uu.seUppsala University Publications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abouzayed, Ayman
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Yim, Cheng-Bin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer2019In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 11, no 7, article id 358Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) are overexpressed in most prostate cancers. GRPR expression is higher in early stages while PSMA expression increases with progression. The possibility of targeting both markers with a single theranostics radiotracer could improve patient management. Three GRPR/PSMA-targeting bispecific heterodimers (urea derivative PSMA-617 and bombesin-based antagonist RM26 linked via X-triazolyl-Tyr-PEG2, X = PEG2 (BO530), (CH2)(8) (BO535), none (BO536)) were synthesized by solid-phase peptide synthesis. Peptides were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity for all heterodimers was studied in PC-3 (GRPR-positive) and LNCaP (PSMA-positive) xenografts. [I-125]I-BO530 was evaluated in PC-3pip (GRPR/PSMA-positive) xenografts. Micro single-photon emission computed tomography/computed tomography (microSPECT/CT) scans were acquired. The heterodimers were radiolabeled with high radiochemical yields, bound specifically to both targets, and demonstrated high degree of activity retention in PC-3pip cells. Only [I-125]I-BO530 demonstrated in vivo specificity to both targets. A biodistribution study of [I-125]I-BO530 in PC-3pip xenografted mice showed high tumor activity uptake (30%-35%ID/g at 3 h post injection (pi)). Activity uptake in tumors was stable and exceeded all other organs 24 h pi. Activity uptake decreased only two-fold 72 h pi. The GRPR/PSMA-targeting heterodimer [I-125]I-BO530 is a promising agent for theranostics application in prostate cancer.

  • 2.
    Adeyemi, Ahmed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Wetzel, Alexander
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Bergman, Joakim
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Brånalt, Jonas
    AstraZeneca, Dept Med Chem, Cardiovasc Renal & Metab IMED Biotech Unit, Pepparedsleden 1, S-43183 Molndal, Sweden.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Regio- and Stereoselective Synthesis of Spirooxindoles via Mizoroki-Heck Coupling of Aryl Iodides2019In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 30, no 1, p. 82-88Article in journal (Refereed)
    Abstract [en]

    A method for highly regio- and stereoselective intramolecular Mizoroki-Heck 5- exo cyclization of aryl iodides to the corresponding spirooxindoles has been developed. Electron-rich and electron-deficient aryl iodide precursors were selectively ring-closed with high stereoselectivity and good yields. The double-bond position in the cyclopentene ring was controlled by careful choice of reaction conditions. These rare spiro compounds were further functionalized to rigidified unnatural amino acid derivatives by a subsequent gas-free Pd(0)-catalyzed alkoxycarbonylation, followed by selective O - and N -deprotections.

  • 3.
    Bergman, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brandt, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Synthesis of 11C-Labelled Ureas by Palladium(II)-Mediated Oxidative Carbonylation2017In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 22, no 10, article id 1688Article in journal (Refereed)
    Abstract [en]

    Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [C-11] carbon monoxide. Starting with amines and [C-11] carbon monoxide, both symmetrical and unsymmetrical C-11-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [C-11] carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/mu mol-319 GBq/mu mol). DFT calculations were found to support a reaction mechanism proceeding through an C-11-labelled isocyanate intermediate.

  • 4.
    Eriksson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Roy, Tamal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sawadjoon, Supaporn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Bachmann, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sköld, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Weis, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Synthesis and preclinical evaluation of the CRTH2 antagonist [11C]MK-7246 as a novel PET tracer and potential surrogate marker for pancreatic beta-cell mass2019In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 71, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Introduction: MK-7246 is a potent and selective antagonist for chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Within the pancreas CRTH2 is selectively expressed in pancreatic β-cells where it is believed to play a role in insulin release. Reduction in β-cell mass and insufficient insulin secretion in response to elevated blood glucose levels is a hallmark for type 1 and type 2 diabetes. Reported here is the synthesis of [11C]MK-7246 and initial preclinical evaluation towards CRTH2 imaging. The aim is to develop a method to quantify β-cell mass with PET and facilitate non-invasive studies of disease progression in individuals with type 2 diabetes.

    Methods: The precursor N-desmethyl-O-methyl MK-7246 was synthesized in seven steps and subjected to methylation with [11C]methyl iodide followed by hydrolysis to obtain [11C]MK-7246 labelled in the N-methyl position. Preclinical evaluation included in vitro radiography and immune-staining performed in human pancreatic biopsies. Biodistribution studies were performed in rat by PET-MRI and in pig by PET-CT imaging. The specific tracer uptake was examined in pig by scanning before and after administration of MK-7246 (1 mg/kg). Predicted dosimetry of [11C]MK-7246 in human males was estimated based on the biodistribution in rat.

    Results: [11C]MK-7246 was obtained with activities sufficient for the current investigations (270±120 MBq) and a radiochemical purity of 93±2%. The tracer displayed focal binding in areas with insulin positive islet of Langerhans in human pancreas sections. Baseline uptake in pig was significantly reduced in CRTH2-rich areas after administration of MK-7246; pancreas (66% reduction) and spleen (88% reduction). [11C]MK-7246 exhibited a safe human predicted dosimetry profile as extrapolated from the rat biodistribution data.

    Conclusions: Initial preclinical in vitro and in vivo evaluation of [11C]MK-7246 show binding and biodistribution properties suitable for PET imaging of CRTH2. Further studies are warranted to assess its potential in β-cell mass imaging and CRTH2 drug development.

  • 5.
    Isaksson, Rebecka
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Casselbrant, Anna
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Elebring, Erik
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lars, Fändriks
    Department of Gastrosurgical Research and Education, Sahlgrenska Academy.
    Direct Stimulation of Angiotensin II Type 2 Receptor Reduce Nitric Oxide Production in Lipopolysaccharide Treated RAW264.7 Mouse MacrophagesManuscript (preprint) (Other academic)
  • 6.
    Isaksson, Rebecka
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Lindman, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Wannberg, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sallander, Jessica
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Backlund, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Baraldi, Dhaniel
    Department of Pharmacology, Monash University.
    Widdop, Robert
    Department of Pharmacology, Monash University.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Åqvist, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Gutierrez de Teran, Hugo
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Gising, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    A Series of Analogues to the AT2R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode2019In: ChemistryOpen, ISSN 2191-1363, Vol. 8, no 1, p. 114-125Article in journal (Refereed)
    Abstract [en]

    We here report on our continued studies of ligands binding tothe promising drug target angiotensin II type 2 receptor (AT2R). Two series of compounds were synthesized and investigated. The first series explored the effects of adding small substituents to the phenyl ring of the known selective nonpeptide AT2R antagonist C38, generating small but significant shifts in AT2R affinity. One compound in the first series was equipotent to C38 and showed similar kinetic solubility, and stability in both human and mouse liver microsomes. The second series was comprised of new bicyclic derivatives, amongst which one ligand exhibited a five-fold improved affinity to AT2R ascompared to C38. The majority of the compounds in the second series, including the most potent ligand, were inferior to C38 with regard to stability in both human and mouse microsomes. In contrast to our previously reported findings, ligands with shorter carbamate alkyl chains only demonstrated slightly improved stability in microsomes. Based on data presented herein, a more adequate, tentative model of the binding modes of ligand analogues to the prototype AT2R antagonist C38 is proposed, as deduced from docking redefined by molecular dynamic simulations.

  • 7.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Konijnenberg, Mark W.
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands.
    Maina, Theodosia
    NCSR Demokritos, INRASTES, Mol Radiopharm, Athens, Greece.
    Nock, Berthold A.
    NCSR Demokritos, INRASTES, Mol Radiopharm, Athens, Greece.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    de Jong, Marion
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist 177Lu-DOTAGA-PEG2-RM262019In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 145, no 12, p. 3347-3358Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer and are suitable for targeted radionuclidetherapy (TRT). We optimized the bombesin-derived GRPR-antagonist PEG2-RM26 for labeling with 177Lu and further determinedthe effect of treatment with 177Lu-labeled peptide alone or in combination with the anti-HER2 antibody trastuzumab in amurine model. The PEG2-RM26 analog was coupled to NOTA, NODAGA, DOTA and DOTAGA chelators. The peptide-chelatorconjugates were labeled with 177Lu and characterized in vitro and in vivo. A preclinical therapeutic study was performed in PC-3xenografted mice. Mice were treated with intravenous injections (6 cycles) of (A) PBS, (B) DOTAGA-PEG2-RM26, (C) 177LuDOTAGA-PEG2-RM26, (D) trastuzumab or (E) 177Lu-DOTAGA-PEG2-RM26 in combination with trastuzumab. 177Lu-DOTAGA-PEG2-RM26 demonstrated quantitative labeling yield at high molar activity (450 GBq/μmol), high in vivo stability (5 min pi >98% ofradioligand remained when coinjected with phosphoramidon), high affinity to GRPR (KD = 0.4 0.2 nM), and favorablebiodistribution (1 hr pi tumor uptake was higher than in healthy tissues, including the kidneys). Therapy with 177Lu-DOTAGAPEG2-RM26 induced a significant inhibition of tumor growth. The median survival for control groups was significantly shorterthan for treated groups (Group C 66 days, Group E 74 days). Trastuzumab together with radionuclide therapy significantlyimproved survival. No treatment-related toxicity was observed. In conclusion, based on in vitro and in vivo characterization ofthe four 177Lu-labeled PEG2-RM26 analogs, we concluded that 177Lu-DOTAGA-PEG2-RM26 was the most promising analog forTRT. Radiotherapy using 177Lu-DOTAGA-PEG2-RM26 effectively inhibited tumor growth in vivo in a murine prostate cancermodel. Anti-HER2 therapy additionally improved survival.

  • 8.
    Mitran, Bogdan
    et al.
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Varasteh, Zohreh
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Klinikum Rechts Isar TUM, Dept Nucl Med, D-81675 Munich, Germany.
    Abouzayed, Ayman
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Rinne, Sara S.
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Puuvuori, Emmi
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    De Rosa, Maria
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;RiMED Fdn, Drug Discovery Unit, I-90133 Palermo, Italy.
    Larhed, Mats
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Uppsala Univ, Dept Med Chem, Sci Life Lab, S-75123 Uppsala, Sweden.
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75123 Uppsala, Sweden.
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Uppsala Univ, Dept Med Chem, Sci Life Lab, S-75123 Uppsala, Sweden.
    Rosenstrom, Ulrika
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer2019In: Cancers, ISSN 2072-6694, Vol. 11, no 9, article id 1371Article in journal (Refereed)
    Abstract [en]

    Simultaneous targeting of the prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) could improve the diagnostic accuracy in prostate cancer (PCa). The aim of this study was to develop a PSMA/GRPR-targeting bispecific heterodimer for SPECT and positron emission tomography (PET) diagnostic imaging of PCa. The heterodimer NOTA-DUPA-RM26 was produced by manual solid-phase peptide synthesis. NOTA-DUPA-RM26 was labeled with In-111 and Ga-68, with yields >98%, and demonstrated a high stability and binding specificity to PSMA and GRPR. IC50 values for In-nat-NOTA-DUPA-RM26 were 4 +/- 1 nM towards GRPR and 824 +/- 230 nM towards PSMA. An in vivo binding specificity 1 h pi of In-111-NOTA-DUPA-RM26 in PC3-PIP-xenografted mice demonstrated partially blockable tumor uptake when co-injected with an excess of PSMA- or GRPR-targeting agents. Simultaneous co-injection of both agents induced pronounced blocking. The biodistribution of In-111-NOTA-DUPA-RM26 and Ga-68-NOTA-DUPA-RM26 revealed fast activity clearance from the blood and normal organs via the kidneys. Tumor uptake exceeded normal organ uptake for both analogs 1 h pi. Ga-68-NOTA-DUPA-RM26 had a significantly lower tumor uptake (8 +/- 2%ID/g) compared to In-111-NOTA-DUPA-RM26 (12 +/- 2%ID/g) 1 h pi. Tumor-to-organ ratios increased 3 h pi, but decreased 24 h pi, for In-111-NOTA-DUPA-RM26. MicroPET/CT and microSPECT/CT scans confirmed biodistribution data, suggesting that Ga-68-NOTA-DUPA-RM26 and In-111-NOTA-DUPA-RM26 are suitable candidates for the imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 9.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Puuvuori, Emmi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Abousayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancerManuscript (preprint) (Other academic)
    Abstract [en]

    Prostate specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are wellvalidated molecular targets that are overexpressed in most prostate cancers (PCa). Given thecomplexity and heterogeneity of PCa, targeting both receptors using bispecific radiotracers couldimprove the diagnostic accuracy and therapeutic outcome. The aim of this study was to develop aPSMA/GRPR-targeting bispecific heterodimer for SPECT and PET diagnostic imaging of PCa.Bispecific anti-GRPR/PSMA dimer NOTA-DUPA-RM26 was produced using a combination of solidphase and manual peptide synthesis. The heterodimer was successfully labeled with111In for SPECTand 68Ga for PET with radiochemical yields exceeding 99% for 111In and 98% for 68Ga. Theradiolabeled heterodimers demonstrated high label stability and retained binding specificity to PSMAand GRPR when tested using PC3-PIP cell line expressing both PSMA and GRPR. IC50 values fornatIn-NOTA-DUPA-RM26 were 4±1 nM towards GRPR and 350±240 nM towards PSMA. Cellularprocessing assay revealed a low degree of internalization for 111In-NOTA-DUPA-RM26. In vivobinding specificity tests in PC3-PIP xenografted mice 1 h pi of 111In-NOTA-DUPA-RM26demonstrated partially blockable tumor uptake when co-injected with excess of either PSMA- orGRPR-targeting agents. A pronounced blocking effect was observed for 111In and 68Ga-labeledheterodimer when co-injected simultaneously with excess of PSMA- and GRPR-targeting agents 1 hpi. Biodistribution was studied 1, 3 and 24 h pi for 111In-NOTA-DUPA-RM26, and 1 and 3 h pi for68Ga-NOTA-DUPA-RM26 and revealed a fast clearance of radioprobes from blood and normal organsvia renal excretion. Tumor uptake exceeded the uptake in all normal organs including excretory organsfor both 111In and 68Ga-labeled heterodimers 1 h pi. 68Ga-NOTA-DUPA-RM26 had a significantlylower tumor uptake (8±2%ID/g) compared to 111In-NOTA-DUPA-RM26 (12±2%ID/g), but a two-foldhigher uptake in liver 1h pi. The faster clearance of radioactivity from normal tissues compared totumor lead to an overall increase in tumor-to-organ ratios for both 111In and 68Ga-labeled heterodimers3 h pi. At 24 h pi, tumor-to-organ ratios decreased for 111In-NOTA-DUPA-RM26. MicroPET/CT andmicroSPECT/CT scans confirmed the ex vivo data and suggested that anti-GRPR/PSMA heterodimerNOTA-DUPA-RM26 labeled with galium-68 (for PET) and indium-111 (for SPECT) is a suitablecandidate for imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 10.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Puuvuori, Emmi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Abousayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancer2019In: Cancers, ISSN 2072-6694, Vol. 11, no 9, article id 1371Article in journal (Refereed)
    Abstract [en]

    Prostate specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are wellvalidated molecular targets that are overexpressed in most prostate cancers (PCa). Given thecomplexity and heterogeneity of PCa, targeting both receptors using bispecific radiotracers couldimprove the diagnostic accuracy and therapeutic outcome. The aim of this study was to develop aPSMA/GRPR-targeting bispecific heterodimer for SPECT and PET diagnostic imaging of PCa.Bispecific anti-GRPR/PSMA dimer NOTA-DUPA-RM26 was produced using a combination of solidphase and manual peptide synthesis. The heterodimer was successfully labeled with111In for SPECTand 68Ga for PET with radiochemical yields exceeding 99% for 111In and 98% for 68Ga. Theradiolabeled heterodimers demonstrated high label stability and retained binding specificity to PSMAand GRPR when tested using PC3-PIP cell line expressing both PSMA and GRPR. IC50 values fornatIn-NOTA-DUPA-RM26 were 4±1 nM towards GRPR and 350±240 nM towards PSMA. Cellularprocessing assay revealed a low degree of internalization for 111In-NOTA-DUPA-RM26. In vivobinding specificity tests in PC3-PIP xenografted mice 1 h pi of 111In-NOTA-DUPA-RM26demonstrated partially blockable tumor uptake when co-injected with excess of either PSMA- orGRPR-targeting agents. A pronounced blocking effect was observed for 111In and 68Ga-labeledheterodimer when co-injected simultaneously with excess of PSMA- and GRPR-targeting agents 1 hpi. Biodistribution was studied 1, 3 and 24 h pi for 111In-NOTA-DUPA-RM26, and 1 and 3 h pi for68Ga-NOTA-DUPA-RM26 and revealed a fast clearance of radioprobes from blood and normal organsvia renal excretion. Tumor uptake exceeded the uptake in all normal organs including excretory organsfor both 111In and 68Ga-labeled heterodimers 1 h pi. 68Ga-NOTA-DUPA-RM26 had a significantlylower tumor uptake (8±2%ID/g) compared to 111In-NOTA-DUPA-RM26 (12±2%ID/g), but a two-foldhigher uptake in liver 1h pi. The faster clearance of radioactivity from normal tissues compared totumor lead to an overall increase in tumor-to-organ ratios for both 111In and 68Ga-labeled heterodimers3 h pi. At 24 h pi, tumor-to-organ ratios decreased for 111In-NOTA-DUPA-RM26. MicroPET/CT andmicroSPECT/CT scans confirmed the ex vivo data and suggested that anti-GRPR/PSMA heterodimerNOTA-DUPA-RM26 labeled with galium-68 (for PET) and indium-111 (for SPECT) is a suitablecandidate for imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 11.
    Reddy Vanga, Sudarsana
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Sävmarker, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Ng, Leelee
    Monash Univ, Biomed Discovery Inst, Dept Physiol, Clayton, Vic 3800, Australia.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Åqvist, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Hallberg, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Chai, Siew Yeen
    Monash Univ, Biomed Discovery Inst, Dept Physiol, Clayton, Vic 3800, Australia.
    Gutiérrez-de-Terán, Hugo
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics.
    Structural Basis of Inhibition of Human Insulin-Regulated Aminopeptidase (IRAP) by Aryl Sulfonamides2018In: ACS OMEGA, ISSN 2470-1343, Vol. 3, no 4, p. 4509-4521Article in journal (Refereed)
    Abstract [en]

    The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.

  • 12.
    Roslin, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    De Rosa, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Deuther-Conrad, Winnie
    Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry.
    Brust, Peter
    Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, 04318 Leipzig, Germany.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Synthesis and In Vitro Evaluation of 5-Substituted Benzovesamicol Analogs containing N-Substituted Amides as Potential Positron Emission Tomography Tracers for the Vesicular Acetylcholine Transporter2017In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 25, no 19, p. 5095-5106Article in journal (Refereed)
    Abstract [en]

    Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (+/-)-7i and (+/-)-7l had the highest affinities for VAChT. Compound (+/-)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the sigma(1) and sigma(2) receptors. Enantiomeric resolution gave (+/-)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (+/-)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7 nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [C-11]-(+/-)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved C-11-labelled VAChT PET tracers.

  • 13.
    Rydfjord, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Skillinghaug, Bobo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brandt, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Route to 3-Amidino Indoles via Pd(II)-Catalyzed C-H Bond Activation2017In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 19, no 15, p. 4066-4069Article in journal (Refereed)
    Abstract [en]

    We report a facile synthesis of 3-amidino indoles from indoles and cyanamides. The reaction is Pd(II)-catalyzed and proceeds via C-H bond activation of the indole in its 3-position followed by a 1,2-addition of the resulting indole-palladium σ-complex to a cyanamide, which provides the corresponding amidine. The preference for 4,5-diazafluoren-9-one (DAF) as the ligand is investigated using DFT calculations, and a plausible reaction pathway is presented.

  • 14.
    Wannberg, Johan
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Isaksson, Rebecka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Bremberg, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Backlund, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sävmarker, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes2018In: Bioorganic & Medicinal Chemistry Letters, ISSN 0960-894X, E-ISSN 1090-2120, Vol. 28, no 3, p. 519-522Article in journal (Refereed)
    Abstract [en]

    A series of AT2R ligands have been synthesized applying a quick, simple, and safetransesterification-type reaction whereby the sulfonyl carbamate alkyl tail ofthe selective AT2R antagonist C38 was varied. Furthermore, a limited number ofcompounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acidbioisosteres were synthesized and evaluated. By reducing the size of the alkylchain of the sulfonyl carbamates, ligands 7a and 7b were identified withsignificantly improved in vitro metabolic stability in both human and mouse livermicrosomes as compared to C38 while retaining the AT2R binding affinity andAT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improvedstability in human microsomes as compared to C38.

  • 15.
    Wannberg, Johan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Isaksson, Rebecka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Hallberg, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Transcarbamoylation of sulfonyl carbamates to generate new Angiotensin II Type 2 Receptor (AT2R) ligands2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 16.
    Åkerbladh, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Palladium-Catalyzed Molybdenum Hexacarbonyl-Mediated Gas-Free Carbonylative Reactions2019In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 30, no 2, p. 141-155Article in journal (Refereed)
    Abstract [en]

    This account summarizes Pd(0)-catalyzed Mo(CO) 6-mediated gas-free carbonylative reactions published in the period October 2011 to May 2018. Presented reactions include inter-and intramolecular carbonylations, carbonylative cross-couplings, and carbonylative multicomponent reactions using Mo(CO) 6 as a solid source of CO. The presented methodologies were developed mainly for small-scale applications, avoiding the problematic use of gaseous CO in a standard laboratory. In most cases, the reported Mo(CO) 6-mediated carbonylations were conducted in sealed vials or by using two-chamber solutions. 1 Introduction 2 Recent Developments 2.1 New CO Sources 2.2 Two-Chamber System for ex Situ CO Generation 2.3 Multicomponent Carbonylations 3 Carbonylations with N and O Nucleophiles 4 Carbonylative Cross-Coupling Reactions with Organometallics 5 Carbonylative Cascade Reactions 6 Carbonylative Cascade, Multistep Reactions 7 Summary and Outlook

  • 17.
    Åkerbladh, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Schembri, Luke S
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Palladium(0)-Catalyzed Carbonylative One-Pot Synthesis of N-Acylguanidines2017In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 82, no 23, p. 12520-12529Article in journal (Refereed)
    Abstract [en]

    A convenient synthetic strategy toward N-acylguanidines via a sequential one-pot multicomponent carbonylation/amination reaction has been developed. The compounds were readily obtained via an N-cyanobenzamide intermediate formed from the Pd(0)-catalyzed carbonylative coupling of cyanamide and aryl iodides or bromides. Subsequent amination with a large variety of amines provided the final N-acylguanidines, with the overall formation of one C-C and two C-N bonds, in moderate to excellent yields. The substrate scope was found to be wide and the methodology was used to produce over 50 compounds, including 29 novel molecules. Furthermore, three separate nitrogen-containing heterocycles were prepared from the N-acylguanidines synthesized using the developed multicomponent, carbonylative method.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf