uu.seUppsala University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ohlin, Mathias
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Fornell, Anna
    Lund University, Lund, Sweden.
    Bruus, Henrik
    Tech Univ Denmark, Lyngby, Denmark.
    Tenje, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Uppsala University, Science for Life Laboratory, SciLifeLab. Lund University, Lund, Sweden.
    Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis2017In: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 27, no 8, article id 084002Article in journal (Refereed)
    Abstract [en]

    We have fabricated a silicon-glass two-phase droplet microfluidic system capable of generating sub 100 µm-sized,   =  (74  ±  2) µm, spherical droplets at rates of up to hundreds of hertz. By implementing a two-dimensional (2D) acoustophoresis particle-positioning method, we show a fourfold improvement in both vertical and lateral particle positioning inside the droplets compared to unactuated operation. The efficiency of the system has been optimized by incorporating aluminum matching layers in the transducer design permitting biocompatible operational temperatures (<37 °C). Furthermore, by using acoustic actuation, (99.8  ±  0.4)% of all encapsulated microparticles can be detected compared to only (79.0  ±  5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain the origin of these patterns we simulated numerically the fluid flow inside the droplets and compared with the experimental findings.

  • 2.
    Ohlin, Mathias
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
    Fornell, Anna
    Department of Biomedical Engineering, Lund University, Sweden.
    Bruus, Henrik
    Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.
    Tenje, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Using two-dimensional acoustophoresis for improved particle positioning in droplet microfluidics2017Conference paper (Refereed)
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf