We report the first time that metallic homostructure of aluminene (Al) and antimonene (Sb) materials are the promising materials for the electric charge storage as a nanocapacitors. In this work, we have proposed two various phases of capacitor, namely, hexagonal (H) and trigonal (T) phases. Here, we have investigated the electronic properties, visualization of molecular orbitals, van der Waals (vdW) energy between layers, and supercapacitance properties, such as dipole moment (P), charge stored (Q(s)), energy stored (E-s), and capacitance (C). It is found that the Sb bilayer has higher capacitance values than Al bilayer. Instead of that, we have also focused on the various pristine homobilayer of boron (B), carbon (C), silicon (Si), phosphorus (P), gallium (Ga), germanium (Ge), arsenic (As), and indium (In) and heterobilayers of pristine C and Al, pristine C and Sb, pristine C and Si, pristine C and Sn, pristine C and As, and pristine P and Si for H and T phases, respectively, and results are compared with Al and Sb. Our investigated energy storage, charge, and capacitance values are in better agreement with the previously reported works. The capacitance value increased accordingly to the external electric field and behave as an ideal nanocapacitor. The results suggest that Al- and Sb-homobilayer could be flexible method for building nanoscale capacitors and nanocircuits.