uu.seUppsala University Publications
Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Rapid Capacity Fading of LNMO-LTO Lithium-ion Cells at Elevated Temperature2017Conference paper (Other academic)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O4 (LNMO) has an average operating potential around 4.7 V vs. Li/Li+ and a gravimetric charge capacity of 146 mAh/g making it a promising high energy density positive electrode for Li-ion batteries. Additionally, the 3-D lithium transport paths available in the spinel structure enables fast diffusion kinetics, making it suitable for power applications [1]. However, the material displays large instability during cycling, especially at elevated temperatures. Therefore, significant research efforts have been undertaken to better understand and improve this electrode material.

    Electrolyte (LiPF6 in organic solvents) oxidation and transition metal dissolution are often considered as the main problems [2] for the systems based on this cathode material. These can cause a variety of problems (in different parts of the cell) eventually increasing internal cell resistance, causing active mass loss and decreasing the amount of cyclable lithium.

    Among these issues, cyclable lithium loss cannot be observed in half cells since lithium metal will provide almost unlimited capacity. Being a promising full cell chemistry for high power applications, there has also been a considerable interest on LNMO full cells with Li4Ti5O12 (LTO) used as the negative electrode. For this chemistry, for an optimized cell, quite stable cycling for >1000 cycles has been reported at room temperature while fast fading is still present at 55 °C [3]. This difference in performance (RT vs. 55 °C) is beyond most expectations and likely does not follow any Arrhenius-type of trend.

    In this study, a comprehensive analysis of LNMO-LTO cells has been performed at different temperatures (RT, 40 °C and 55 °C) to understand the underlying reasons behind stable cycling at room temperature and rapid fading at 55 °C. For this purpose, testing was made on regular cells (Figure 1a), 3-electrode cells (Figure 1b) and back-to-back cells [4] (Figure 1c). Electrode interactions (cross-talk) have been shown to exist in the LTO-LNMO system [5] and back-to-back cells have therefore been used to observe fading under conditions where cross-talk is impossible [4]. Galvanostatic cycling combined with short-duration intermittent current interruptions [6] was performed in order to separately observe changes in internal resistance for LNMO and LTO electrodes in a full cell. Ex-situ characterization of electrodes have also been performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES).

    Our findings show how important the electrode interactions can be in full cells, as a decrease in lithium inventory was shown to be the major factor for the observed capacity fading at elevated temperature. In this presentation, the effect of other factors – active mass loss and internal cell resistance – will be discussed together with the consequences of cross-talk.

    References

    [1] A. Kraytsberg et al. Adv. Energy Mater., vol. 2, pp. 922–939,2012.

    [2] J. H. Kim et al., ChemPhysChem, vol. 15, pp. 1940–1954, 2014.

    [3] H. M. Wu et al. J. E. Soc., vol. 156, pp. A1047–A1050, 2009.

    [4] S. R. Li et al., J. E. Soc., vol. 160, no. 9, pp. A1524–A1528, 2013.

    [5] Dedryvère et al. J. Phys. C., vol. 114 (24), pp. 10999–11008, 2010.

    [6] M. J. Lacey, ChemElectroChem, pp. 1–9, 2017.

  • 2.
    Aktekin, Burak
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Zipprich, Wolfgang
    Volkswagen AG.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Understanding the Capacity Loss in LiNi0.5Mn1.5O4 - Li4Ti5O12 Lithium-Ion Cells at Ambient and Elevated Temperatures2017Conference paper (Refereed)
    Abstract [en]

    The high voltage spinel LiNi0.5Mn1.5O(LNMO) is an attractive positive electrode due to its operating voltage around 4.7 V (vs. Li/Li+) arising from the Ni2+/Ni4+ redox couple. In addition to high voltage operation, a second advantage of this material is its capability for fast lithium diffusion kinetics through 3-D transport paths in the spinel structure. However, the electrode material is prone to side reactions with conventional electrolytes, including electrolyte decomposition and transition metal dissolution, especially at elevated temperatures1. It is important to understand how undesired reactions originating from the high voltage spinel affect the aging of different cell components and overall cycle life. Half-cells are usually considered as an ideal cell configuration in order to get information only from the electrode of interest. However, this cell configuration may not be ideal to understand capacity fading for long-term cycling and the assumption of ‘stable’ lithium negative electrode may not be valid, especially at high current rates2. Also, among the variety of capacity fading mechanisms, the loss of “cyclable” lithium from the positive electrode (or gain of lithium from electrolyte into the negative electrode) due to side reactions in a full-cell can cause significant capacity loss. This capacity loss is not observable in a typical half-cell as a result of an excessive reserve of lithium in the negative electrode.

    In a full-cell, it is desired that the negative electrode does not contribute to side reactions in a significant way if the interest is more on the positive side. Among candidates on the negative side, Li4Ti5O12 (LTO) is known for its stability since its voltage plateau (around 1.5 V vs. Li/Li+) is in the electrochemical stability window of standard electrolytes and it shows a very small volume change during lithiation. These characteristics make the LNMO-LTO system attractive for a variety of applications (e.g. electric vehicles) but also make it a good model system for studying aging in high voltage spinel-based full cells.

    In this study, we aim to understand the fundamental mechanisms resulting in capacity fading for LNMO-LTO full cells both at room temperature and elevated temperature (55°C). It is known that electrode interactions occur in this system due to migration of reaction products from LNMO to the LTO side3, 4. For this purpose, three electrode cells have been cycled galvanostatically with short-duration intermittent current interruptionsin order to observe internal resistance for both LNMO and LTO electrodes in a full cell, separately. Change of voltage curves over cycling has also been observed to get an insight into capacity loss. For comparison purposes, back-to-back cells (a combination of LNMO and LTO cells connected electrically by lithium sides) were also tested similarly. Post-cycling of harvested electrodes in half cells was conducted to determine the degree of capacity loss due to charge slippage compared to other aging factors. Surface characterization of LNMO as well as LTO electrodes after cycling at room temperature and elevated temperature has been done via SEM, XPS, HAXPES and XANES.

    References

    1. A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater., vol. 2, pp. 922–939, 2012.

    2. Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. Solid State Ionics, 148(3), 405-416, 2002.

    3. Li et al., Journal of The Electrochemical Society, 160 (9) A1524-A1528, 2013.

    4. Aktekin et al., Journal of The Electrochemical Society 164.4: A942-A948. 2017.

    5. Lacey, M. J., ChemElectroChem. Accepted Author Manuscript. doi:10.1002/celc.201700129, 2017. 

  • 3.
    Brandell, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Srivastav, Shruti
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Combined Finite Element Modelling and EIS Studies for SoC Indication in Rechargeable Li-Ion Batteries2015Conference paper (Other academic)
  • 4.
    Ebadi, Mahsa
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Araujo, Carlos Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Density Functional Theory Modeling the Interfacial Chemistry of the LiNO3 Additive for Lithium-Sulfur Batteries by Means of Simulated Photoelectron Spectroscopy2017In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 42, p. 23324-23332Article in journal (Refereed)
    Abstract [en]

    Lithium-sulfur (Li-S) batteries are considered candidates for next-generation energy storage systems due to their high theoretical specific energy. There exist, however, some shortcomings of these batteries, not least the solubility of intermediate polysulfides into the electrolyte generating a so-called "redox shuttle", which gives rise to self-discharge. LiNO3 is therefore frequently used as an electrolyte additive to help suppress this mechanism, but the exact nature of the LiNO3 functionality is still unclear. Here, density functional theory calculations are used to investigate the electronic structure of LiNO3 and a number of likely species (N-2, N2O, LiNO2, Li3N, and Li2N2O2) resulting from the reduction of this additive on the surface of Li metal anode. The N is X-ray photoelectron spectroscopy core level binding energies of these molecules on the surface are calculated in order to compare the results with experimentally reported values. The core level shifts (CLS) of the binding energies are studied to identify possible factors responsible for the position of the peaks. Moreover, solid phases of (cubic) c-Li3N and (hexagonal) alpha-Li3N on the surface of Li metal are considered. The N is binding energies for the bulk phases of Li3N and at the Li3N/Li interfaces display higher values as compared to the Li3N molecule, indicating a clear correlation between the coordination number and the CLS of the solid phases of Li3N.

  • 5.
    Edström, Kristina
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Aktekin, Burak
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nordh, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Liivat, Anti
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Reach MAX: Reach maximum volymetric capacity for lithium batteries with high voltage cathodes2017Conference paper (Other academic)
  • 6.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Following internal resistance changes in batteries with a versatile intermittent current interruption technique2017Conference paper (Other academic)
  • 7.
    Lacey, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Influence of the Electrolyte on the Internal Resistance of Lithium-Sulfur Batteries Studied with an Intermittent Current Interruption Method2017In: Chemelectrochem, ISSN 2196-0216, Vol. 4, no 8, p. 1997-2004Article in journal (Refereed)
    Abstract [en]

    Galvanostatic cycling combined with a modified intermittent current interruption resistance determination method is presented as a fast, accurate, and comparatively simple analytical tool for following internal resistance changes in batteries over long-term cycling. The technique is demonstrated here to study the influence of electrolyte composition and volume on the internal resistance of lithium-sulfur (Li-S) batteries. This approach is found to be particularly useful for the study of the Li-S system, where resistance changes considerably during charge and discharge as a result of compositional changes to the positive electrode and the electrolyte, but may also be valuable in the study of other battery systems.

  • 8.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Studying the role of the anode in the cycle life performance of Li-S batteries2013Conference paper (Other academic)
  • 9.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Functional water-soluble binders for improved capacity and stability of Li-S batteries2014Conference paper (Other academic)
    Abstract
  • 10.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Superior capacity, rate capability and stability with a water-soluble PEO:PVP binder2013Conference paper (Other academic)
    Abstract
  • 11.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Capacity-enhancing polymers for Li-S battery cathodes2013Conference paper (Other academic)
    Abstract
  • 12.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Functional, water-soluble binders for improved capacity and stability of lithium-sulfur batteries2014Conference paper (Other academic)
    Abstract
  • 13.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Yalamanchili, Anurag
    Österlund, Viking
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Maibach, Julia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Scania CV AB.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Self-discharge and cycling stability in the Li-S battery2015Conference paper (Other academic)
    Abstract
  • 14.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Tengstedt, Carl
    Yalamanchili, Anurag
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A study of the anode in the lithium-sulfur system and its influence on cycle life2014Conference paper (Other academic)
    Abstract
  • 15.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Österlund, Viking
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A robust, water-based, functional binder framework for high energy Li-S batteries2017Conference paper (Other academic)
  • 16.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Österlund, Viking
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Bergfelt, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Bowden, Tim
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 13, p. 2758-2766Article in journal (Refereed)
    Abstract [en]

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAhcm(-2) capacity and 97-98% coulombic efficiency are achievable in electrodes with a 65% total sulfur content and a poly(ethylene oxide): poly(vinylpyrrolidone) (PEO: PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties.

  • 17.
    Lacey, Matthew
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Österlund, Viking
    Jeschull, Fabian
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Development of high-energy Li-S batteries based on commercial materials and water-soluble functional binders2016Conference paper (Other academic)
    Abstract
  • 18.
    Srivastav, Shruti
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lacey, Matthew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    State-of-charge indication in Li-ion batteries by simulated impedance spectroscopy2017In: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 47, no 2, p. 229-236Article in journal (Refereed)
    Abstract [en]

    We here explore the possibilities of correlating experimental cell impedance with finite element methodology modelling for state-of-charge (SoC) indication in LiFePO-based half-cells. The impedance response has been modelled sequentially during battery cycling using Newman theory, and is compared with experimental data. It is found that the charge-transfer resistance is dependent of SoC during battery charging, which can be modelled in good agreement with experimental results. Moreover, it is seen that cell design parameters-e.g. calendering-dependent electrode porosity-influence the EIS response and can thus be estimated using the presented methodology.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf