uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nilsson, Hans
    et al.
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden;Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, SE-98128 Kiruna, Sweden.
    Wieser, Gabriella Stenberg
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden.
    Behar, Etienne
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden;Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, SE-98128 Kiruna, Sweden.
    Gunell, Herbert
    Royal Belgian Inst Space Aeron, Ave Circulaire 3, B-1180 Brussels, Belgium;Umea Univ, Dept Phys, SE-90187 Umea, Sweden.
    Wieser, Martin
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden.
    Galand, Marina
    Imperial Coll London, Dept Phys, Prince Consort Rd, London SW7 2AZ, England.
    Wedlund, Cyril Simon
    Univ Oslo, Dept Phys, POB 1048 Blindern, N-0316 Oslo, Norway.
    Alho, Markku
    Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, POB 15500, FI-00076 Aalto, Finland.
    Goetz, Charlotte
    Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany.
    Yamauchi, Masatoshi
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden.
    Henri, Pierre
    CNRS, LPC2E, 3A Ave Rech Sci, F-45071 Orleans 2, France.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 469, p. S252-S261Article in journal (Refereed)
    Abstract [en]

    Rosetta has followed comet 67P from low activity at more than 3.6 au heliocentric distance to high activity at perihelion (1.24 au) and then out again. We provide a general overview of the evolution of the dynamic ion environment using data from the RPC-ICA ion spectrometer. We discuss where Rosetta was located within the evolving comet magnetosphere. For the initial observations, the solar wind permeated all of the coma. In 2015 mid-April, the solar wind started to disappear from the observation region, to re-appear again in 2015 December. Low-energy cometary ions were seen at first when Rosetta was about 100 km from the nucleus at 3.6 au, and soon after consistently throughout the mission except during the excursions to farther distances from the comet. The observed flux of low-energy ions was relatively constant due to Rosetta's orbit changing with comet activity. Accelerated cometary ions, moving mainly in the antisunward direction gradually became more common as comet activity increased. These accelerated cometary ions kept being observed also after the solar wind disappeared from the location of Rosetta, with somewhat higher fluxes further away from the nucleus. Around perihelion, when Rosetta was relatively deep within the comet magnetosphere, the fluxes of accelerated cometary ions decreased, as did their maximum energy. The disappearance of more energetic cometary ions at close distance during high activity is suggested to be due to a flow pattern where these ions flow around the obstacle of the denser coma or due to charge exchange losses.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf