uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bouchene, Salim
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Marchand, Sandrine
    INSERM, U 1070, Pole Biol Sante, Poitiers, France;CHU Poitiers, Lab Toxicol & Pharmacocinet, Poitiers, France.
    Couet, William
    INSERM, U 1070, Pole Biol Sante, Poitiers, France;CHU Poitiers, Lab Toxicol & Pharmacocinet, Poitiers, France.
    Friberg, Lena E
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Gobin, Patrice
    INSERM, U 1070, Pole Biol Sante, Poitiers, France.
    Lamarche, Isabelle
    INSERM, U 1070, Pole Biol Sante, Poitiers, France.
    Gregoire, Nicolas
    INSERM, U 1070, Pole Biol Sante, Poitiers, France;CHU Poitiers, Lab Toxicol & Pharmacocinet, Poitiers, France.
    Björkman, Sven
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Karlsson, Mats O
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    A Whole-Body Physiologically Based Pharmacokinetic Model for Colistin and Colistin Methanesulfonate in Rat2018In: Basic & Clinical Pharmacology & Toxicology, ISSN 1742-7835, E-ISSN 1742-7843, Vol. 123, no 4, p. 407-422Article in journal (Refereed)
    Abstract [en]

    Colistin is a polymyxin antibiotic used to treat patients infected with multidrug-resistant Gram-negative bacteria (MDR-GNB). The objective of this work was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model to predict tissue distribution of colistin in rat. The distribution of a drug in a tissue is commonly characterized by its tissue-to-plasma partition coefficient, K-p. Colistin and its prodrug, colistin methanesulfonate (CMS) K-p priors, were measured experimentally from rat tissue homogenates or predicted in silico. The PK parameters of both compounds were estimated fitting invivo their plasma concentration-time profiles from six rats receiving an i.v. bolus of CMS. The variability in the data was quantified by applying a nonlinear mixed effect (NLME) modelling approach. A WB-PBPK model was developed assuming a well-stirred and perfusion-limited distribution in tissue compartments. Prior information on tissue distribution of colistin and CMS was investigated following three scenarios: K-p was estimated using in silico K-p priors (I) or K-p was estimated using experimental K-p priors (II) or K-p was fixed to the experimental values (III). The WB-PBPK model best described colistin and CMS plasma concentration-time profiles in scenario II. Colistin-predicted concentrations in kidneys in scenario II were higher than in other tissues, which was consistent with its large experimental K-p prior. This might be explained by a high affinity of colistin for renal parenchyma and active reabsorption into the proximal tubular cells. In contrast, renal accumulation of colistin was not predicted in scenario I. Colistin and CMS clearance estimates were in agreement with published values. The developed model suggests using experimental priors over in silico K-p priors for kidneys to provide a better prediction of colistin renal distribution. Such models might serve in drug development for interspecies scaling and investigate the impact of disease state on colistin disposition.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf