uu.seUppsala University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Borro, Bruno C.
    et al.
    Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Bohr, Adam
    Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Bucciarelli, Saskia
    Univ Copenhagen, Dept Drug Design & Pharmacol, Jagtvej 162, DK-2100 Copenhagen, Denmark.
    Boetker, Johan P.
    Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Foged, Camilla
    Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Rantanen, Jukka
    Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Malmsten, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Univ Copenhagen, Dept Pharm, Univ Pk 2, DK-2100 Copenhagen, Denmark.
    Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design2019In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 538, p. 559-568Article in journal (Refereed)
    Abstract [en]

    In an effort to contribute to research in scalable production systems for polymeric delivery systems loaded with antimicrobial peptides (AMPS), we here investigate effects of hydrodynamic flow conditions on microfluidic particle generation. For this purpose, rapid prototyping using 3D printing was applied to prepare micromixers with three different geometric designs, which were used to prepare Ca2+-crosslinked alginate microgels loaded with the AMP polymyxin B in a continuous process. Based on fluid dynamic simulations, the hydrodynamic flow patterns in the micromixers were designed to be either (i) turbulent with chaotic disruption, (ii) laminar with convective mixing, or (iii) convective with microvortex formation. The physicochemical properties of the microgels prepared with these micromixers were characterized by photon correlation spectroscopy, laser-Doppler micro-electrophoresis, smallangle x-ray scattering, and ellipsometry. The particle size and compactness were found to depend on the micromixer geometry: From such studies, particle size and compactness were found to depend on micromixer geometry, the smallest and most compact particles were obtained by preparation involving microvortex flows, while larger and more diffuse microgels were formed upon laminar mixing. Polymyxin B was found to be localized in the particle interior and to cause particle growth with increasing peptide loading. Ca2+-induced cross-linking of alginate, in turn, results in particle contraction. The peptide encapsulation efficiency was found to be higher than 80% for all investigated micromixer designs; the highest encapsulation efficiency observed for the smallest particles generated by microvortexmediated self-assembly. Ellipsometry results for surface-immobilized microgels, as well as results on peptide encapsulation, demonstrated electrolyte-induced peptide release. Taken together, these findings demonstrate that rapid prototyping of microfluidics using 3D-printed micromixers offers promises for continuous manufacturing of AMP-loaded microgels. Although the micromixer combining turbulent flow and microvortexes was demonstrated to be the most efficient, all three micromixer designs were found to mediate self-assembly of small microgels displaying efficient peptide encapsulation. This demonstrates the robustness of employing 3D-printed micromixers for microfluidic assembly of AMP-loaded microgels during continuous production. 

  • 2.
    Colombo, Stefano
    et al.
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark.
    Beck-Broichsitter, Moritz
    Philipps Univ, Dept Pharmaceut & Biopharm, Marburg, Germany.
    Becker, Johan Peter
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark.
    Malmsten, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Univ Copenhagen, Dept Pharm, Copenhagen, Denmark.
    Rantanen, Jukka
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark.
    Bohr, Adam
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark.
    Transforming nanomedicine manufacturing toward Quality by Design and microfluidics2018In: Advanced Drug Delivery Reviews, ISSN 0169-409X, E-ISSN 1872-8294, Vol. 128, p. 115-131Article, review/survey (Refereed)
    Abstract [en]

    Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doi ng so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field. (C) 2018 Elsevier B.V. All rights reserved.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf