental and theoretical studies suggest that quantum coherence and entanglement may play a role in this excitation energy transfer (EET). We examine whether bipartite quantum nonlocality, a property that expresses a stronger-than-entanglement form of correlation, exists between different pairs of chromophores in the FMO complex when modeling the EET by the hierarchically coupled equations of motion method. We compare the results for nonlocality with the amount of bipartite entanglement in the system. In particular, we analyze in what way these correlation properties are affected by different initial conditions. It is found that bipartite nonlocality only exists when the initial conditions are chosen in an unphysiological manner and probably is absent when considering the EET in the FMO complex in its natural habitat. It is also seen that nonlocality and entanglement behave quite differently in this system. In particular, for localized initial states, nonlocality only exists on a very short time scale and then drops to zero in an abrupt manner. As already known from previous studies, quantum entanglement between chromophore pairs on the other hand is oscillating and exponentially decaying and follow thereby a pattern more similar to the chromophore population dynamics. The abrupt disappearance of nonlocality in the presence of nonvanishing entanglement is a phenomenon we call nonlocality sudden death; a striking manifestation of the difference between these two types of correlations in quantum systems. 

    Emneord
    Photosynthesis, quantum nonlocality, open quantum systems
    HSV kategori
    Forskningsprogram
    Fysik med inriktning mot kvantkemi; Biologi
    Identifikatorer
    urn:nbn:se:uu:diva-246119 (URN)10.1002/qua.25221 (DOI)000385587200001 ()
    Forskningsfinansiär
    Swedish Research Council, D0413201eSSENCE - An eScience CollaborationSwedish National Infrastructure for Computing (SNIC), snic2014-3-66
    Tilgjengelig fra: 2015-03-02 Laget: 2015-03-02 Sist oppdatert: 2018-01-19bibliografisk kontrollert
    2. Nonlocality in the Fenna-Matthews-Olson complex: Using Nature for learning about nonlocality preservation in a multi-qubit open system
    Åpne denne publikasjonen i ny fane eller vindu >>Nonlocality in the Fenna-Matthews-Olson complex: Using Nature for learning about nonlocality preservation in a multi-qubit open system
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Emneord
    Quantum nonlocality, Quantum coherence, Open quantum systems
    HSV kategori
    Forskningsprogram
    Kemi med inriktning mot kvantkemi
    Identifikatorer
    urn:nbn:se:uu:diva-339463 (URN)
    Tilgjengelig fra: 2018-01-18 Laget: 2018-01-18 Sist oppdatert: 2018-03-06
    3. The role of quantum coherence in dimer and trimer excitation energy transfer
    Åpne denne publikasjonen i ny fane eller vindu >>The role of quantum coherence in dimer and trimer excitation energy transfer
    2017 (engelsk)Inngår i: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 19, artikkel-id 113015Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Recent progress in resource theory of quantum coherence has resulted in measures to quantify coherence in quantum systems. Especially, the l1-norm and relative entropy of coherence have been shown to be proper quantifiers of coherence and have been used to investigate coherence properties in different operational tasks. Since long-lasting quantum coherence has been experimentally confirmed in a number of photosynthetic complexes, it has been debated if and how coherence is connected to the known efficiency of population transfer in such systems. In this study, we investigate quantitatively the relationship between coherence, as quantified by l1 norm and relative entropy of coherence, and efficiency, as quantified by fidelity, for population transfer between end-sites in a network of two-level quantum systems. In particular, we use the coherence averaged over the duration of the population transfer in order to carry out a quantitative comparision between coherence and fidelity. Our results show that although coherence is a necessary requirement for population transfer, there is no unique relation between coherence and the efficiency of the transfer process.

    Emneord
    Quantum coherence, energy transport
    HSV kategori
    Forskningsprogram
    Fysik med inriktning mot atom- molekyl- och kondenserande materiens fysik
    Identifikatorer
    urn:nbn:se:uu:diva-327295 (URN)10.1088/1367-2630/aa916b (DOI)000415196900003 ()
    Forskningsfinansiär
    Swedish Research Council, D0413201Swedish National Infrastructure for Computing (SNIC), snic2017-7-17
    Tilgjengelig fra: 2017-08-08 Laget: 2017-08-08 Sist oppdatert: 2018-02-21bibliografisk kontrollert
    4. Environmental design principles for efficient excitation energy transfer in dimer and trimer pigment-protein molecular aggregates and the relation to non-Markovianity
    Åpne denne publikasjonen i ny fane eller vindu >>Environmental design principles for efficient excitation energy transfer in dimer and trimer pigment-protein molecular aggregates and the relation to non-Markovianity
    (engelsk)Inngår i: QuantumArtikkel i tidsskrift (Fagfellevurdert) Submitted
    Abstract [en]

    Lately there has been an interest in studying the effects and mechanisms of environment-assisted quantum transport, especially in the context of excitation energy transfer (EET) in pigment-protein molecular aggregates. Since these systems can be seen as open quantum systems where the dynamics is within the non-Markovian regime, the effect of non-Markovianity on efficient EET as well as its role in preserving quantum coherence and correlations has also been investigated in recent works. In this study, we explore optimal environments for efficient EET between end sites in a number of dimer and trimer model pigment-protein molecular aggregates when the EET dynamics is modeled by the HEOM-method. For these optimal environmental parameters, we further quantify the non-Markovianity by the BLP-measure to elucidate its possible connection to efficient EET. We also quantify coherence in the pigment systems by means of the measure l1-norm of coherence to analyze its interplay with environmental effects when EET efficiency is maximal. Our aim is to investigate possible environmental design principles for achieving efficient EET in model pigment-protein molecular aggregates and to determine whether non-Markovianity is a possible underlying resource in such systems. We find that the structure of the system Hamiltonian (i.e., the pigment Hamiltonian parameter space) and especially, the relationship between the site excitation energies, determines whether one of two specific environmental regimes is the most beneficial in promoting efficient EET in these model systems. In the first regime, optimal environmental conditions are such that the EET dynamics in the system is left as coherent as possible. In the second regime, the most advantageous role of the environment is to drive the system towards equilibrium as fast as possible. In reality, optimal environmental conditions may involve a combination of these two effects. We cannot establish a relation between efficient EET and non-Markovianity, i.e., non-Markovianity cannot be regarded as a resource in the systems investigated in this study. 

    Emneord
    Excitation energy transfer, Quantum coherence, Non-Markovianity
    HSV kategori
    Forskningsprogram
    Kemi med inriktning mot kvantkemi
    Identifikatorer
    urn:nbn:se:uu:diva-339462 (URN)
    Tilgjengelig fra: 2018-01-18 Laget: 2018-01-18 Sist oppdatert: 2018-03-06
  • 17. Bengtson, Charlotta
    et al.
    Ahlkvist, Mikaela
    Ekeroth, William
    Nilsen-Moe, Astrid
    Proos Vedin, Nathalie
    Rodiouchkina, Katerina
    Ye, Sofie
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Uppsala University.
    Kursutveckling i partnerskap mellan lärare och studenter2018Inngår i: Pedagogiska utmaningar i en dynamisk samtid: Universitetspedagogisk utvecklingskonferens 12 oktober 2017 / [ed] Amelie Hössjer, Maria Magnusson och Peter Reinholdsson, Uppsala: Uppsala universitet, 2018, s. 38-51Konferansepaper (Fagfellevurdert)
  • 18. Bengtson, Charlotta
    et al.
    Ahlkvist, Mikaela
    Ekeroth, William
    Nilsen-Moe, Astrid
    Proos Vedin, Nathalie
    Rodiouchkina, Katerina
    Ye, Sofie
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi. Uppsala University.
    Kursutveckling i partnerskap mellan lärare och studenter2018Konferansepaper (Annet vitenskapelig)
    Abstract [sv]

    En kurs på grundutbildningsnivå har omformats i partnerskap mellan studenter och lärare vilket lett till mer omfattande förändringar än motsvarande lärarledd process.(Bengtson et al., 2017) Den nya kursen har getts två gånger och resultatet blev avsevärt bättre betyg på kursvärderingarna och viss förbättring av examensresultateten jämfört med tidigare år. Fokus på presentationen är att diskutera lärdomar och utmaningar för att genomföra lyckade partnerskap i kursutveckling. Målet med projektet var att göra om en fysikkurs på kandidatprogrammet i kemi som studenterna uppfattade som svår och med bristande koppling till deras utbildning i kemi. I den första delen av projektet hördes studentens röst genom intervjuer kring kursens roll i utbildningsprogrammet. Intervjuerna gav inspiration till fortsatt arbete med högre grad av studentmedverkan. I den andra delen av projektet bildades därför en utvecklingsgrupp bestående av sex studenter och två lärare för att utveckla kursplan och läromedel i partnerskap (Mihans et al., 2008). Partnerskap kan leda till ökad motivation och självförtroende hos studenterna och att de tar större ansvar för sitt lärande (Bovill et al., 2011). Samtidigt drar lärarna nytta av att se inlärningsprocessen från studentens perspektiv (Cook-Sather, 2014). Hela gruppen träffades en gång i veckan under sju veckor. Dessutom bildades fyra separata arbetsgrupper som tog fram nytt kursmaterial. Samtliga beslut om förändringar togs genom omröstningar i hela gruppen där allas röster vägde lika. Lärarna kunde behålla ansvaret för kursens kvalitet genom att bestämma vilka förslag som var tillräckligt bra för omröstning, men det blev aldrig aktuellt eftersom det nya materialet höll genomgående hög kvalitet. Bland de genomförda förändringarna var nya seminarier för ökad begreppsmässig förståelse, omformning av alla föreläsningar med mer aktivt studentdeltagande, samt byte av kurslitteratur. Projektet har krävt betydande resurser från både lärare och studenter och med tanke på arbetsinsatsen passar liknande projekt bäst för att periodvis genomföra större förändringar i en kurs. Studenterna arvoderades för de timmar de lagt ned på kursutveckling och projektet finansierades med bidrag från en pedagogisk fond.  Viktiga framgångsfaktorer var deltagande av studenter att rekrytera till projektet, finansiellt stöd från fakulteten, tidigt urval av konkreta utvecklingsuppgifter samt att låta gruppens medlemmar själva välja vad de ville utveckla utifrån deras egen kompetens. En rekommendation är att dela in utvecklingsprocessen i flera steg och öka partnerskap över tid för att hitta balans mellan behovet av vägledning och studenternas frihet att utveckla på egen hand. Nästa steg är att tillsammans med en ny studentgrupp fokuserat arbeta med att förbättra examinationsformerna. Samarbetet mellan lärare och studenter ledde till en djupare förståelse för varandras roller i en akademisk utbildningsmiljö och gav studenterna inspiration att arbeta med förbättring även i andra delar av utbildningen.

     

    Bengtson, C., Ahlkvist, M., Ekeroth, W., Nilsen-Moe, A., Proos Vedin, N., Rodiuchkina, K., Ye, S. & Lundberg, M. 2017. Working as Partners: Course Development by a Student–Teacher Team. International Journal for the Scholarship of Teaching and Learning, 11, 6.

    Bovill, C., Bulley, C. J. & Morss, K. 2011. Engaging and empowering first-year students through curriculum design: perspectives from the literature. Teaching in Higher Education, 16, 197-209.

    Cook-Sather, A. 2014. Multiplying perspectives and improving practice: what can happen when undergraduate students collaborate with college faculty to explore teaching and learning. Instructional Science, 42, 31-46.

    Mihans, I., Richard, J., Long, D. T. & Felten, P. 2008. Power and expertise: Student-faculty collaboration in course design and the scholarship of teaching and learning. International Journal for the Scholarship of Teaching and Learning, 2, 16.

     

  • 19.
    Bengtson, Charlotta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Ahlkvist, Mikaela
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Ekeroth, William
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Nilsen-Moe, Astrid
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Proos Vedin, Nathalie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Rodiuchkina, Katerina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Ye, Sofie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Working as Partners: Course Development by a Student–Teacher Team2017Inngår i: International Journal for the Scholarship of Teaching & Learning, ISSN 1931-4744, E-ISSN 1931-4744, Vol. 11, nr 2, artikkel-id Article 6Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A first-year undergraduate course at Uppsala University has been redesigned in a process exploring differentlevels of student participation. In the first part of the project, the student voice was heard through interviewsfocusing on the role of the course in the degree program. In the second part, a student-teacher team wasformed to develop course curriculum and teaching material in partnership. Among the implemented changeswere new seminars focusing on conceptual understanding, redesign of all lectures to include active studentparticipation, and a change of the course literature. The redesigned course significantly increased studentsatisfaction compared to previous years. Important success factors were involvement of the studentorganization to promote the project, institutional support, early selection of concrete development tasks, andallowing team members to choose what they wanted to develop according to their own expertise.

  • 20.
    Bengtson, Charlotta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Studentmedverkan i utvecklingen av kursen ”Fysik för kemister”2016Inngår i: För pedagogisk utveckling tillsammans: Lärare och studenter som medskapare av utbildningen / [ed] Katarina Andreasen och Maria Magnusson, Uppsala: Uppsala universitet, 2016, s. 20-26Konferansepaper (Annet vitenskapelig)
    Abstract [sv]

    Vi utforskar olika nivåer av studentmedverkan i utvecklingen av kursen ’Fysik för kemister’ på kandidatprogrammet i kemi vid Uppsala universitet. Målet med kursen är att ge alla studenter, även de med en självupplevt svag fysikbakgrund, en god grund för framtida studier i kemi. För att nå dit vill vi bjuda in en bred grupp av studenter att bli medskapare av en bättre kurs. Projektets första steg var att intervjua sex studenter i olika steg av utbildningen, fyra kvinnor och två män. Två av studenterna har redan läst hela kandidatutbildningen och har ett unikt perspektiv över vilken nytta de har haft av kursen i sin utbildning, samt vilka kunskaper de egentligen hade behövt. Resultaten från intervjuerna har använts för att skriva en ny kursplan samt att utveckla nya former av studentaktiv undervisning. Nästa steg, som fortfarande pågår, är att öka deltagandenivån genom att arbeta i en kursutvecklingsgrupp, bestående av sex studenter från olika årskurser samt två lärare.

  • 21.
    Bengtson, Charlotta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    The role of quantum coherence in dimer and trimer excitation energy transfer2017Inngår i: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 19, artikkel-id 113015Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent progress in resource theory of quantum coherence has resulted in measures to quantify coherence in quantum systems. Especially, the l1-norm and relative entropy of coherence have been shown to be proper quantifiers of coherence and have been used to investigate coherence properties in different operational tasks. Since long-lasting quantum coherence has been experimentally confirmed in a number of photosynthetic complexes, it has been debated if and how coherence is connected to the known efficiency of population transfer in such systems. In this study, we investigate quantitatively the relationship between coherence, as quantified by l1 norm and relative entropy of coherence, and efficiency, as quantified by fidelity, for population transfer between end-sites in a network of two-level quantum systems. In particular, we use the coherence averaged over the duration of the population transfer in order to carry out a quantitative comparision between coherence and fidelity. Our results show that although coherence is a necessary requirement for population transfer, there is no unique relation between coherence and the efficiency of the transfer process.

  • 22.
    Bengtson, Charlotta
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Stenrup, Michael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Sjöqvist, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Quantum nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex2016Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 116, s. 1763-1771Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Fenna-Matthews-Olson (FMO) complex - a pigment protein complex involved in photosynthesis in green sulfur bacteria - is remarkably efficient in transferring excitation energy from light harvesting antenna molecules to a reaction center. Recent experimental and theoretical studies suggest that quantum coherence and entanglement may play a role in this excitation energy transfer (EET). We examine whether bipartite quantum nonlocality, a property that expresses a stronger-than-entanglement form of correlation, exists between different pairs of chromophores in the FMO complex when modeling the EET by the hierarchically coupled equations of motion method. We compare the results for nonlocality with the amount of bipartite entanglement in the system. In particular, we analyze in what way these correlation properties are affected by different initial conditions. It is found that bipartite nonlocality only exists when the initial conditions are chosen in an unphysiological manner and probably is absent when considering the EET in the FMO complex in its natural habitat. It is also seen that nonlocality and entanglement behave quite differently in this system. In particular, for localized initial states, nonlocality only exists on a very short time scale and then drops to zero in an abrupt manner. As already known from previous studies, quantum entanglement between chromophore pairs on the other hand is oscillating and exponentially decaying and follow thereby a pattern more similar to the chromophore population dynamics. The abrupt disappearance of nonlocality in the presence of nonvanishing entanglement is a phenomenon we call nonlocality sudden death; a striking manifestation of the difference between these two types of correlations in quantum systems. 

  • 23.
    Berraud-Pache, Romain
    et al.
    Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, MSME, UMR CNRS 8208,UPEM, 5 Bd Descartes, F-77454 Marne La Vallee, France.
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Navizet, Isabelle
    Univ Paris Est, Lab Modelisat & Simulat Multi Echelle, MSME, UMR CNRS 8208,UPEM, 5 Bd Descartes, F-77454 Marne La Vallee, France.
    QM/MM Study of the Formation of the Dioxetanone Ring in Fireflies through a Superoxide Ion2018Inngår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 122, nr 20, s. 5173-5182Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bioluminescence emission from fireflies is an astounding tool to mark and view cells. However, the bioluminescent mechanism is not completely deciphered, limiting the comprehension of key processes. We use a theoretical approach to study for the first time the arrival of a dioxygen molecule inside the fireflies protein and one path of the formation of the dioxetanone ring, the high-energy intermediate precursor of the bioluminescence. To describe this reaction step, a joint approach combining classical molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations is used. The formation of the dioxetanone ring has been studied for both singlet and triplet states with the help of MS-CASPT2 calculations. We also emphasize the role played by the proteinic environment in the formation of the dioxetanone ring. The results obtained shed some light on an important reaction step and give new insights concerning the bioluminescence in fireflies.

  • 24.
    Blachucki, W.
    et al.
    Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Kayser, Y.
    Phys Tech Bundesanstalt, D-10587 Berlin, Germany.
    Czapla-Masztafiak, J.
    Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
    Guo, Meiyuan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Juranic, P.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Kavcic, M.
    Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia.
    Källman, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Knopp, G.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Lundberg, Marcus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Milne, C.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Rehanek, J.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Sá, Jacinto
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi. Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland.
    Szlachetko, J.
    Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
    Inception of electronic damage of matter by photon-driven post-ionization mechanisms2019Inngår i: Structural Dynamics, ISSN 2329-7778, Vol. 6, nr 2, artikkel-id 024901Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    "Probe-before-destroy" methodology permitted diffraction and imaging measurements of intact specimens using ultrabright but highly destructive X-ray free-electron laser (XFEL) pulses. The methodology takes advantage of XFEL pulses ultrashort duration to outrun the destructive nature of the X-rays. Atomic movement, generally on the order of >50 fs, regulates the maximum pulse duration for intact specimen measurements. In this contribution, we report the electronic structure damage of a molecule with ultrashort X-ray pulses under preservation of the atoms' positions. A detailed investigation of the X-ray induced processes revealed that X-ray absorption events in the solvent produce a significant number of solvated electrons within attosecond and femtosecond timescales that are capable of coulombic interactions with the probed molecules. The presented findings show a strong influence on the experimental spectra coming from ionization of the probed atoms' surroundings leading to electronic structure modification much faster than direct absorption of photons. This work calls for consideration of this phenomenon in cases focused on samples embedded in, e.g., solutions or in matrices, which in fact concerns most of the experimental studies.

  • 25. Bostrom, Jonas
    et al.
    Pitonak, Michal
    Aquilante, Francesco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Neogrady, Pavel
    Pedersen, Thomas Bondo
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Coupled Cluster and Moller-Plesset Perturbation Theory Calculations of Noncovalent Intermolecular Interactions using Density Fitting with Auxiliary Basis Sets from Cholesky Decompositions2012Inngår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 8, nr 6, s. 1921-1928Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compute noncovalent intermolecular interaction energies for the S22 test set [Phys. Chem. Chem. Phys. 2006, 8, 1985-1993] of molecules at the Moller-Plesset and coupled cluster levels of supermolecular theory using density fitting (DF) to approximate all two-electron integrals. The error due to the DF approximation is analyzed for a range of auxiliary basis sets derived from Cholesky decomposition (CD) in conjunction with correlation consistent and atomic natural orbital valence basis sets. A Cholesky decomposition threshold of 10(-4)E(h) for full molecular CD and its one-center approximation (1C-CD) generally yields errors below 0.03 kcal/mol, whereas 10(-3)E(h) is sufficient to obtain the same level of accuracy or better with the atomic CD (aCD) and atomic compact CD (acCD) auxiliary basis sets. Comparing to commonly used predefined auxiliary basis sets, we find that while the aCD and acCD sets are larger by a factor of 2-4 with triple-zeta AO basis sets, they provide results 1-2 orders of magnitude more accurate.

  • 26. Boström, Jonas
    et al.
    Aquilante, Francesco
    Pedersen, Thomas Bondo
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Analytical gradients of Hartree-Fock exchange with density fitting approximations2013Inngår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 9, nr 1, s. 204-212Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We extend the local exchange (LK) algorithm [Aquilante, F.; Pedersen, T. B.; Lindh, R. J. Chem. Phys.2007, 126, 194106] to the calculation of analytical gradients with density fitting. We discuss the features of the screening procedure and demonstrate the possible advantages of using this formulation, which is easily interfaced to a standard integral-direct gradient code. With auxiliary basis sets obtained from Cholesky decomposition of atomic or molecular integral blocks with a decomposition threshold of 10-4Eh, typical errors due to the density fitting in bond lengths, bond angles, and dihedral angles are 0.1 pm, 0.1°, and 0.5°, respectively. The overall speedup of geometry optimizations is about 1 order of magnitude for atomic natural-orbital-type basis sets but much less pronounced for correlation-consistent basis sets.

  • 27. Boström, Jonas
    et al.
    Veryazov, Valera
    Aquilante, Francesco
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Bondo Pedersen, Thomas
    Lindh, Roland
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Analytical gradients of the second-order Møller–Plesset energy using Cholesky decompositions2014Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 114, nr 5, s. 321-327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An algorithm for computing analytical gradients of the second-order Møller–Plesset (MP2) energy using density fitting (DF) is presented. The algorithm assumes that the underlying canonical Hartree–Fock reference is obtained with the same auxiliary basis set, which we obtain by Cholesky decomposition (CD) of atomic electron repulsion integrals. CD is also used for the negative semidefinite MP2 amplitude matrix. Test calculations on the weakly interacting dimers of the S22 test set (Jurečka et al., Phys. Chem. Chem. Phys. 2006, 8, 1985) show that the geometry errors due to the auxiliary basis set are negligible. With double-zeta basis sets, the error due to the DF approximation in intermolecular bond lengths is better than 0.1 pm. The computational time is typically reduced by a factor of 6–7.

  • 28.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    A Simple Communication Hypothesis: The Process of Evolution Reconsidered2018Inngår i: Progress in Theoretical Chemistry and Physics, ISSN 1567-7354, Vol. 31, s. 381-404Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The scientific basis of Darwinian evolution is reconsidered from the recent progress in chemistry and physics. The idea, promoting a stochastic communication hypothesis, reflects Kant’s famed insight that ‘space and time are the two essential forms of human sensibility’, translated to modern practices of quantum science. The formulation is commensurate with pioneering quantum mechanics, yet extended to take account of dissipative dynamics of open systems incorporating some fundamental features of special and general relativity. In particular we apply the idea to the class of Correlated Dissipative Structures, CDS, in biology construed to sanction fundamental processes in biological systems at finite temperatures, ordering precise spatio-temporal scales of free energy configurations subject to the Correlated Dissipative Ensemble, CDE. The modern scientific approach is appraised and extended incorporating both the material- as well as the immaterial parts of the Universe with significant inferences regarding processes governed by an evolved program. The latter suggests a new understanding of the controversy of molecular- versus evolutionary biology. It is demonstrated by numerous examples that such an all-inclusive description of Nature, including the law of self-reference, widens the notion of evolution from the micro- to the cosmic rank of our Universe.   

  • 29.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Chapter 1: The Relativistic Kepler Problem and Gödel’s Paradox2012Inngår i: Progress in Theoretical Chemistry and Physics 26. Progress in Methods and Applications: Quantum Systems in Chemistry and / [ed] K. Nishikawa et al., Heidelberg: Springer, 2012, s. 3-22Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Employing a characteristic functional model that conscripts arrays ofoperators in terms of energy and momentum adjoined with their conjugate operatorsof time and position, we have recently derived an extended superposition principlecompatible both with quantum mechanics and Einstein’s laws of relativity.We havelikewise derived a global, universal superposition principle with the autonomouschoice to implement, when required, classical or quantum representations. Thepresent viewpoint amalgamates the microscopic and the macroscopic domainsvia abstract complex symmetric forms through suitable operator classificationsincluding appropriate boundary conditions. An important case in point comes fromthe theory of general relativity, i.e. the demand for the proper limiting order at theSchwarzschild radius. In this example, one obtains a surprising relation betweenG¨odel’s incompleteness theorem and the proper limiting behaviour of the presenttheory at the Schwarzschild singularity. In the present study, we will apply ourtheoretical formulation to the relativistic Kepler problem, recovering the celebratedresult from the theory of general relativity in the calculation of the perihelionmovement of Mercury.

  • 30.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Molecular Foundation of Evolution2019Inngår i: QUANTUM SYSTEMS IN PHYSICS, CHEMISTRY AND BIOLOGY - THEORY, INTERPRETATION, AND RESULTS, s. 1-30Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Darwinian evolution is reconsidered from a microscopic perspective commensurate with modern advanced molecular readings of our physical world and its mathematical structure. Fundamental biological processes in physical Complex Enough Systems, CES, are defined and analyzed. The material description contrives molecular events at precise temperatures and specific timescales reflecting a fundamental spatiotemporal character of a conceptual class of Correlated Dissipative Structures, CDS. The latter is subject to a higher-order statistical ensemble, the Correlated Dissipative Ensemble, CDE, reminding of Dawkins' notion of an evolution of evolvability. The ontological question is reviewed incorporating the material and the immaterial parts of Nature. The exposition integrates well-defined teleonomic processes, objectively governed by an evolved program, leading up to a self-referential hypothesis for molecular communication, Communication Simpliciter. The principal unit of selection is intrinsic to the molecular genetic level and proceeds toward an extended phenotype that implicates perception and cognition. It is explicitly proven that active and mirror neurons provide communication protocols for cellular recognition and networking. The paradox of upside-down vision is explained together with a basic and straightforward analysis of the Necker Cube and the Spinning Dancer illusions.

  • 31.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Per-Olov Löwdin - father of quantum chemistry2017Inngår i: Molecular Physics, ISSN 0026-8976, E-ISSN 1362-3028, Vol. 115, nr 17-18, s. 1995-2024Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    During 2016, we celebrate the 100th anniversary of the birth of Per-Olov Lowdin. He was appointed to the first Lehrstuhl in quantum chemistry at Uppsala University in 1960. Lowdin introduced quantum chemistry as a field in its own right by formulating its goals, establishing fundamental concepts, like the correlation energy, the method of configuration interaction, reduced density matrices, natural spin orbitals, charge and bond order matrices, symmetric orthogonalisation, and generalised self-consistent fields. His exposition of partitioning technique and perturbation theory, wave and reaction operators and associated non-linear summation techniques, introduced mathematical rigour and deductive order in the interpretative organisation of the new field. He brought the first computer to Uppsala University and pioneered the initiation of electronic brains' and anticipated their significance for quantum chemistry. Perhaps his single most influential contribution to the field was his education of two generations of future faculty in quantum chemistry through Summer Schools in the Scandinavian Mountains, Winter Institutes at Sanibel Island in the Gulf of Mexico. Per-Olov Lowdin founded the book series Advances in Quantum Chemistry and the International Journal of Quantum Chemistry. The evolution of quantum chemistry is appraised, starting from a collection of cross-disciplinary applications of quantum mechanics to the technologically advanced and predominant field of today, virtually used in all branches of chemistry. The scientific work of Per-Olov Lowdin has been crucial for the development of this new important province of science. [GRAPHICS] .

  • 32.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    The Origin and Evolution of Complex Enough Systems in Biology2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Recent criticisms of Neo-Darwinism are considered and disputed within the setting of recent advances in chemical physics. A related query, viz., the ontological thesis, that everything is physical, confronts a crucial test on the validity of reductionism as a fundamental approach to science.  While traditional ‘physicalism’ interprets evolution as a sequence of physical accidents governed by the second law of thermodynamics, the concepts of biology concern processes that owe their goal-directedness to the influence of an evolved program. This disagreement is met by unifying basic aspects of chemistry and physics, formulating the Correlated Dissipative Ensemble, CDE, as a characterization of a ‘complex enough systems’, CES, in biology. The latter entreats dissipative dynamics; non-Hermitian quantum mechanics together with modern quantum statistics thereby establish a precise spatio-temporal order of significance for living systems. The CDE grants a unitary transformation structure that comprises communication protocols of embedded Poisson statistics for molecular recognition and cellular differentiation, providing cell-hierarchies in the organism. The present conception of evolution, founded on communication with a built-in self-referential order, offers a valid argument in favour of Neo-Darwinism, providing an altogether solid response and answer to the criticisms voiced above.

  • 33.
    Brändas, Erkki
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    The Statement of Goals of the International Society for Theoretical Chemical Physics2014Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 114, s. 961-962Artikkel i tidsskrift (Fagfellevurdert)
  • 34.
    Brändas, Erkki
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Hoffmann, Mark
    Preface2018Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 118, nr 1, s. 1-2, artikkel-id e25517Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This volume collects 11 selected papers from the scientific contributions presented at the Ninth Congress of the International Society for Theoretical Chemical Physics (ISTCP-IX), organized by the team led by Professor Mark Hoffmann at the University of North Dakota, Grand Forks, North Dakota, U.S.A., from July 17 to 22, 2016. The ISTCP-IX Congress in Grand Forks followed the format established at the eight previous meetings:

     

    ISTCP-I:               Professor Ramon Carbo-Dorca, Girona (Spain), June 28 - July 3, 1993

    ISTCP-II:             Professor Sean P. McGlynn, New Orleans (LA, USA), April 9 - 13, 1996

    ISTCP-III:            Professor Miguel Castro, Mexico City (DF, Mexico), November 8 - 13, 1999

    ISTCP-IV:            Professor Jean Maruani, Marly-le-Roi (Paris, France), July 9 - 16, 2002

    ISTCP-V:             Professor Peter Politzer, New Orleans (LA, USA), July 20 - 26, 2005

    ISTCP-VI :           Professor Yan Alexander Wang, Vancouver (BC, Canada), July 19 - 24, 2008

    ISTCP-VI I:          Professor Hiromi Nakai, Waseda (Tokyo, Japan), September 2 - 8, 2011

    ISTCP-VIII:         Professor Péter Surján, Eötvös (Budapest, Hungary), August 25 – 31, 2013.

     

     

    The 2016 venue offered the possibility for the approximately 300 participants from 26 countries to join the Congress. Speakers from each of the countries were joined by students from 9 countries.  Despite being nearly 2000 km from any sea coast (1200 km, if one counts the Arctic Ocean outlet Hudson Bay),  this Congress continued to reflect the strong international characteristics of ISTCP. Countries sending 4 or more delegates include China, Denmark, France, Germany, Hungary, Israel, Japan, Mexico, Netherlands, Norway, Switzerland, and the United Kingdom, besides the U.S.A.

     

    The International Society for Theoretical Chemical Physics, ISTCP, was founded in 1990 by Professor János Ladik at the University of Erlangen, Germany. ISTCP has the objectives to promote theoretical developments at the frontier between physics and chemistry. Additionally the goal is to allow younger researchers to interact with leading contributors of the field at regularly organized International Congresses. The Society involves an Honorary Board, a Board of Directors gathering together about 60 scientists (including 5 Nobel Laureates and 2 Wolf Prize laureates) in the fields of Theoretical Chemistry and Physics, and a Board of National Representatives covering about 35 countries/regions. The current President, since July 2000, is Professor Erkki J. Brändas, from Uppsala University, Sweden.

     

    ISTCP Congress Proceedings have been published regularly in the special issues of the International Journal of Quantum Chemistry (IJQC) and partly (2002, 2008) co-published in special volumes of Progress in Theoretical Chemistry and Physics (PTCP). Following this tradition, a small and highly targeted set of articles were solicited from researchers in several forefront fields represented at ISTCP IX.  These 11 articles are divided into 4 reviews, 3 tutorial reviews, 2 perspectives and 2 papers.

     

    ISTCP-IX was organized into 9 thematic Symposia, plus a special symposium honouring Per-Olov Löwdin.  The co-organizers of each of the symposia had significant latitude in inviting leading scientists in their areas, with attention paid to overall geographical, career stage and gender diversity.  Moreover, in an effort to stimulate conversation and cross-disciplinary inquiries, each speaker was limited to only 1 talk, and there were never more than 3 parallel sessions.  It is the careful thought and hard work of the Symposium Organizers that contributed to the success of the Congress.  The Symposia and their Organizers are:

     

     1. Accurate Thermochemistry (Angela Wilson, Branko Ruscic)

     2. Chemical Insights (Paul Ayers, Pedro Salvador)

     3. Complex Systems (Jiali Gao, Nandini Ananth)

     4. Dynamics (George Schatz, Keli Han)

     5. Electronic Structure (Piotr Piecuch, Jiri Pittner)

     6. Subsystems in Density Functional Theory (Tomasz Wesolowski, Christoph Jacob)

     7. Emerging Methods for Quantum N-body Problem (Seiichiro Ten-no, Edward Valeev)

      8. Molecular Properties (Trygve Helgaker)

      9. Per-Olov Löwdin Symposium (Erkki Brändas)

    10. Relativistic Methods (Wenjian Liu, Jochen Autschbach)

     

    In addition to symposia, there were 9 plenary talks for which all participants were gathered.  The early and enthusiastic support of the plenary speakers were critical to providing high visibility for the conference, and we are grateful to them.

    1. Kim Baldridge, Structure-Property Relationships of Curved Aromatic Materials from First Principles

    2. Ria Broer, Theoretical and Computational Studies for the Design of Organic Photovoltaic Materials

    3. Benedetta Mennucci, Ab Initio Simulation of the Optical Spectroscopy of Multichromophoric Systems

    4. William Miller, Symmetrical Quasi-Classical Model for Classical Molecular Dynamics Simulations of Electronically Non-adiabatic Processes

    5. Debashis Mukherjee, A Survey of the Unitary Group Adapted MRCC and MRPT Theories: SU vs SS Approaches

    6. Martin Quack, The Quantum Dynamics of Chiral and Achiral Molecules including Electroweak Parity Violation: Theory and Experiment

    7. Andreas Savin, Multireference Density Functional Theory

    8. Henry F. Schaefer III

    9. Tamar Seideman, Coherent Alignment in Complex Systems

     

    This Preface does not allow a comprehensive account of all the excellent contributions to the conference or to the articles submitted to these proceedings. The 4 Reviews consider relativistic treatment of molecular properties, charge transfer in molecular crystals and in organic polymeric materials, and advances in subsystem embedding.  These are complemented by Tutorial Reviews on molecular motors, the inverse approach to exchange-correlation potentials, and the random phase approach in the context of reduced density matrices.  One full paper considers the chemistry of new super heavy elements and the other on data considerations in petascale computations of chemical and biological systems.  There are Perspectives on non-collinear electronic structure calculations and calculations of atoms and molecules in strong magnetic fields.  The articles in the proceedings can be grouped roughly into extension of theory and calculations into much larger systems than could be considered just a few years ago and extension of precision in theory and calculations.

     

    We are grateful to all organizers for their exceptional work. In particular we want to thank Professor Janos Ladik, Founder of the Society and Honorary Chair. We were sorry to learn that he could not participate in person but his kind interest and strong support in the various matters of the venue were indeed a positive factor. We are indebted to our excellent organizing committee that guided us in producing a well-balanced, global perspective on cutting-edge chemical physics: Gustavo Aucar, T. Daniel Crawford, Peter Gill, Anna Krylov, Hiromi Nakai, Katarzyna Pernal, Péter Surján and Ágnes Szabados. We are also grateful to all session chairs, speakers, poster presenters, as well as all student volunteers, contributing significantly to the great success of the meeting. For more details regarding the Congress we refer to our web site http://istcp-2016.org/.

     

    The ISTCP-IX Congress took place at the Alerus Center, near the University of North Dakota campus. The assistance of the staff at the Alerus Center and at the Greater Grand Forks Convention and Visitors Bureau were critical in facilitating an event of this complexity in this city of only 60,000 people.  But, most of all, it was the unwavering support of former UND President Robert Kelley, Vice President of Academic Affairs and Provost Tom DiLorenzo, Vice President for Research and Economic Development Grant McGimpsey, and Division of Research Staff Cathy Lerud and Carla Kellner that made this happen.

     

    We are pleased to express our sincere thanks to our sponsors.  In addition to generous support from the University of North Dakota and the Greater Grand Forks Convention and Visitors Bureau, which allowed low-cost registration and accommodations for students, we are pleased to be able to acknowledge additional support from Physical Chemistry Chemical Physics and Department of Energy. These contributions from our sponsors have enabled us to maintain the high-quality standard of the Congress.

     

    The guest editors of this Special Issue, finally, want to thank the authors, who accepted our invitation to contribute to these proceedings, and in so doing provide a perspective of some cutting edge areas of inquiry in chemical physics.  The IXth Congress of ISTCP included both these areas and many more. We hope that all researchers with a great interest in theory and methods related to fundamental scientific problems and future progress of our field will appreciate this volume.

     

    Mark Hoffmann

    Erkki Brändas

     

     

  • 35.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    A Comment on Background Independence in Quantum Theory2016Inngår i: Journal of the Chinese Chemical Society (Taipei), ISSN 0009-4536, E-ISSN 2192-6549, Vol. 63, nr 1, s. 11-19Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this communication we take up the significance and purpose of selecting the proper coordinate system from the flat space-time of non-relativistic theories to the quantum theoretic formulation of general relativity. The universal background problem is straight forwardly framed as a momentum-energy portrait in nexus with its space-time conjugates. The description is based on operator matrix algebra, where the related analogue of the secular equation yields a Klein-Gordon type equation and the associated Minkowski eigentime element. The energy-momentum and their conjugate partners are represented by spaces that have (+,-) signatures. The general theory implicates both non-zero- and zero rest-mass entities, and it is proved that the conjugate relationship between energy and time provide a simple derivation of the Schwarzschild line element for the case of a gravitational field outside a spherical non-rotational uncharged mass. This result, indicating the appearance of a black hole as a true singularity in the energy-time formulation, and obtained as a direct consequence of their conjugate relationship, manifests background independence in concert with Einstein's equivalence principle. Inducing a reformulation of the Lorentz Transformation respecting the indefinite Minkowski metric, displays an interesting relation between complex dilations and indefinite metric spaces, validating the complex symmetric ansatz.

  • 36.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    A Zero Energy Universe Scenario: From Unstable Chemical States to Biological Evolution and Cosmological Order2015Inngår i: Frontiers In Quantum Methods And Applications In Chemistry And Physics / [ed] Nascimento, MAC; Maruani, J; Brandas, EJ; DelgadoBarrio, G, Heidelberg: Springer, 2015, Vol. A29, s. 247-284Konferansepaper (Fagfellevurdert)
    Abstract [en]

     A Zero-Energy Universe Scenario (ZEUS) is portrayed and its implications are examined and clarified. The formulation is based on the algebra of observables, e.g. the momentum-energy and their canonical conjugate partner space-time. Operators represent them in quantum theory and classical canonical variables in nonquantum applications. Conjugate operator/variable arrays impart a united edifice for a zero-energy universe scenario, which corresponds to using a non-positive definite metric for the manifestation of unstable states as recently employed in the field of chemical physics. Analogous formulations within a general complex symmetric setting provide a compelling analogy between Einstein s theory of general gravity and Gödel s first incompleteness theorem. This scenario brings together up-to-date theories in chemical physics with modern research in biology, physics, and astronomy. This unification establishes an edifice for the various arrows of time as well as authenticates Darwin s Paradigm of Evolution from the microscopic realm to the cosmological domain.

  • 37.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Arrows of Time and Fundamental Symmetries in Chemical Physics2013Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 113, nr 3, s. 173-184Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The field of chemical and physical processes, using principal microscopic techniques, should today allegedly be identified as a fundamental branch of physics. The discipline, by tradition known as chemical physics, is undergoing rapid progress. This assessment, illustrated by the advances presented at this Congress, is characterized by modern developments and novel trends with a concrete bearing on original theoretical understanding, with the possibility to go beyond traditional interpretations and explanations. In this vein, we do not only consider nonrelativistic treatments of various types of molecules including interactions between these and polymers, theoretical examinations of chemical reactions, surface states and interface states, disordered phenomena etc., but also recent progress together with non-Hermitian extensions to quantum mechanics and statistical mechanics. The latter leads to a united edifice of theoretical constructions including the law of self-reference, which emerges in analogy with the illustrious Gödel theorem(s) of mathematical logic, that is, the assertion of the inherent limitations of all nontrivial axiomatic systems. The current development begets the foundation of temporal processes and associated invariance principles including the valuation of the various arrows of time. The present conjugate operator array formulation supports the possible gravitational origin of molecular chirality and other principal symmetry violations.

  • 38.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Arrows of time and fundamental symmetries in chemical physics2013Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 113, nr 3, s. 173-184Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The field of chemical and physical processes, using principal microscopic techniques, should today allegedly be identified as a fundamental branch of physics. The discipline, by tradition known as chemical physics, is undergoing rapid progress. This assessment, illustrated by the advances presented at this Congress, is characterized by modern developments and novel trends with a concrete bearing on original theoretical understanding, with the possibility to go beyond traditional interpretations and explanations. In this vein, we do not only consider nonrelativistic treatments of various types of molecules including interactions between these and polymers, theoretical examinations of chemical reactions, surface states and interface states, disordered phenomena etc., but also recent progress together with non-Hermitean extensions to quantum mechanics and statistical mechanics. The latter leads to a united edifice of theoretical constructions including the law of self-reference, which emerges in analogy with the illustrious Godel theorem(s) of mathematical logic, that is, the assertion of the inherent limitations of all nontrivial axiomatic systems. The current development begets the foundation of temporal processes and associated invariance principles including the valuation of the various arrows of time. The present conjugate operator array formulation supports the possible gravitational origin of molecular chirality and other principal symmetry violations.

  • 39.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Dissipative Structures and Biological Evolution2013Inngår i: Understanding Complex Systems: Without Bounds: A Scientific Canvas of Nonlinearityand Complex Dynamics, Understanding Complex Systems, / [ed] Ramon G. Rubio et al., Berlin-Heidelberg: Springer, 2013, s. 623-633Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    In this commemorative volume we honor Professor M. G. Velarde (MGV) on 4account of his remarkable achievements in the new and exciting domain of Complex Systems and Non-Linear Dynamics in general and the study of novel electric trans- 6port mechanisms in particular, for recent references see e.g. [1–3]. Our trajectories first crossed during a workshop, under the chairmanship of Profs. I. Prigogine and G. Nicolis, to discuss the European Commission’s working document on Prospects in the Science of Complexity in European Research within the Fourth Framework Programme in 1994. In these panel reports fundamental problems in complex systems research were laid down with particular emphasis on viewing phenomena from the microscopic scale to the macroscopic one including the emergence of selforganization in the information technology and the biology sectors.

  • 40.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Examining the Limits of Physical Theory: Analytical Principles and Logical Implications2012Inngår i: Unstable States in the Continuous Spectra: Pt II: Interpretation, Theory and Applications, Elsevier, 2012, s. 33-117Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Owing to the remarkable agreement between precise quantum chemical predictions and the most accurate experiments including sophisticated advanced instrumentation, it is usually concluded that the many-body Schrodinger equation in particular and also quantum mechanics in general describe reality to an unsurpassed exactitude. However, the correlation between the micro- and the macroscopic (classical) levels leads to well-known paradoxes in our fundamental scientific understanding. Hence, our aim is to examine the characteristics and the rationale for developing an analytic foundation for rigorous extensions of quantum mechanics beyond its long-established domain in physics, chemistry, and biology. In this discourse, we will see the fundamental importance of the notion of so-called unstable states, their definition, determination, and characterization. Within this vein, paradoxical and inconsistent issues related to the various attempts to apply microscopic organization to derive scientific laws in the macroworld are considered. The theoretical framework is augmented with quantum logical principles via a reformulation of Goders theorems. We arrange the assemblage of the mathematical ideas as follows. First, we give a detailed examination of the second-order differential equation with respect to specific boundary conditions and associated spectral expansions, followed by a general formulation via precise complex symmetric representations exemplified and derived from dilation analytic transformations. Associated dynamical timescales are represented and investigated via the corresponding Dunford formula. Relevant applications, where the above-mentioned unstable or metastable states emerge, are reviewed and compared with conventional bound-state and scattering theories with an analysis of their directive performance and stability. The manifestation and generation of triangular Jordan block entities as extended versions of nonstationary states are derived and further investigated and generalized to thermally excited scattering environments of open dissipative systems. Illustrative applications to condensed- and soft condensed matter are provided, and a surprising treatment is given to the Einstein laws of relativity. As a conclusion, we emphasize the computational and model building advantages of a conceptual continuation of quantum mechanics to rigorously incorporate universal complex resonance structures, their life times, and associated localization properties. We also prove the appearance of nonconventional time evolution including the emergence of Jordan blocks in the propagator, which leads to the origin of so-called coherent dissipative structures (CDSs) derived via uniquely defined spatiotemporal neumatic (from the Greek pneuma) units. This self-referential organization yields specific information bearing transformations, cf. the Godel encoding system, which might connect developmental and building matters with functional and mental issues within a biological framework at the same time providing background-dependent features of both special and general relativity theory. With these theoretical ideas as background, we advocate a new clarification of the dilemma facing micro macro correlates including an original characterization of unus mundus, i.e., the underlying holistic reality. Examining the Limits of Physical Theory: Analytical Principles and Logical Implications

  • 41.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Frontiers in Quantum Methods and Applications in Chemistry and Physics: Selected Proceedings of QSCP-XVIII (Paraty, Brazil, December, 2013)2015 (oppl. A29)Bok (Fagfellevurdert)
    Abstract [en]

    This volume collects 15 selected papers from the scientific contributions presented at the Eighteenth International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XVIII), which was organized by Prof. M.A.C. Nascimento at the Casa da Cultura in Paraty (Rio de Janeiro), Brazil, from December 1 to 7, 2013. Over 100 scientists from 25 countries attended this meeting. Participants of the QSCP-XVIII workshop discussed the state of the art, new trends, and future evolution of methods in molecular quantum mechanics, and their applications to a wide variety of problems in chemistry, physics, and biology. The high-level attendance attained in this conference was particularly gratifying. It is the renowned interdisciplinary nature and friendly feeling of QSCP meetings that make them such successful discussion forums. Paraty is located in the south coast of Brazil, 250 km from Rio de Janeiro, the state capital. This historical town, nestled on the Costa Verde, is a living memory of the Gold Cycle: gold extracted from the mines of the state of Minas Gerais was transported by mule along the Estrada Real down to Paraty and from there shipped to Rio de Janeiro. The area of Paraty is probably the only place on the planet that brings together a native forest about 80 % preserved, a bay protected from the open sea by over a hundred islands, and a seventeenth-century town which is regarded by UNESCO as the most harmonious baroque location in the world. From this past originate the relics and traditions that so enchant the visitors: a wonderful wealth of cultural and ecological attractions, as well as a tourist infrastructure consisting of cosy inns and picturesque restaurants. Details of the Paraty meeting, including the scientific program, can be found on the web site: http://www.qscp2013.iq.ufrj.br. Altogether, there were 18 morning and afternoon sessions, where 55 plenary talks were given, and two evening poster sessions, with 18 fl ash presentations for a total of 38 displayed posters. We are grateful to all participants for making the QSCP-XVIII workshop a stimulating experience and a great success. QSCP-XVIII followed the traditions established at previous workshops:

     QSCP-I, organized by Roy McWeeny in 1996 at San Miniato (Pisa, Italy);

    QSCP-II, by Stephen Wilson in 1997 at Oxford (England);

    QSCP-III, by Alfonso Hernandez-Laguna in 1998 at Granada (Spain);

    QSCP-IV, by Jean Maruani in 1999 at Marly-le-Roi (Paris, France);

    QSCP-V, by Erkki Brä ndas in 2000 at Uppsala (Sweden);

    QSCP-VI, by Alia Tadjer in 2001 at Sofi a (Bulgaria);

    QSCP-VII, by Ivan Hubac in 2002 near Bratislava (Slovakia);

    QSCP-VIII, by Aristides Mavridis in 2003 at Spetses (Athens, Greece);

    QSCP-IX, by Jean-Pierre Julien in 2004 at Les Houches (Grenoble, France);

    QSCP-X, by Souad Lahmar in 2005 at Carthage (Tunisia);

    QSCP-XI, by Oleg Vasyutinskii in 2006 at Pushkin (St Petersburg, Russia);

    QSCP-XII, by Stephen Wilson in 2007 near Windsor (London, England);

    QSCP-XIII, by Piotr Piecuch in 2008 at East Lansing (Michigan, USA);

    QSCP-XIV, by Gerardo Delgado-Barrio in 2009 at El Escorial (Madrid, Spain);

    QSCP-XV, by Philip Hoggan in 2010 at Cambridge (England);

    QSCP-XVI, by Kiyoshi Nishikawa in 2011 at Kanazawa (Japan);

    QSCP-XVII, by Matti Hotokka in 2012 at Turku (Finland).

    The lectures presented at QSCP-XVIII were grouped into nine areas in the field of Quantum Systems in Chemistry, Physics, and Biology , ranging from Concepts and Methods in Quantum Chemistry and Physics through Molecular Structure and Dynamics, Reactive Collisions and Chemical Reactions, to Computational Chemistry, Physics, and Biology. The width and depth of the topics discussed at QSCP-XVIII are refl ected in the contents of this volume of proceedings in the book series Progress in Theoretical Chemistry and Physics, which includes four sections:

    I. Quantum Methodology (3 papers);

    II. Structure and Properties (4 papers);

    III. Molecular Dynamics (4 papers);

    IV. Fundamental Theory (3 papers).

    In addition to the scientifi c program, the workshop had its usual share of cultural events. There was a boat cruise in the Paraty bay and a show by the internationally known group Contador de Estórias . The award ceremony of the CMOA Prize and Medal took place during the congress banquet in the most traditional restaurant of Paraty, Margarida Café. The CMOA Prize was shared between two selected nominees: Jer-Lai Kuo and Yuan-Chung Cheng, both from Taiwan. Two other nominees, Jhih-Wei Chu (from Taiwan) and Andriy Loboda (from Ukraine) received a certifi cate of nomination and a gift. The prestigious CMOA Medal for senior scientists was awarded to Prof. Lorentz Cederbaum (University of Heidelberg, Germany). According to a custom of QSCP meetings, the venue of the next yearly workshop was announced to be in Odessa, Ukraine, in 2015, followed by one in Taipei, Taiwan, in 2016. However, due to the political events, the dates of the two meetings were later reversed. We are pleased to acknowledge the generous support given to the QSCP-XVIII conference by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the City of Paraty Convention Bureau and Casa da Cultura  of Paraty. We are most grateful to all members of the Local Organizing Committee for their work and dedication, which made the stay and work of participants both pleasant and fruitful. We also thank the members of the International Scientifi c Committee and the Honorary Committee for their invaluable expertise and advice. We hope the readers will fi nd as much interest in consulting these proceedings as the participants in attending the meeting.

    M.A.C. Nascimento

    Jean Maruani

    Erkki J. Brändas

    Gerardo Delgado-Barrio

  • 42.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Molecular theory of the genetic code2018Inngår i: Molecular Physics, ISSN 0026-8976, E-ISSN 1362-3028, Vol. 116, nr 19-20, s. 2622-2632Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This article honours Michael Baer on the occasion of his 80th birthday and celebrates his scientific contributions to non-adiabatic chemical physics. This undertaking prompts the presentation of a first principles molecular theory of the genetic code. Jacques Monod's classic essay, 'Chance and Necessity', is exercised as a platform for this discussion. In particular the controversial concept of teleonomy is considered and evaluated in relation to modern developments in chemical physics.

  • 43.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Non-hermitian quantum mechanics2012Inngår i: International Journal of Quantum Chemistry, ISSN 0020-7608, E-ISSN 1097-461X, Vol. 112, nr 15, s. 2764-2765Artikkel, omtale (Annet vitenskapelig)
  • 44.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Preface2015Inngår i: Advances in Quantum Chemistry, Amsterdam: Academic Press, 2015, , s. 425Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    PREFACE

     

    Advances in Quantum Chemistry provides researchers in quantum chemistry, physical chemistry and chemical physics with up-to-date surveys, invited reviews and highlights of recent achievements. Although the field of quantum chemistry has emerged as a subject of its own it overlaps fundamentally with other fields like applied mathematics, theoretical biology, signal processing including applications in medicine.

    In the present volume, the readers are presented with an exciting combination of themes, i.e. a description of anti-ferromagnetism in copper oxide, proton-conducting mechanism in solid oxide fuel cells, time-dependent processes in molecular processes, the essence of chemical bonding, biological models for repair of cellular radiation damage, momentum space methods for accurate molecular electronic structure calculations and functional theoretic models for hydrogen bonding networks and proton wires in water oxidation reactions.

     

    The first chapter in this volume Chapter, by Kimichika Fukushima, deals with the description of antiferromagaetism in copper oxides using density functional theory.  This is a longstanding problem, and the solution is discussed in terms of the variational method based SIWB (surrounding or solid Coulomb-potential-induced well for basis set) scheme.  The characteristics of the well stabilizing the O2- ion and making antiferromagaetism possible are discussed.

     

    In the second chapter Taku Onishi investigates proton-conducting mechanisms in solid electrolyte oxide fuel cells. Specifically LaAlO3 perovskite is allegedly proposed and compared with conventional perovskite-type conductors. The analysis, based on hybrid Kohn-Sham density functional theory, characterizing the proton conducting pathways, confronts mechanism elucidation and material design, including safety aspects regarding the conflicts with oxide ion conduction. In particular as the oxygen vacancy, doped to incorporate the proton, may conflict with oxide ion conduction, it was concluded, when utilizing LaAlO3 that the temperature strictly regulates the prevention of coincident oxide ion conduction.

     

    In Chapter 3, Yngve Öhrn presents and discusses a time dependent treatment of molecular processes.  The scheme, known as electron nuclear dynamics (END), is described in formal detail wich includes the choice of coordinate system and its effect on the molecular Hamiltonian, the choice of molecular wave function and the particular role of the time-dependent parameters that originates in a coherent state representation is discussed.  References are given to some of the work done with ENDYNE.

     

    Chapter 4 concerns chemical bonding. In the present contribution, Elena Sheka describes her experiences of chemical bonds in various investigations of structural chemistry. The investigations comprise a rich selection of chemical compounds from single, double and triple bonds, involving carbon, to provoking the main issues of modern chemistry devoted to fullerenes and recently graphene, the famous nobeliated 2D solid. The structures investigated permit a rather simple methodology based on the odd electron strategy, predominantly advocated by the author.

     

    In chapter 5, Dževad and Karen Belkić, advance their notable input to a far-reaching and across-the-board biophysical and chemical analysis of surviving fractions of irradiate cells and their new mechanistic repair-based Padé linear-quadratic model, PLQ. As current dose planning systems in radiotherapy, based on linear-quadratic models (LQ), is satisfactory only at low doses and inadequate for treatment modalities, or hyperfractionation, it is demonstrated that PLQ significantly outperforms LQ models regarding cell survival fractions including saturation effects.

     

    Although Gaussian technology has greatly simplified mainstream quantum chemistry, it is a cognizant fact that exponential-type orbitals, ETO’s, are better suited for molecular electronic structure calculations. In chapter 6, James and John Avery contribute to new progress in quantum chemistry by using Fock’s projection of 3D momentum space to 4D hyperspherical harmonics. The authors exploit their extraordinary competence in treating so-called Coulomb Sturmians to derive a general mathematical theorem including elegant, rapid and accurate evaluations of appropriate quantum mechanical molecular integrals. The ensuing closed form expression is illustrated by adequate examples.

     

    The final contribution to this volume, Chapter 7 by Yamaguchi et al., uses a QM/MM method to calculate complicated properties of water oxidation in the biosystem known as photosystem II (PSII).  Water oxidation in the oxygen evolving complex of PSII is dependent on the hydrogen-bonding networks.  The QM/MM computations elucidate the network structures: hydrogen–bonding O…. O(N) and O…H distances and O(N)-H…O angles in PRP, together with the Cl-O(N) and Cl…H distances and O(N)-H…Cl angles for chloride anions.  The results are compared with experiment.

     

    As advertised, the contents of this volume are multifarious as regards both fundamental theory and innovative applications. The contributing authors have made great strides to share their insights with the reader of the Advances. As series editors, we hope that the present volume will impart the same pleasure and enjoyment as we faced during the preparation of this volume.

     John R. Sabin and Erkki J. Brändas

  • 45.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Proposed Explanation of the Phi Phenomenon from a Basic Neural Viewpoint2015Inngår i: Quantum Biosystems, ISSN 1970-223X, Vol. 6, nr 1, s. 160-171Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A first principle representation of integrated quantum thermal correlations of autaptic neurons associated with conscious brain mechanisms is proposed – the former termed the retinoid system by Trehub. Within this formulation, one descends on a set of unitary transformations yielding generic symmetries of the reduced neuronal dynamics illustrating the projection of the abstract degrees of freedom onto 3D space. The actual spatio-temporal symmetry suggests a general mirroring interpretation of the autapse as given by the structure of the neuronal network. The theory prompts a motif for the abundance of chemical synapses from a neuron onto itself and provides a simple explanation of the phi phenomenon and the Necker cube optical illusion.

  • 46.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Some Biochemical Reflections on Information and Communication2013Inngår i: Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Heidelberg-New York: Springer Science+Business Media B.V., 2013, s. 75-98Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The biochemical aspects of communication have been investigated via anextended framework of original quantum-statistical concepts. The key idea developsfrom the notion of a so-called Spatio-Temporal Neumatic, STN, configuration,an open dissipative structure resting on the boundaries connecting micro-, meso- and macroscopic levels. In this category one finds de novo self-organization of molecular motion, enzymatic catalysis and the self-assembly of nano-structures all the way to biologically relevant processes like cell evolution, cellular neurobiology etc. The possibility to store and communicate coded messages in this enlarged organization is documented and recognized, unifying various proposals of theoretical understanding including in particular the law of Gödelian self-reference. It is demonstrated that intra-cell and inter-cell order leads to differentiation through a Poissonian modus operandi. The latter lacks intrinsic memory, but its statistical nature gives way to something non-intrinsic of teleonomic significance. Various consequences of this idea prompt a broadened notion of communication and information, generating encodable cell differentiation through cell quality value factors resonating through original communication channels accessible through Poisson statistics. It is shown that inter-cell communication is temporally dominated while intra-cell information is largely spatio-controlled. The nested (spatio-temporal) property of the “code of codes” extends from the genetic- through the socio-, ecological- and to the cosmological rank, while taking account of a more stringent and appraisable representation of the contemporary concept of a meme.

  • 47.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    There Are Quantum Jumps2015Inngår i: Mathematics, ISSN 2227-7390, Vol. 3, nr 2, s. 319-328Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this communication we take up the age-old problem of the possibility to incorporate quantum jumps. Unusually, we investigate quantum jumps in an extended quantum setting, but one of rigorous mathematical significance. The general background for this formulation originates in the Balslev-Combes theorem for dilatation analytic Hamiltonians and associated complex symmetric representations. The actual jump is mapped into a Jordan block of order two and a detailed derivation is discussed for the case of the emission of a photon by an atom. The result can be easily reassigned to analogous cases as well as generalized to Segrè characteristics of arbitrary order.

  • 48.
    Brändas, Erkki J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Time Asymmetry and the Evolution of Physical Laws2012Inngår i: Advances in the Theory of Quantum Systems in Chemistry and Physics, 2012, s. 3-34Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In previous studies we have advocated a retarded-advanced sub-dynamics that goes beyond standard probabilistic formulations supplying a wide-range of interpretations. The dilemma of time reversible microscopic physical laws and the irreversible nature of thermodynamical equations are re-examined from this point of view. The subjective character of statistical mechanics, i.e. with respect to the theoretical formulation relative to a given level of description, is reconsidered as well. A complex symmetric ansatz, incorporating both time reversible and time irreversible evolutions charts the evolution of the basic laws of nature and reveals novel orders of organization. Examples are drawn from the self-organizational behaviour of complex biological systems as well as background dependent relativistic structures including Einstein's laws of relativity and the perihelion movement of Mercury. A possible solution to the above mentioned conundrum is provided for, as a consequence of a specific informity rule in combination with a Godelian like decoherence code protection. The theory comprises an interesting cosmological scenario in concert with the second law.

  • 49.
    Brändas, Erkki J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Lunell, Sten
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Obituary: Osvaldo Goscinski (1938–2013)2015Annet (Annet vitenskapelig)
  • 50.
    Brändas, Erkki J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.
    Sabin, John R.
    Preface2018Inngår i: Advances in Quantum Chemistry: Volume 77 / [ed] Sabin, JR; Brändas, EJ, Elsevier, 2018Kapittel i bok, del av antologi (Annet vitenskapelig)
12345 1 - 50 of 250
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf