uu.seUppsala University Publications
Change search
Refine search result
1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abouzayed, Ayman
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Yim, Cheng-Bin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer2019In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 11, no 7, article id 358Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) are overexpressed in most prostate cancers. GRPR expression is higher in early stages while PSMA expression increases with progression. The possibility of targeting both markers with a single theranostics radiotracer could improve patient management. Three GRPR/PSMA-targeting bispecific heterodimers (urea derivative PSMA-617 and bombesin-based antagonist RM26 linked via X-triazolyl-Tyr-PEG2, X = PEG2 (BO530), (CH2)(8) (BO535), none (BO536)) were synthesized by solid-phase peptide synthesis. Peptides were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity for all heterodimers was studied in PC-3 (GRPR-positive) and LNCaP (PSMA-positive) xenografts. [I-125]I-BO530 was evaluated in PC-3pip (GRPR/PSMA-positive) xenografts. Micro single-photon emission computed tomography/computed tomography (microSPECT/CT) scans were acquired. The heterodimers were radiolabeled with high radiochemical yields, bound specifically to both targets, and demonstrated high degree of activity retention in PC-3pip cells. Only [I-125]I-BO530 demonstrated in vivo specificity to both targets. A biodistribution study of [I-125]I-BO530 in PC-3pip xenografted mice showed high tumor activity uptake (30%-35%ID/g at 3 h post injection (pi)). Activity uptake in tumors was stable and exceeded all other organs 24 h pi. Activity uptake decreased only two-fold 72 h pi. The GRPR/PSMA-targeting heterodimer [I-125]I-BO530 is a promising agent for theranostics application in prostate cancer.

  • 2.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Atterby, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs2018In: CELLS, ISSN 2073-4409, Vol. 7, no 10, article id 164Article in journal (Refereed)
    Abstract [en]

    Overexpression of human epidermal growth factor receptor type 3 (HER3) is associated with tumour cell resistance to HER-targeted therapies. Monoclonal antibodies (mAbs) targeting HER3 are currently being investigated for treatment of various types of cancers. Cumulative evidence suggests that affibody molecules may be appropriate alternatives to mAbs. We previously reported a fusion construct (3A3) containing two HER3-targeting affibody molecules flanking an engineered albumin-binding domain (ABD 035) included for the extension of half-life in circulation. The 3A3 fusion protein (19.7 kDa) was shown to delay tumour growth in mice bearing HER3-expressing xenografts and was equipotent to the mAb seribantumab. Here, we have designed and explored a series of novel formats of anti-HER3 affibody molecules fused to the ABD in different orientations. All constructs inhibited heregulin-induced phosphorylation in HER3-expressing BxPC-3 and DU-145 cell lines. Biodistribution studies demonstrated extended the half-life of all ABD-fused constructs, although at different levels. The capacity of our ABD-fused proteins to accumulate in HER3-expressing tumours was demonstrated in nude mice bearing BxPC-3 xenografts. Formats where the ABD was located on the C-terminus of affibody binding domains (3A, 33A, and 3A3) provided the best tumour targeting properties in vivo. Further development of these promising candidates for treatment of HER3-overexpressing tumours is therefore justified.

  • 3.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Liu, Hao
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Ding, Haozhong
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gräslund, Torbjorn
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors2018In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 288, p. 84-95Article in journal (Refereed)
    Abstract [en]

    Patients with HER2-positive tumors often suffer resistance to therapy, warranting development of novel treatment modalities. Affibody molecules are small affinity proteins which can be engineered to bind to desired targets. They have in recent years been found to allow precise targeting of cancer specific molecular signatures such as the HER2 receptor. In this study, we have investigated the potential of an affibody molecule targeting HER2, Z(HER2:2891), conjugated with the cytotoxic maytansine derivate MC-DM1, for targeted cancer therapy. Z(HER2:2891) was expressed as a monomer (Z(HER2:2891)), dimer ((Z(HER2:2891)) 2) and dimer with an albumin binding domain (ABD) for half-life extension ((Z(HER2:2891)) 2-ABD). All proteins had a unique C-terminal cysteine that could be used for efficient and site-specific conjugation with MC-DM1. The resulting affibody drug conjugates were potent cytotoxic molecules for human cells over-expressing HER2, with sub-nanomolar IC50-values similar to trastuzumab emtansine, and did not affect cells with low HER2 expression. A biodistribution study of a radiolabeled version of (Z(HER2:2891))(2)-ABD-MC-DM1, showed that it was taken up by the tumor. The major site of off-target uptake was the kidneys and to some extent the liver. (Z(HER2:2891)) 2-ABD-MC-DM1 was found to have a half-life in circulation of 14 h. The compound was tolerated well by mice at 8.5 mg/kg and was shown to extend survival of mice bearing HER2 over-expressing tumors. The findings in this study show that affibody molecules are a promising class of engineered affinity proteins to specifically deliver small molecular drugs to cancer cells and that such conjugates are potential candidates for clinical evaluation on HER2-overexpressing cancers.

  • 4.
    Dahlsson Leitao, Charles
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers2019In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 20, no 5, article id 1080Article in journal (Refereed)
    Abstract [en]

    Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.

  • 5.
    Deyev, Sergey
    et al.
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow, Russia.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Proshkina, Galina
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Guler, Rezan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Chernov, Vladimir
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Comparative Evaluation of Two DARPin Variants: Effect of Affinity, Size, and Label on Tumor Targeting Properties2019In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 16, no 3, p. 995-1008Article in journal (Refereed)
    Abstract [en]

    Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H-6 and G3-H-6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H-6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H-6 in comparison to 9_29-H6. Technetium-99m labeled G3-H-6 demonstrated a better biodistribution profile than 9_29-H-6, with several-fold lower uptake in liver. Radioiodinated G3-H-6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H-6 with high clinical potential for imaging of HER2.

  • 6.
    Ding, Haozhong
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gräslund, Torbjorn
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody-DM1 Drug Conjugates2019In: Cancers, ISSN 2072-6694, Vol. 11, no 8, article id 1168Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderateto high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (Z(HER2:2891))(2) -ABD-MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate-spacer-, (Z(HER2:2891))(2)-ABD-E-3-MC-DM1, or a hexaglutamate-spacer-, (Z(HER2:2891))(2)-ABD-E-6-MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (Z(HER2:2891))(2)-ABD-MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.

  • 7.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Huizing, Fokko J.
    Radboud Univ Nijmegen, Dept Radiat Oncol, Med Ctr, Nijmegen, Netherlands.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Andersson, Ken G.
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, Stockholm, Sweden.
    Bussink, Johan
    Radboud Univ Nijmegen, Dept Radiat Oncol, Med Ctr, Nijmegen, Netherlands.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Heskamp, Sandra
    Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Nijmegen, Netherlands.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 14907Article in journal (Refereed)
    Abstract [en]

    Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with In-111 and characterized in vitro. Tumor-targeting properties of [In-111]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [(99)mTc]Tc(CO)(3)-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [In-111]In-DTPA-G250(Fab')(2), in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the (99)mTc-labeled parental variant, [In-111]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [In-111]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [In-111]In-G250(Fab']2. In conclusion, [In-111]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.

  • 8.
    Huizing, Fokko J.
    et al.
    Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lok, Jasper
    Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands.
    Franssen, Gerben
    Radboud Univ Nijmegen, Med Ctr, Dept Radiol, Nijmegen, Netherlands;Radboud Univ Nijmegen, Med Ctr, Dept Nucl Med, Nijmegen, Netherlands.
    Hoeben, Bianca A. W.
    Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden.
    Boerman, Otto C.
    Radboud Univ Nijmegen, Med Ctr, Dept Radiol, Nijmegen, Netherlands;Radboud Univ Nijmegen, Med Ctr, Dept Nucl Med, Nijmegen, Netherlands.
    Bussink, Johan
    Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Heskamp, Sandra
    Radboud Univ Nijmegen, Med Ctr, Dept Radiol, Nijmegen, Netherlands;Radboud Univ Nijmegen, Med Ctr, Dept Nucl Med, Nijmegen, Netherlands.
    CAIX-targeting radiotracers for hypoxia imaging in head and neck cancer models2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 18898Article in journal (Refereed)
    Abstract [en]

    Hypoxia-induced carbonic anhydrase IX (CAIX) expression is a prognostic marker in solid tumors. In recent years many radiotracers have been developed, but a fair comparison of these compounds is not possible because of the diversity in tumor models and other experimental parameters. In this study we performed a direct in vivo comparison of three promising CAIX targeting radiotracers in xenografted head and neck cancer models. The biodistribution of [In-111]In-DOTA-ZCAIX:2 was directly compared with [In-111]In-DTPA-G250-F(ab')(2) and [In-111] In-DTPA-G250 in female BALB/C nu/nu mice bearing two HNSCC xenografts with different levels of CAIX expression. In vivo biodistribution was quantified by means of microSPECT/CT scans and ex vivo biodistribution was determined with the use of gamma-counter. Tumors were snap frozen and sections were stained for CAIX expression, vessels, hypoxia (pimonidazole) and tumor blood perfusion. Tracer uptake was significantly higher in SSCNij153 tumors compared to SCCNij185 tumors for [In-111]In-DOTA-HE3-ZCAIX:2: 0.32 +/- 0.03 versus 0.18 +/- 0.01%ID/g,(p = 0.003) 4 h p.i., for [In-111]In-DTPA-girentuximab-F(ab')(2): 3.0 +/- 0.5%ID/g and 1.2 +/- 0.1%ID/g (p = 0.03), 24 h p.i. and for [In-111]In-DTPA-girentuximab: 30 +/- 2.1%ID/g and 7.0 +/- 1.0%ID/g (p = 0.0002) 72 h p.i. SPECT imaging with both [In-111]In-DTPA-girentuximab-F(ab') 2 and [111In]In-DTPA-girentuximab showed a clear difference in tracer distribution between the two tumor models. The whole IgG, i.e. [In-111]In-DTPA-girentuximab, showed the highest tumor-to-muscle ratio. We showed that different CAIX-targeting radiotracers can discriminate a low CAIX-expressing tumor from a high CAIX-expressing head and neck cancer xenografts model. In these hypoxic head and neck xenograft models [In-111]In-DTPA-girentuximab showed the most promising results.

  • 9.
    Liu, Hao
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Lindbo, Sarah
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Ding, Haozhong
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Graslund, Torbjorn
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Potent and specific fusion toxins consisting of a HER2-binding, ABD-derived affinity protein, fused to truncated versions of Pseudomonas exotoxin A2019In: International Journal of Oncology, ISSN 1019-6439, Vol. 55, no 1, p. 309-319Article in journal (Refereed)
    Abstract [en]

    Fusion toxins consisting of an affinity protein fused to toxic polypeptides derived from Pseudomonas exotoxin A (ETA) are promising agents for targeted cancer therapy. In this study, we examined whether fusion toxins consisting of an albumin binding domain-derived affinity protein (ADAPT) interacting with human epidermal growth factor receptor 2 (HER2), coupled to the ETA-derived polypeptides PE38X8 or PE25, with or without an albumin binding domain (ABD) for half-life extension, can be used for specific killing of HER2-expressing cells. The fusion toxins could easily be expressed in a soluble form in Escherichia coli and purified to homogeneity. All constructs had strong affinity for HER2 (K-D 10 to 26 nM) and no tendency for aggregation could be detected. The fusion toxins including the ABD showed strong interaction with human and mouse serum albumin [equilibrium dissociation constant (K-D) 1 to 3 nM and 2 to 10 nM, respectively]. The in vitro investigation of the cytotoxic potential revealed IC50-values in the picomolar range for cells expressing high levels of HER2. The specificity was also demonstrated, by showing that free HER2 receptors on the target cells are required for fusion toxin activity. In mice, the fusion toxins containing the ABD exhibited an appreciably longer time in circulation. The uptake was highest in liver and kidney. Fusion with PE25 was associated with the highest hepatic uptake. Collectively, the results suggest that fusion toxins consisting of ADAPTs and ETA-derivatives are promising agents for targeted cancer therapy.

  • 10.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Lindström, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Andersson, K. G.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Ståhl, S.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Löfblom, J.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Radiocobalt-labeled anti-HER1 affibody molecule DOTA-Z(EGFR:2377) for imaging of low HER1 expression in prostate cancer pre-clinical model2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S145-S145Article in journal (Other academic)
  • 11.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Guler, R.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Roche, Francis P.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lindström, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Heetwood, F.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Claesson-Welsh, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, S.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Löfblom, J.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Novel high affinity affibody for radionuclide imaging of VEGFR2 in glioma vasculature: proof-of-principle in murine model2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S239-S239Article in journal (Other academic)
  • 12.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Konijnenberg, Mark W.
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands.
    Maina, Theodosia
    NCSR Demokritos, INRASTES, Mol Radiopharm, Athens, Greece.
    Nock, Berthold A.
    NCSR Demokritos, INRASTES, Mol Radiopharm, Athens, Greece.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    de Jong, Marion
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Trastuzumab cotreatment improves survival of mice with PC-3 prostate cancer xenografts treated with the GRPR antagonist 177Lu-DOTAGA-PEG2-RM262019In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 145, no 12, p. 3347-3358Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer and are suitable for targeted radionuclidetherapy (TRT). We optimized the bombesin-derived GRPR-antagonist PEG2-RM26 for labeling with 177Lu and further determinedthe effect of treatment with 177Lu-labeled peptide alone or in combination with the anti-HER2 antibody trastuzumab in amurine model. The PEG2-RM26 analog was coupled to NOTA, NODAGA, DOTA and DOTAGA chelators. The peptide-chelatorconjugates were labeled with 177Lu and characterized in vitro and in vivo. A preclinical therapeutic study was performed in PC-3xenografted mice. Mice were treated with intravenous injections (6 cycles) of (A) PBS, (B) DOTAGA-PEG2-RM26, (C) 177LuDOTAGA-PEG2-RM26, (D) trastuzumab or (E) 177Lu-DOTAGA-PEG2-RM26 in combination with trastuzumab. 177Lu-DOTAGA-PEG2-RM26 demonstrated quantitative labeling yield at high molar activity (450 GBq/μmol), high in vivo stability (5 min pi >98% ofradioligand remained when coinjected with phosphoramidon), high affinity to GRPR (KD = 0.4 0.2 nM), and favorablebiodistribution (1 hr pi tumor uptake was higher than in healthy tissues, including the kidneys). Therapy with 177Lu-DOTAGAPEG2-RM26 induced a significant inhibition of tumor growth. The median survival for control groups was significantly shorterthan for treated groups (Group C 66 days, Group E 74 days). Trastuzumab together with radionuclide therapy significantlyimproved survival. No treatment-related toxicity was observed. In conclusion, based on in vitro and in vivo characterization ofthe four 177Lu-labeled PEG2-RM26 analogs, we concluded that 177Lu-DOTAGA-PEG2-RM26 was the most promising analog forTRT. Radiotherapy using 177Lu-DOTAGA-PEG2-RM26 effectively inhibited tumor growth in vivo in a murine prostate cancermodel. Anti-HER2 therapy additionally improved survival.

  • 13.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Thisgaard, Helge
    Odense Univ Hosp, Dept Nucl Med, PET & Cyclotron Unit, Odense, Denmark;Univ Southern Denmark, Dept Clin Res, Odense, Denmark.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Dam, Johan Hygum
    Odense Univ Hosp, Dept Nucl Med, PET & Cyclotron Unit, Odense, Denmark;Univ Southern Denmark, Dept Clin Res, Odense, Denmark.
    Azami, Frishta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Selection of an optimal macrocyclic chelator improves the imaging of prostate cancer using cobalt-labeled GRPR antagonist RM262019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 17086Article in journal (Refereed)
    Abstract [en]

    Gastrin-releasing peptide receptors (GRPRs) are promising targets in oligometastatic prostate cancer. We have recently used 55Co (T1/2 = 17.5 h) as a label for next day PET imaging of GRPR expression obtaining high imaging contrast. The radionuclide-chelator combination can significantly influence the biodistribution of radiopeptides. Therefore, in this study, we hypothesized that the properties of 55Co-labeled PEG2-RM26 can be improved by identifying the optimal macrocyclic chelator. All analogues (X-PEG2-RM26, X = NOTA,NODAGA,DOTA,DOTAGA) were successfully labeled with radiocobalt with high yields and demonstrated high stability. The radiopeptides bound specifically and with picomolar affinity to GRPR and their cellular processing was characterized by low internalization. The best binding capacity was found for DOTA-PEG2-RM26. Ex vivo biodistribution in PC-3 xenografted mice was characterized by rapid blood clearance via renal excretion. Tumor uptake was similar for all conjugates at 3 h pi, exceeding the uptake in all other organs. Higher kidney uptake and longer retention were associated with N-terminal negative charge (DOTAGA-containing conjugate). Tumor-to-organ ratios increased over time for all constructs, although significant chelator-dependent differences were observed. Concordant with affinity measurements, DOTA-analog had the best retention of activity in tumors, resulting in the highest tumor-to-blood ratio 24 h pi, which translated into high contrast PET/CT imaging (using 55Co).

  • 14.
    Mitran, Bogdan
    et al.
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Varasteh, Zohreh
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Klinikum Rechts Isar TUM, Dept Nucl Med, D-81675 Munich, Germany.
    Abouzayed, Ayman
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Rinne, Sara S.
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Puuvuori, Emmi
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    De Rosa, Maria
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;RiMED Fdn, Drug Discovery Unit, I-90133 Palermo, Italy.
    Larhed, Mats
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Uppsala Univ, Dept Med Chem, Sci Life Lab, S-75123 Uppsala, Sweden.
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75123 Uppsala, Sweden.
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden;Uppsala Univ, Dept Med Chem, Sci Life Lab, S-75123 Uppsala, Sweden.
    Rosenstrom, Ulrika
    Uppsala Univ, Dept Med Chem, S-75123 Uppsala, Sweden.
    Bispecific GRPR-Antagonistic Anti-PSMA/GRPR Heterodimer for PET and SPECT Diagnostic Imaging of Prostate Cancer2019In: Cancers, ISSN 2072-6694, Vol. 11, no 9, article id 1371Article in journal (Refereed)
    Abstract [en]

    Simultaneous targeting of the prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) could improve the diagnostic accuracy in prostate cancer (PCa). The aim of this study was to develop a PSMA/GRPR-targeting bispecific heterodimer for SPECT and positron emission tomography (PET) diagnostic imaging of PCa. The heterodimer NOTA-DUPA-RM26 was produced by manual solid-phase peptide synthesis. NOTA-DUPA-RM26 was labeled with In-111 and Ga-68, with yields >98%, and demonstrated a high stability and binding specificity to PSMA and GRPR. IC50 values for In-nat-NOTA-DUPA-RM26 were 4 +/- 1 nM towards GRPR and 824 +/- 230 nM towards PSMA. An in vivo binding specificity 1 h pi of In-111-NOTA-DUPA-RM26 in PC3-PIP-xenografted mice demonstrated partially blockable tumor uptake when co-injected with an excess of PSMA- or GRPR-targeting agents. Simultaneous co-injection of both agents induced pronounced blocking. The biodistribution of In-111-NOTA-DUPA-RM26 and Ga-68-NOTA-DUPA-RM26 revealed fast activity clearance from the blood and normal organs via the kidneys. Tumor uptake exceeded normal organ uptake for both analogs 1 h pi. Ga-68-NOTA-DUPA-RM26 had a significantly lower tumor uptake (8 +/- 2%ID/g) compared to In-111-NOTA-DUPA-RM26 (12 +/- 2%ID/g) 1 h pi. Tumor-to-organ ratios increased 3 h pi, but decreased 24 h pi, for In-111-NOTA-DUPA-RM26. MicroPET/CT and microSPECT/CT scans confirmed biodistribution data, suggesting that Ga-68-NOTA-DUPA-RM26 and In-111-NOTA-DUPA-RM26 are suitable candidates for the imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 15.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Puuvuori, Emmi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Abousayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancerManuscript (preprint) (Other academic)
    Abstract [en]

    Prostate specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are wellvalidated molecular targets that are overexpressed in most prostate cancers (PCa). Given thecomplexity and heterogeneity of PCa, targeting both receptors using bispecific radiotracers couldimprove the diagnostic accuracy and therapeutic outcome. The aim of this study was to develop aPSMA/GRPR-targeting bispecific heterodimer for SPECT and PET diagnostic imaging of PCa.Bispecific anti-GRPR/PSMA dimer NOTA-DUPA-RM26 was produced using a combination of solidphase and manual peptide synthesis. The heterodimer was successfully labeled with111In for SPECTand 68Ga for PET with radiochemical yields exceeding 99% for 111In and 98% for 68Ga. Theradiolabeled heterodimers demonstrated high label stability and retained binding specificity to PSMAand GRPR when tested using PC3-PIP cell line expressing both PSMA and GRPR. IC50 values fornatIn-NOTA-DUPA-RM26 were 4±1 nM towards GRPR and 350±240 nM towards PSMA. Cellularprocessing assay revealed a low degree of internalization for 111In-NOTA-DUPA-RM26. In vivobinding specificity tests in PC3-PIP xenografted mice 1 h pi of 111In-NOTA-DUPA-RM26demonstrated partially blockable tumor uptake when co-injected with excess of either PSMA- orGRPR-targeting agents. A pronounced blocking effect was observed for 111In and 68Ga-labeledheterodimer when co-injected simultaneously with excess of PSMA- and GRPR-targeting agents 1 hpi. Biodistribution was studied 1, 3 and 24 h pi for 111In-NOTA-DUPA-RM26, and 1 and 3 h pi for68Ga-NOTA-DUPA-RM26 and revealed a fast clearance of radioprobes from blood and normal organsvia renal excretion. Tumor uptake exceeded the uptake in all normal organs including excretory organsfor both 111In and 68Ga-labeled heterodimers 1 h pi. 68Ga-NOTA-DUPA-RM26 had a significantlylower tumor uptake (8±2%ID/g) compared to 111In-NOTA-DUPA-RM26 (12±2%ID/g), but a two-foldhigher uptake in liver 1h pi. The faster clearance of radioactivity from normal tissues compared totumor lead to an overall increase in tumor-to-organ ratios for both 111In and 68Ga-labeled heterodimers3 h pi. At 24 h pi, tumor-to-organ ratios decreased for 111In-NOTA-DUPA-RM26. MicroPET/CT andmicroSPECT/CT scans confirmed the ex vivo data and suggested that anti-GRPR/PSMA heterodimerNOTA-DUPA-RM26 labeled with galium-68 (for PET) and indium-111 (for SPECT) is a suitablecandidate for imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 16.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Puuvuori, Emmi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Abousayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancer2019In: Cancers, ISSN 2072-6694, Vol. 11, no 9, article id 1371Article in journal (Refereed)
    Abstract [en]

    Prostate specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are wellvalidated molecular targets that are overexpressed in most prostate cancers (PCa). Given thecomplexity and heterogeneity of PCa, targeting both receptors using bispecific radiotracers couldimprove the diagnostic accuracy and therapeutic outcome. The aim of this study was to develop aPSMA/GRPR-targeting bispecific heterodimer for SPECT and PET diagnostic imaging of PCa.Bispecific anti-GRPR/PSMA dimer NOTA-DUPA-RM26 was produced using a combination of solidphase and manual peptide synthesis. The heterodimer was successfully labeled with111In for SPECTand 68Ga for PET with radiochemical yields exceeding 99% for 111In and 98% for 68Ga. Theradiolabeled heterodimers demonstrated high label stability and retained binding specificity to PSMAand GRPR when tested using PC3-PIP cell line expressing both PSMA and GRPR. IC50 values fornatIn-NOTA-DUPA-RM26 were 4±1 nM towards GRPR and 350±240 nM towards PSMA. Cellularprocessing assay revealed a low degree of internalization for 111In-NOTA-DUPA-RM26. In vivobinding specificity tests in PC3-PIP xenografted mice 1 h pi of 111In-NOTA-DUPA-RM26demonstrated partially blockable tumor uptake when co-injected with excess of either PSMA- orGRPR-targeting agents. A pronounced blocking effect was observed for 111In and 68Ga-labeledheterodimer when co-injected simultaneously with excess of PSMA- and GRPR-targeting agents 1 hpi. Biodistribution was studied 1, 3 and 24 h pi for 111In-NOTA-DUPA-RM26, and 1 and 3 h pi for68Ga-NOTA-DUPA-RM26 and revealed a fast clearance of radioprobes from blood and normal organsvia renal excretion. Tumor uptake exceeded the uptake in all normal organs including excretory organsfor both 111In and 68Ga-labeled heterodimers 1 h pi. 68Ga-NOTA-DUPA-RM26 had a significantlylower tumor uptake (8±2%ID/g) compared to 111In-NOTA-DUPA-RM26 (12±2%ID/g), but a two-foldhigher uptake in liver 1h pi. The faster clearance of radioactivity from normal tissues compared totumor lead to an overall increase in tumor-to-organ ratios for both 111In and 68Ga-labeled heterodimers3 h pi. At 24 h pi, tumor-to-organ ratios decreased for 111In-NOTA-DUPA-RM26. MicroPET/CT andmicroSPECT/CT scans confirmed the ex vivo data and suggested that anti-GRPR/PSMA heterodimerNOTA-DUPA-RM26 labeled with galium-68 (for PET) and indium-111 (for SPECT) is a suitablecandidate for imaging of GRPR and PSMA expression in PCa shortly after administration.

  • 17.
    Molavipordanjani, Sajjad
    et al.
    Mazandaran Univ Med Sci, Dept Radiopharm, Pharmaceut Sci Res Ctr, Fac Pharm, Sari, Iran;Mazandaran Univ Med Sci, Student Res Comm, Fac Pharm, Sari, Iran.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hosseinimehr, Seyed Jalal
    Mazandaran Univ Med Sci, Dept Radiopharm, Pharmaceut Sci Res Ctr, Fac Pharm, Sari, Iran.
    Basic and practical concepts of radiopharmaceutical purification methods2019In: Drug Discovery Today, ISSN 1359-6446, E-ISSN 1878-5832, Vol. 24, no 1, p. 315-324Article, review/survey (Refereed)
    Abstract [en]

    The presence of radiochemical impurities in a radiopharmaceutical contributes to an unnecessary radiation burden for the patients or to an undesirable high radioactivity background, which reduces the imaging contrast or therapeutic efficacy. Therefore, if the radiolabeling process results in unsatisfactory radiochemical purity, a purification step is unavoidable. A successful purification process requires a profound knowledge about the radiopharmaceuticals of interest ranging from structural features to susceptibility to different conditions. Most radiopharmaceutical purification methods are based on solid phase extraction (SPE), high-performance liquid chromatography (HPLC), size exclusion chromatography (SEC), ion-exchange chromatography (IEC), and liquid-liquid extraction (LLE). Here, we discuss the basic and applied concepts of these purifications methods as well as their advantages and limitations.

  • 18.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Maina, T.
    INRASTES NCSR Demokritos, Athens, Greece.
    Nock, B. A.
    INRASTES NCSR Demokritos, Athens, Greece.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    GRPR-Targeted Radiotherapy: Influence of Chelator on Labeling and Biodistribution of Four Lu-177-Labeled Analogues of the GRPR-Antagonist PEG2-RM262017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S295-S296Article in journal (Other academic)
  • 19.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Abouzayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Lundmark, Fanny
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart2019In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 11, no 8, article id 380Article in journal (Refereed)
    Abstract [en]

    Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG(2)-RM26. [In-111]In-DOTA-PEG(2)-RM26 was used as a control with a residualizing label. Tyr-PEG(2)-RM26 was labelled with I-125 with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG(2)-RM26 and DOTA-PEG(2)-RM26 were 1.7 +/- 0.3 nM and 3.3 +/- 0.5 nM, respectively. The cellular processing of [I-125]I-Tyr-PEG(2)-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [I-125]I-Tyr-PEG(2)-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [In-111]In-DOTA-PEG(2)-RM26. Tumor uptake of [In-111]In-DOTA-PEG(2)-RM26 was significantly higher than for [I-125]I-Tyr-PEG(2)-RM26, resulting in higher tumour-to-organ ratio for [In-111]In-DOTA-PEG(2)-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.

  • 20.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Anderson, K. G.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Steinhardt, X.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Ståhl, S.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Löfblom, J.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Influence of composition of cysteine-containing peptide based chelators on biodistribution of Tc-99m-labelled anti-EGFR affibody molecules2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S347-S348Article in journal (Other academic)
  • 21.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Steinhardt, Xenia
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules2018In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 50, no 8, p. 981-994Article in journal (Refereed)
    Abstract [en]

    Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of Tc-99m, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The Tc-99m-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.

  • 22.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Preclinical Evaluation of [Ga-68]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors2018In: CELLS, E-ISSN 2073-4409, Vol. 7, no 9, article id 141Article in journal (Refereed)
    Abstract [en]

    Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide Ga-68. Stability, specificity of binding to EGFR-expressing cells, and processing of [Ga-68]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [Ga-68]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [Zr-89]Zr-DFO-ZEGFR:2377. DFO-ZEGFR:2377 was efficiently (isolated yield of 73 +/- 3%) and stably labeled with Ga-68. Binding of [Ga-68]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [Ga-68]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [Zr-89]Zr-DFO-ZEGFR:2377, [Ga-68]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [Ga-68]Ga-DFO-ZEGFR:2377. In conclusion, [Ga-68]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.

  • 23.
    Rinne, Sara S.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, S-10691 Stockholm, Sweden.
    Gentry, Joshua
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Abouzayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, S-10691 Stockholm, Sweden.
    Löfblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, S-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 17710Article in journal (Refereed)
    Abstract [en]

    Upregulation of the human epidermal growth factor receptor type 3 (HER3) is a common mechanism to bypass HER-targeted cancer therapy. Affibody-based molecular imaging has the potential for detecting and monitoring HER3 expression during treatment. In this study, we compared the imaging properties of newly generated Ga-68-labeled anti-HER3 affibody molecules (HE)(3)-Z(HER3)-DOTA and (HE)(3)-Z(HER3)-DOTAGA with previously reported [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA. We hypothesized that increasing the negative charge of the gallium-68/chelator complex would reduce hepatic uptake, which could lead to improved contrast of anti-HER3 affibody-based PET-imaging of HER3 expression. (HE)(3)-Z(HER3)-X (X = DOTA, DOTAGA) were produced and labeled with gallium-68. Binding of the new conjugates was specific in HER3 expressing BxPC-3 and DU145 human cancer cells. Biodistribution and in vivo specificity was studied in BxPC-3 xenograft bearing Balb/c nu/nu mice 3 h pi. DOTA- and DOTAGA-containing conjugates had significantly higher concentration in blood than [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA. Presence of the negatively charged Ga-68-DOTAGA complex reduced the unspecific hepatic uptake, but did not improve overall biodistribution of the conjugate. [Ga-68]Ga-(HE)(3)-Z(HER3)-DOTAGA and [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA had similar tumor-to-liver ratios, but [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA had the highest tumor uptake and tumor-to-blood ratio among the tested conjugates. In conclusion, [Ga-68] Ga-(HE)(3)-Z(HER3)-NODAGA remains the favorable variant for PET imaging of HER3 expression.

  • 24.
    Rinne, Sara S.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Bass, Tarek Z.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Andersson, Ken G.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Stahl, Stefan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-1112019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 655Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging of human epidermal growth factor receptor 3 (HER3) expression using affibody molecules could be used for patient stratification for HER3-targeted cancer therapeutics. We hypothesized that the properties of HER3-targeting affibody molecules might be improved through modification of the radiometal-chelator complex. Macrocyclic chelators NOTA (1,4,7-triazacyclononane-N,N',N ''-triacetic acid), NODAGA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid), and DOTAGA (1,4,7,10-tetraazacyclododececane, 1-(glutaric acid)-4,7,10-triacetic acid) were conjugated to the C-terminus of anti-HER3 affibody molecule Z(08698) and conjugates were labeled with indium-111. All conjugates bound specifically and with picomolar affinity to HER3 in vitro. In mice bearing HER3-expressing xenografts, no significant difference in tumor uptake between the conjugates was observed. Presence of the negatively charged In-111-DOTAGA-complex resulted in the lowest hepatic uptake and the highest tumor-to-liver ratio. In conclusion, the choice of chelator influences the biodistribution of indium-111 labeled anti-HER3 affibody molecules. Hepatic uptake of anti-HER3 affibody molecules could be reduced by the increase of negative charge of the radiometal-chelator complex on the C-terminus without significantly influencing the tumor uptake.

  • 25.
    Rosestedt, Maria
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Andersson, Ken G.
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Leitao, Charles Dahlsson
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 6779Article in journal (Refereed)
    Abstract [en]

    Human epidermal growth factor receptor type 3 (HER3) plays a crucial role in the progression of many cancer types. In vivo radionuclide imaging could be a reliable method for repetitive detection of HER3-expression in tumors. The main challenge of HER3-imaging is the low expression in tumors together with endogenous receptor expression in normal tissues, particularly the liver. A HER3-targeting affibody molecule labeled with radiocobalt via a NOTA chelator [Co-57]Co-NOTA-Z(08699) has demonstrated the most favorable biodistribution profile with the lowest unspecific hepatic uptake and high activity uptake in tumors. We hypothesized that specific uptake of labeled affibody monomer might be selectively blocked in the liver but not in tumors by a co-injection of non-labeled corresponding trivalent affibody (Z(08699))(3). Biodistribution of [Co-57]Co-NOTA-Z(08699) and [In-111]ln-DOTA-(Z(08699))(3) was studied in BxPC-3 xenografted mice. [Co-57]Co-NOTA-Z(08699) was co-injected with unlabeled trivalent affibody DOTA-(Z(08699))(3) at different monomer:trimer molar ratios. HER3-expression in xenografts was imaged using [Co-57]Co-NOTA-Z(08699) and [Co-57]Co-NOTA-Z(08699): DOTA-(Z(08699))(3). Hepatic activity uptake of [Co-57] Co-NOTA-Z(08699): DOTA-(Z(08699))(3) decreased with increasing monomer:trimer molar ratio. The tumor activity uptake and tumor-to-liver ratios were the highest for the 1:3 ratio. SPECT/CT images confirmed the biodistribution data. Imaging of HER3 expression can be improved by co-injection of a radiolabeled monomeric affi body-based imaging probe together with a trivalent affibody.

  • 26.
    Tolmachev, Vladimir
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Grönroos, Tove J
    Turku PET Centre, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland; Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland.
    Yim, Cheng-Bin
    Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Åbo Akademi University, Turku, Finland.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Yue, Ying
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Grimm, Sebastian
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Rajander, Johan
    Turku PET Centre, Åbo Akademi University, Turku, Finland.
    Perols, Anna
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Haaparanta-Solin, Merja
    Turku PET Centre, University of Turku, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland.
    Solin, Olof
    Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland.
    Ferdani, Riccardo
    Washington University, St. Louis, MO, USA.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Anderson, Carolyn J
    Departments of Medicine, Radiology, Bioengineering and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15203, USA.
    Karlström, Amelie Eriksson
    Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Molecular design of radiocopper-labelled Affibody molecules2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 6542Article in journal (Refereed)
    Abstract [en]

    Cu-CB-TE2A-GEEE-ZHER2:342 was 16 ± 6%ID/g and tumor-to-blood ratio was 181 ± 52. In conclusion, a combination of the cross-bridged CB-TE2A chelator and Gly-Glu-Glu-Glu spacer is preferable for radiocopper labelling of Affibody molecules and, possibly, other scaffold proteins having high renal re-absorption.

  • 27.
    von Witting, Emma
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Hober, Sophia
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT62019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 140, p. 109-120Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-toorgan ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.

  • 28.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Bragina, Olga
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Shulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Proshkina, Galina
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Chernov, Vladimir
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Deyev, Sergey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Bionanophoton Lab, Inst Engn Phys Biomed PhysBio, Moscow, Russia.
    Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors2018In: Contrast Media & Molecular Imaging, ISSN 1555-4309, E-ISSN 1555-4317, article id 6930425Article in journal (Refereed)
    Abstract [en]

    High expression of human epidermal growth factor receptor 2 (HER2) in breast and gastroesophageal carcinomas is a predictive biomarker for treatment using HER2-targeted therapeutics (antibodies trastuzumab and pertuzumab, antibody-drug conjugate trastuzumab DM1, and tyrosine kinase inhibitor lapatinib). Radionuclide molecular imaging of HER2 expression might permit stratification of patients for HER2-targeting therapies. In this study, we evaluated a new HER2-imaging probe based on the designed ankyrin repeat protein (DARPin) 9_29. DARPin 9_29 was labeled with iodine-125 by direct radioiodination and with [Tc-99m] Tc(CO)(3) using the C-terminal hexahistidine tag. DARPin 9_29 preserved high specificity and affinity of binding to HER2-expressing cells after labeling. Uptake of [I-125] I-DARPin 9_29 and [Tc-99m] Tc(CO)(3)-DARPin 9_29 in HER2-positive SKOV-3 xenografts in mice at 6 h after injection was 3.4 +/- 0.7 % ID/g and 2.9 +/- 0.7 % ID/g, respectively. This was significantly (p < 0.00005) higher than the uptake of the same probes in HER2-negative Ramos lymphoma xenografts, 0.22 +/- 0.09 % ID/g and 0.30 +/- 0.05 % ID/g, respectively. Retention of [I-125] I-DARPin 9_29 in the lung, liver, spleen, and kidneys was appreciably lower compared with [Tc-99m] Tc(CO)(3)-DARPin 9_29, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by SPECT/CT imaging. In conclusion, radioiodine is a preferable label for DARPin 9_29.

  • 29.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Konovalova, Elena
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Guler, Rezan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Chernov, Vladimir
    Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk, Russia.
    Bragina, Olga
    Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk, Russia.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Deyev, Sergey M.
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow, Russia.
    Optimal composition and position of histidine-containing tags improves biodistribution of Tc-99m-labeled DARP in G32019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 9405Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARP in G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)(3)) of histidine-containing tags would influence the biodistribution of [Tc-99m]Tc(CO)(3)-labeled DARP in G3. To test the hypothesis, G3 variants containing tags at N-terminus (H-6-G3 and (HE)(3)-G3) or at C-terminus (G3-H-6 and G3-(HE)(3)) were labeled with [Tc-99m]Tc(CO)(3). Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [Tc-99m]Tc(CO)(3)-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.

  • 30.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow 117997, Russia.
    Konovalova, Elena
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow 117997, Russia.
    Güler, Rezan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Löfblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Deyev, Sergey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow 117997, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow 115409, Russia;Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk 634050, Russia.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparison of tumor-targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER22019In: International Journal of Oncology, ISSN 1019-6439, Vol. 54, no 4, p. 1209-1220Article in journal (Refereed)
    Abstract [en]

    Evaluation of human epidermal growth factor receptor 2 (HER2) expression levels in breast and gastroesophageal cancer is used for the stratification of patients for HER2-targeting therapies. The use of radionuclide molecular imaging may facilitate such evaluation in a non-invasive way. Designed ankyrin repeat proteins (DARPins) are engineered scaffold proteins with high potential as probes for radionuclide molecular imaging. DARPin G3 binds with high affinity to HER2 and may be used to visualize this important therapeutic target. Studies on other engineered scaffold proteins have demonstrated that selection of the optimal labeling approach improves the sensitivity and specificity of radionuclide imaging. The present study compared two methods of labeling G3, direct and indirect radioiodination, to select an approach providing the best imaging contrast. G3-H-6 was labeled with iodine-124, iodine-125 and iodine-131 using a direct method. A novel construct bearing a C-terminal cysteine, G3-GGGC, was site-specifically labeled using [I-125]I-iodo-[(4-hydroxyphenyl)ethyl]maleimide (HPEM). The two radiolabeled G3 variants preserved binding specificity and high affinity to HER2-expressing cells. The specificity of tumor targeting in vivo was demonstrated. Biodistribution comparison of [I-131]I-G3-H-6 and [I-125]I-HPEM-G3-GGGC in mice, bearing HER2-expressing SKOV3 xenografts, demonstrated an appreciable contribution of hepatobiliary excretion to the clearance of [I-125]I-HPEM-G3-GGGC and a decreased tumor uptake compared to [I-131]I-G3-H-6. The direct label provided higher tumor-to-blood and tumor-to-organ ratios compared with the indirect label at 4 h post-injection. The feasibility of high contrast PET/CT imaging of HER2 expression in SKOV3 xenografts in mice using [I-124]I-G3-H-6 was demonstrated. In conclusion, direct radioiodination is the preferable approach for labeling DARPin G3 with iodine-123 and iodine-124 for clinical single photon emission computed tomography and positron emission tomography imaging.

  • 31.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Mol Immunol Lab, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia.
    Rinne, Sara S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Günther, Tyran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Deyev, Sergey
    Russian Acad Sci, Mol Immunol Lab, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow 115409, Russia;Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk 634050, Russia.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Indirect Radioiodination of DARPin G3 Using N-succinimidyl-Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging2019In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 20, no 12, article id 3047Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging of human epidermal growth factor receptor 2 (HER2) in breast and gastroesophageal cancer might be used to stratify patients for HER2-targeted therapy as well as monitor treatment response and disease progression. Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins with favorable properties for molecular imaging. Herein we compared two methods for labeling the anti-HER2 DARPin (HE)(3)-G3, direct and indirect radioiodination. We hypothesized that the use of N-succinimidyl-para-iodobenzoate (SPIB) for radioiodination would facilitate the clearance of radiometabolites and improve the contrast of imaging. Both radiolabeled (HE)(3)-G3 variants preserved their binding specificity and high affinity to HER2-expressing cells. The specificity of tumor targeting in vivo was also demonstrated. A biodistribution comparison of [I-125]I-(HE)(3)-G3 and [I-125]I-PIB-(HE)(3)-G3, in mice bearing HER2 expressing SKOV3 xenografts, showed rapid clearance of [I-125]I-PIB-(HE)(3)-G3 from normal organs and tissues and low accumulation of activity in organs with NaI-symporter expression. Both radiolabeled (HE)(3)-G3 variants had equal tumor uptake. Consequently, the indirect label provided higher tumor-to-blood and tumor-to-organ ratios compared with the direct label. Comparative Single Photon Emission Computed Tomography (SPECT)/CT imaging of HER2 expression in SKOV3 xenografts, using both radiolabeled DARPins, demonstrated the superior imaging contrast of the indirect label. Indirect radioiodination of (HE)(3)-G3 using SPIB could be further applied for SPECT and PET imaging with iodine-123 and iodine-124.

  • 32.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Westerlund, Kristina
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rinne, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, Uppsala, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala Univ, Sci Life Lab, Uppsala, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlström, Amelie Eriksson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 9643Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are engineered scaffold proteins, which demonstrated excellent binding to selected tumor-associated molecular abnormalities in vivo and highly sensitive and specific radionuclide imaging of Her2-expressing tumors in clinics. Recently, we have shown that peptide nucleic acid (PNA)-mediated affibody-based pretargeted radionuclide therapy using beta-emitting radionuclide Lu-177 extended significantly survival of mice bearing human Her2-expressing tumor xenografts. In this study, we evaluated two approaches to use positron emission tomography (PET) for stratification of patients for affibody-based pretargeting therapy. The primary targeting probe Z(HER2:342)SR-HP1 and the secondary probe HP2 (both conjugated with DOTA chelator) were labeled with the positron-emitting radionuclide Ga. Biodistribution of both probes was measured in BALB/C nu/nu mice bearing either SKOV-3 xenografts with high Her2 expression or DU-145 xenografts with low Her2 expression. (68)GaHP2 was evaluated in the pretargeting setting. Tumor uptake of both probes was compared with the uptake of pretargeted Lu-177-HP2. The uptake of both Ga-68-Z(HER2:342)SR-HP1 and Ga-68-HP2 depended on Her2-expression level providing clear discrimination of between tumors with high and low Her2 expression. Tumor uptake of Ga-68-HP2 correlated better with the uptake of Lu-177-HP2 than the uptake of Ga-68 Z(HER2:342) SR-HP1. The use of Ga-68-HP2 as a theranostics counterpart would be preferable approach for clinical translation.

  • 33.
    Westerlund, Kristina
    et al.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, S-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlström, Amelie Eriksson
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, S-10691 Stockholm, Sweden.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting2019In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 203, p. 73-85Article in journal (Refereed)
    Abstract [en]

    Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [Co-57]Co-labeled PNA hybridization probe ([Co-57]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [Co-57]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [Co-57]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 +/- 0.2 vs. 0.33 +/- 0.06 %ID/g). Tumor accumulation of [Co-57]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 +/- 0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.

1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf