uu.seUppsala University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Panigrahi, Puspamitra
    et al.
    Hindustan Inst Technol & Sci, Clean Energy & Nano Convergence Ctr CENCON, Chennai 603103, Tamil Nadu, India.
    Hussain, Tanveer
    Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia.
    Karton, Amir
    Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia.
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    Elemental Substitution of Two-Dimensional Transition Metal Dichalcogenides (MoSe2 and MoTe2): Implications for Enhanced Gas Sensing2019In: ACS SENSORS, ISSN 2379-3694, Vol. 4, no 10, p. 2646-2653Article in journal (Refereed)
    Abstract [en]

    The quest for a suitable material with the potential of capturing toxic nitrogen-containing gases (NH3, NO, and NO2) has motivated us to explore the structural, electronic, and gas-sensing properties of transition metal dichalcogenides (TMDs); MoSe2 and MoTe2. Spin-polarized density functional theory (DFT) calculations demonstrate weak binding of nitrogen-containing gases (NCGs) with the pristine TMDs, which limits the use of the latter as efficient sensing materials. However, suitable elemental substitutions improve the binding mechanism enormously. Our dispersion-corrected DFT calculations revealed that Se (Te) substitution with Ge (Sb) in MoSe2 (MoTe2) not only enhances the binding energies but also causes a significant variation in the electronic properties and work functions. A charge-transfer mechanism based on Bader analysis indicates that transfer of charges from MoSe2-Ge (MoTe2-Sb) to the NCGs is responsible for the improvement in the binding characteristics. Based on our findings, it is evident that 2.08% of elemental substitutional makes both MoSe2 and MoTe2 promising materials for NH3, NO, and NO2 gas sensing.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf