uu.seUppsala University Publications
Change search
Refine search result
123 1 - 50 of 109
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Allen, R. C.
    et al.
    Zhang, J. -C
    Kistler, L. M.
    Spence, H. E.
    Lin, R. -L
    Dunlop, M. W.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Multiple bidirectional EMIC waves observed by Cluster at middle magnetic latitudes in the dayside magnetosphere2013In: Journal of Geophysical Research: Space Physics, ISSN 2169-9380, Vol. 118, no 10, p. 6266-6278Article in journal (Refereed)
    Abstract [en]

    It is well accepted that the propagation of electromagnetic ion cyclotron (EMIC) waves are bidirectional near their source regions and unidirectional when away from these regions. The generally believed source region for EMIC waves is around the magnetic equatorial plane. Here we describe a series of EMIC waves in the Pc1 (0.2-5 Hz) frequency band above the local He+ cyclotron frequency observed in situ by all four Cluster spacecraft on 9 April 2005 at midmagnetic latitudes (MLAT = similar to 33 degrees-49 degrees) with L = 10.7-11.5 on the dayside (MLT = 10.3-10.4). A Poynting vector spectrum shows that the wave packets consist of multiple groups of packets propagating bidirectionally, rather than unidirectionally, away from the equator, while the local plasma conditions indicate that the spacecraft are entering into a region sufficient for local wave excitation. One possible interpretation is that, while part of the observed waves are inside their source region, the others are either close enough to the source region, or mixed with the wave packets from multiple source regions at different latitudes.

  • 2.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Space Sci Div, SSTD, Didcot OX11 0QX, Oxon, England..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2014In: 2014 XXXITH URSI General Assembly And Scientific Symposium (URSI GRASS), 2014Conference paper (Refereed)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the L-MLT frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001-2010) of data from Cluster, totaling 17,987 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The current paper focuses on the wave occurrence distribution as well as the distribution of wave properties.

  • 3.
    Allen, R. C.
    et al.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Zhang, J. -C
    Kistler, L. M.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Spence, H. E.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Lin, R. -L
    Klecker, B.
    Max Planck Inst Extraterr Phys, D-85748 Garching, Germany..
    Dunlop, M. W.
    Rutherford Appleton Lab, Div Space Sci, Harwell, Oxon, England..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Jordanova, V. K.
    Los Alamos Natl Lab, Los Alamos, NM USA..
    A statistical study of EMIC waves observed by Cluster: 1. Wave properties2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 7, p. 5574-5592Article in journal (Refereed)
    Abstract [en]

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10years (2001-2010) of data from Cluster, totaling 25,431min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  • 4.
    Alm, Love
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Southwest Res Inst, San Antonio, TX USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Russell, C. T.
    Univ Calif Los Angeles, IGPP EPSS, Los Angeles, CA USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mauk, B. H.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Magnetotail Hall Physics in the Presence of Cold Ions2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 20, p. 10941-10950Article in journal (Refereed)
    Abstract [en]

    We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E x B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for similar to 30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j x B term of the generalized Ohm's law, with significant contributions from the del center dot P-e and v(c) x B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics. Plain Language Summary Cold ions have the potential of changing the fundamental physics behind magnetic reconnection. Here we present the first direct observation of this process in action in the magnetotail. Cold ions from the tail lobes were able to remain cold even deep inside the much hotter plasma sheet. Even though the cold ions only accounted for similar to 30% of the total ions, they had a significant impact on the electric fields near the reconnection region.

  • 5.
    Andrews, David J.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Opgenoorth, Hermann J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dieval, C.
    Duru, F.
    Gurnett, D. A.
    Morgan, D.
    Witasse, O.
    Oblique reflections in the Mars Express MARSIS data set: Stable density structures in the Martian ionosphere2014In: Journal of Geophysical Research-Space Physics, ISSN 2169-9380, Vol. 119, no 5, p. 3944-3960Article in journal (Refereed)
    Abstract [en]

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a cusp-like configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.

  • 6.
    Andrews, David J.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Opgenoorth, Hermann J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fraenz, M.
    Dubinin, E.
    Duru, F.
    Morgan, D.
    Witasse, O.
    Determination of local plasma densities with the MARSIS radar: Asymmetries in the high-altitude Martian ionosphere2013In: Journal of Geophysical Research: Space Physics, ISSN 2169-9380, Vol. 118, no 10, p. 6228-6242Article in journal (Refereed)
    Abstract [en]

    We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above approximate to 300km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higherdensity (n(e)>150cm(-3)) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B-c|<20nT) and strong (|B-c|>20nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the approximate to 300-1200km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.

  • 7.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance2015In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. 90, no 12, article id 128005Article in journal (Refereed)
    Abstract [en]

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10(26) ions s(-1). This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s(-1) (30 000 ton yr(-1)). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life.

  • 8.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cully, Christopher M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Low-energy ions: A previously hidden solar system particle population2012In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, p. L03101-Article in journal (Refereed)
    Abstract [en]

    Ions with energies less than tens of eV originate from the Terrestrial ionosphere and from several planets and moons in the solar system. The low energy indicates the origin of the plasma but also severely complicates detection of the positive ions onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of Volts. We discuss some methods to observe low-energy ions, including a recently developed technique based on the detection of the wake behind a charged spacecraft in a supersonic flow. Recent results from this technique show that low-energy ions typically dominate the density in large regions of the Terrestrial magnetosphere on the nightside and in the polar regions. These ions also often dominate in the dayside magnetosphere, and can change the dynamics of processes like magnetic reconnection. The loss of this low-energy plasma to the solar wind is one of the primary pathways for atmospheric escape from planets in our solar system. We combine several observations to estimate how common low-energy ions are in the Terrestrial magnetosphere and briefly compare with Mars, Venus and Titan.

  • 9.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Li, K.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Outflow of low-energy ions and the solar cycle2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 2, p. 1072-1085Article in journal (Refereed)
    Abstract [en]

    Magnetospheric ions with energies less than tens of eV originate from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We use two Cluster spacecraft and study low-energy ions with a technique based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the density and the outward flux in the geomagnetic tail lobes during all parts of the solar cycle. The global outflow is of the order of 10(26) ions/s and often dominates over the outflow at higher energies. The outflow increases by a factor of 2 with increasing solar EUV flux during a solar cycle. This increase is mainly due to the increased density of the outflowing population, while the outflow velocity does not vary much. Thus, the outflow is limited by the available density in the ionospheric source rather than by the energy available in the magnetosphere to increase the velocity.

  • 10.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Karlsson, T.
    KTH Royal Inst Technol, Sch Elect Engn, Dept Space & Plasma Phys, Stockholm, Sweden.
    Wieser, G. Stenberg
    Swedish Inst Space Phys, Kiruna, Sweden.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Norgren, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Johansson, Fredrik L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Henri, P.
    Lab Phys & Chim Environm & Espace, Orleans, France.
    Rubin, M.
    Univ Bern, Phys Inst, Bern, Switzerland.
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany.
    Lower hybrid waves at comet 67P/Churyumov-Gerasimenko2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 469, p. S29-S38Article in journal (Refereed)
    Abstract [en]

    We investigate the generation of waves in the lower hybrid frequency range by density gradients in the near plasma environment of comet 67P/Churyumov-Gerasimenko. When the plasma is dominated by water ions from the comet, a situation with magnetized electrons and unmagnetized ions is favourable for the generation of lower hybrid waves. These waves can transfer energy between ions and electrons and reshape the plasma environment of the comet. We consider cometocentric distances out to a few hundred km. We find that when the electron motion is not significantly interrupted by collisions with neutrals, large average gradients within tens of km of the comet, as well as often observed local large density gradients at larger distances, are often likely to be favourable for the generation of lower hybrid waves. Overall, we find that waves in the lower hybrid frequency range are likely to be common in the near plasma environment.

  • 11.
    André, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics, Space and Plasma Physics.
    Vaivads, Andris
    Buchert, Stephan C.
    Fazakerley, A. N.
    Lahiff, A.
    Thin electron-scale layers at the magnetopause2004In: Geophys. Res. Lett., Vol. 31, p. L03803-Article in journal (Refereed)
  • 12.
    Backrud, Marie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Tjulin, Anders
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Fazakerley, Andrew
    Interferometric Identification of Ion Acoustic Broadband Waves in the Auroral Region: CLUSTER Observations2005In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 32, no 21Article in journal (Refereed)
    Abstract [en]

    [1] We determine the phase velocity and k vector for parallel and oblique broadband extremely low frequency, ELF, waves on nightside auroral magnetic field lines at altitudes around 4.6 RE. We use internal burst mode data from the EFW electric field and wave instrument onboard the Cluster spacecraft to retrieve phase differences between the four probes of the instrument. The retrieved characteristic phase velocity is of the order of the ion acoustic speed and larger than the thermal velocity of the protons. The typical wavelength obtained from interferometry is around the proton gyro radius and always larger than the Debye length. We find that in regions with essentially no suprathermal electrons above a few tens of eV the observed broadband waves above the proton gyro frequency are consistent with upgoing ion acoustic and oblique ion acoustic waves.

  • 13.
    Backrud-Ivgren, Marie
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    Stenberg, Gabriella
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Morooka, Michiko
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hobara, Yasuhide
    Joko, Sachiko
    Rönnmark, Kjell
    Cornilleau-Wehrlin, Nicole
    Fazakerley, Andrew
    Rème, Henri
    Cluster observations and theoretical identification of broadband waves in the auroral region2005In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 23, no 12, p. 3739-3752Article in journal (Refereed)
    Abstract [en]

    Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves), while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV) plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.

  • 14.
    Bader, A.
    et al.
    Swedish Inst Space Phys, Kiruna, Sweden;Lulea Tekniska Univ, Kiruna, Sweden;Univ Lancaster, Phys, Lancaster, England.
    Wieser, G. Stenberg
    Swedish Inst Space Phys, Kiruna, Sweden.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wieser, M.
    Swedish Inst Space Phys, Kiruna, Sweden.
    Futaana, Y.
    Swedish Inst Space Phys, Kiruna, Sweden.
    Persson, M.
    Swedish Inst Space Phys, Kiruna, Sweden;Umea Univ, Dept Phys, Umea, Sweden.
    Nilsson, H.
    Swedish Inst Space Phys, Kiruna, Sweden.
    Zhang, T. L.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Proton Temperature Anisotropies in the Plasma Environment of Venus2019In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 124, no 5, p. 3312-3330Article in journal (Refereed)
    Abstract [en]

    Velocity distribution functions (VDFs) are a key to understanding the interplay between particles and waves in a plasma. Any deviation from an isotropic Maxwellian distribution may be unstable and result in wave generation. Using data from the ion mass spectrometer IMA (Ion Mass Analyzer) and the magnetometer (MAG) onboard Venus Express, we study proton distributions in the plasma environment of Venus. We focus on the temperature anisotropy, that is, the ratio between the proton temperature perpendicular (T-perpendicular to) and parallel (T-parallel to) to the background magnetic field. We calculate average values of T-perpendicular to and T-parallel to for different spatial areas around Venus. In addition we present spatial maps of the average of the two temperatures and of their average ratio. Our results show that the proton distributions in the solar wind are quite isotropic, while at the bow shock stronger perpendicular than parallel heating makes the downstream VDFs slightly anisotropic (T-perpendicular to/T-parallel to > 1) and possibly unstable to generation of proton cyclotron waves or mirror mode waves. Both wave modes have previously been observed in Venus's magnetosheath. The perpendicular heating is strongest in the near-subsolar magnetosheath (T-perpendicular to/ T-parallel to approximate to 3/2), which is also where mirror mode waves are most frequently observed. We believe that the mirror mode waves observed here are indeed generated by the anisotropy. In the magnetotail we observe planetary protons with largely isotropic VDFs, originating from Venus's ionosphere.

  • 15.
    Bale, S. D.
    et al.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Goetz, K.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Harvey, P. R.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Turin, P.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Bonnell, J. W.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Dudok de Wit, T.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    MacDowall, R. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pulupa, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Bolton, M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Bougeret, J. -L
    Bowen, T. A.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Burgess, D.
    Queen Mary Univ London, Astron Unit, London, England..
    Cattell, C. A.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Chandran, B. D. G.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Chaston, C. C.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Chen, C. H. K.
    Imperial Coll, Dept Phys, London, England..
    Choi, M. K.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Connerney, J. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Cranmer, S.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Diaz-Aguado, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Donakowski, W.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Drake, J. F.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Farrell, W. M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Fergeau, P.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Fermin, J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Fischer, J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Fox, N.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    Glaser, D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Goldstein, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gordon, D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Hanson, E.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.;Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Harris, S. E.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Hayes, L. M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Hinze, J. J.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Hollweg, J. V.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Horbury, T. S.
    Imperial Coll, Dept Phys, London, England..
    Howard, R. A.
    Naval Res Lab, Washington, DC 20375 USA..
    Hoxie, V.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Jannet, G.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Karlsson, M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Kasper, J. C.
    Univ Michigan, Ann Arbor, MI 48109 USA..
    Kellogg, P. J.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Kien, M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Klimchuk, J. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Krasnoselskikh, V. V.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Krucker, S.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Lynch, J. J.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Maksimovic, M.
    Observ Paris, LESIA, Meudon, France..
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Marker, S.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Martin, P.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Martinez-Oliveros, J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    McCauley, J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    McComas, D. J.
    Southwest Res Inst, San Antonio, TX USA..
    McDonald, T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Meyer-Vernet, N.
    Observ Paris, LESIA, Meudon, France..
    Moncuquet, M.
    Observ Paris, LESIA, Meudon, France..
    Monson, S. J.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    Mozer, F. S.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Murphy, S. D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Odom, J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Oliverson, R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Olson, J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Parker, E. N.
    Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA..
    Pankow, D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Phan, T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Quataert, E.
    Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA..
    Quinn, T.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Ruplin, S. W.
    Praxis Studios, Brooklyn, NY USA..
    Salem, C.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Seitz, D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Sheppard, D. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Siy, A.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Stevens, K.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Summers, D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Szabo, A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Timofeeva, M.
    CNRS, LPC2E, 3A Ave Rech Sci, Orleans, France..
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Velli, M.
    UCLA, Earth Planetary & Space Sci, Los Angeles, CA USA..
    Yehle, A.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA..
    Werthimer, D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Wygant, J. R.
    Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA..
    The FIELDS Instrument Suite for Solar Probe Plus2016In: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 204, no 1-4, p. 49-82Article, review/survey (Refereed)
    Abstract [en]

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  • 16.
    Behlke, Rico
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Astronomy and Space Physics, Space and Plasma Physics.
    Bale, Stuart D.
    Pickett, Jolene S.
    Cattell, Cynthia A.
    Lucek, Elizabeth A.
    Balogh, Andre
    Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock2004In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 31, no 16Article in journal (Refereed)
    Abstract [en]

    [1] For the first time, solitary waves (SWs) have been observed within short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock. The SWs often occur as bipolar pulses in the electric field data and move parallel to the background magnetic field at velocities of v = 400–1200 km/s. They have peak-to-peak amplitudes in the parallel electric field of up to E = 65 mV/m and parallel scale sizes of L ∼ 10 λD. The bipolar solitary waves exhibit negative potential structures of ∣Φ∣ = 0.4–2.2 V, i.e., eΦ/kTe ∼ 0.1. None of the theories commonly used to describe SWs adequately address these negative potential structures moving at velocities above the ion thermal speed in a weakly magnetized plasma.

  • 17.
    Buchert, Stephan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Zangerl, Franz
    Sust, Manfred
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Opgenoorth, Hermann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    SWARM observations of equatorial electron densities and topside GPS track losses2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 7, p. 2088-2092Article in journal (Refereed)
    Abstract [en]

    The SWARM satellites have both upward looking GPS receivers and Langmuir probes. The receivers repeatedly lost track of the L1 band signal in January-February 2014 at postsunset hours, when SWARM was at nearly 500km altitude. This indicates that the signal was disturbed by ionospheric irregularities at this height and above. The track losses occurred right at density gradients associated with equatorial plasma bubbles and predominantly where the measured background density was highest. The signal showed strong phase scintillations rather than in amplitude, indicating that SWARM might be in the near field of an ionospheric phase screen. Density biteouts, depletions between steep gradients, were up to almost 3 orders of magnitude deep in the background of a more shallow trough centered at the magnetic equator. Comparison between satellites shows that the biteout structure strongly varied in longitude over approximate to 100km and has in north-south steep walls.

  • 18.
    Cao, D.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Fu, H. S.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Wang, T. Y.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Chen, Z. Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Peng, F. Z.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China.
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan, Peoples R China.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Russell, C. T.
    Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Lindqvist, P. -A
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA;Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
    Ergun, R. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
    Le Contel, O.
    UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    MMS observations of whistler waves in electron diffusion region2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 9, p. 3954-3962Article in journal (Refereed)
    Abstract [en]

    Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the -300eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations.

  • 19.
    Dimmock, Andrew P.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Rosenqvist, L.
    Swedish Def Res Agcy, Stockholm, Sweden.
    Hall, J-O
    Swedish Def Res Agcy, Stockholm, Sweden;Swedish Nucl Fuel & Waste Management Co, Solna, Sweden.
    Viljanen, A.
    Finnish Meteorol Inst, Helsinki, Finland.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Honkonen, I
    Finnish Meteorol Inst, Helsinki, Finland.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Sjoberg, E. C.
    Swedish Inst Space Phys, Kiruna, Sweden.
    The GIC and Geomagnetic Response Over Fennoscandia to the 7-8 September 2017 Geomagnetic Storm2019In: Space Weather: The international journal of research and applications, ISSN 1542-7390, E-ISSN 1542-7390, Vol. 17, no 7, p. 989-1010Article in journal (Refereed)
    Abstract [en]

    Between 7 and 8 September 2017, Earth experienced extreme space weather events. We have combined measurements made by the IMAGE magnetometer array, ionospheric equivalent currents, geomagnetically induced current (GIC) recordings in the Finnish natural gas pipeline, and multiple ground conductivity models to study the Fennoscandia ground effects. This unique analysis has revealed multiple interesting physical and technical insights. We show that although the 7-8 September event was significant by global indices (Dst similar to 150 nT), it produced an unexpectedly large peak GIC. It is intriguing that our peak GIC did not occur during the intervals of largest geomagnetic depressions, nor was there any clear upstream trigger. Another important insight into this event is that unusually large and rare GIC amplitudes (>10 A) occurred in multiple Magnetic Local Time (MLT) sectors and could be associated with westward and eastward electrojets. We were also successfully able to model the geoelectric field and GIC using multiple models, thus providing a further important validation of these models for an extreme event. A key result from our multiple conductivity model comparison was the good agreement between the temporal features of 1-D and 3-D model results. This provides an important justification for past and future uses of 1-D models at Mantsala which is highly relevant to additional uses of this data set. Although the temporal agreement (after scaling) was good, we found a large (factor of 4) difference in the amplitudes between local and global ground models due to the difference in model conductivities. Thus, going forward, obtaining accurate ground conductivity values are key for GIC modeling.

  • 20.
    Divin, A.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Markidis, S.
    Lapenta, G.
    Evolution of the lower hybrid drift instability at reconnection jet front2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 4, p. 2675-2690Article in journal (Refereed)
    Abstract [en]

    We investigate current-driven modes developing at jet fronts during collisionless reconnection. Initial evolution of the reconnection is simulated using conventional 2-D setup starting from the Harris equilibrium. Three-dimensional PIC calculations are implemented at later stages, when fronts are fully formed. Intense currents and enhanced wave activity are generated at the fronts because of the interaction of the fast flow plasma and denser ambient current sheet plasma. The study reveals that the lower hybrid drift instability develops quickly in the 3-D simulation. The instability produces strong localized perpendicular electric fields, which are several times larger than the convective electric field at the front, in agreement with Time History of Events and Macroscale Interactions during Substorms observations. The instability generates waves, which escape the front edge and propagate into the undisturbed plasma ahead of the front. The parallel electron pressure is substantially larger in the 3-D simulation compared to that of the 2-D. In a time similar to Omega(-1)(ci), the instability forms a layer, which contains a mixture of the jet plasma and current sheet plasma. The results confirm that the lower hybrid drift instability is important for the front evolution and electron energization.

  • 21.
    Divin, Andrey
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lower hybrid drift instability at a dipolarization front2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 2, p. 1124-1132Article in journal (Refereed)
    Abstract [en]

    We present observations of a reconnection jet front detected by the Cluster satellites in the magnetotail of Earth, which are commonly referred to as dipolarization fronts. We investigate in detail electric field structures observed at the front which have frequency in the lower hybrid range and amplitudes reaching 40mV/m. We determine the frequency and phase velocity of these structures in the reference frame of the front and identify them as a manifestation of the lower hybrid drift instability (LHDI) excited at the sharp density gradient at the front. The LHDI is observed in the nonlinear stage of its evolution as the electrostatic potential of the structures is comparable to approximate to 10% of the electron temperature. The front appears to be a coherent structure on ion and MHD scales, suggesting existence of a dynamic equilibrium between excitation of the LHDI and recovery of the steep density gradient at the front.

  • 22.
    Divin, Andrey
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Toledo-Redondo, S.
    European Space Agcy, ESAC, Sci Directorate, Madrid, Spain..
    Markidis, S.
    KTH Royal Inst Technol, Dept Computat Sci & Technol, Stockholm, Sweden..
    Lapenta, G.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium..
    Three-scale structure of diffusion region in the presence of cold ions2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 12, p. 12001-12013Article in journal (Refereed)
    Abstract [en]

    Kinetic simulations and spacecraft observations typically display the two-scale structure of collisionless diffusion region (DR), with electron and ion demagnetization scales governing the spatial extent of the DR. Recent in situ observations of the nightside magnetosphere, as well as investigation of magnetic reconnection events at the Earth's magnetopause, discovered the presence of a population of cold (tens of eV) ions of ionospheric origin. We present two-dimensional particle-in-cell simulations of collisionless magnetic reconnection in multicomponent plasma with ions consisting of hot and cold populations. We show that a new cold ion diffusion region scale is introduced in between that of hot ions and electrons. Demagnetization scale of cold ion population is several times (similar to 4-8) larger than the initial cold ion gyroradius. Cold ions are accelerated and thermalized during magnetic reconnection and form ion beams moving with velocities close to the Alfven velocity.

  • 23.
    Duan, Suping
    et al.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dai, Lei
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Wang, Chi
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    He, Zhaohai
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Cai, Chunlin
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Zhang, Y. C.
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Dandouras, I.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    Reme, H.
    Univ Toulouse, UPS OMP, IRAP, Toulouse, France.;CNRS, IRAP, Toulouse, France..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Oxygen Ions O+ Energized by Kinetic Alfven Eigenmode During Dipolarizations of Intense Substorms2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 11, p. 11256-11273Article in journal (Refereed)
    Abstract [en]

    Singly charged oxygen ions, O+, energized by kinetic Alfven wave eigenmode (KAWE) in the plasma sheet boundary layer during dipolarizations of two intense substorms, 10: 07 UT on 31 August 2004 and 18: 24 UT on 14 September 2004, are investigated by Cluster spacecraft in the magnetotail. It is found that after the beginning of the expansion phase of substorms, O+ ions are clearly energized in the direction perpendicular to the magnetic field with energy larger than 1 keV in the near-Earth plasma sheet during magnetic dipolarizations. The pitch angle distribution of these energetic O+ ions is significantly different from that of O+ ions with energy less than 1 keV before substorm onset that is in the quasi-parallel direction along the magnetic field. The KAWE with the large perpendicular unipolar electric field, E-z similar to -20 mV/m, significantly accelerates O+ ions in the direction perpendicular to the background magnetic field. We present good evidences that O+ ion origin from the ionosphere along the magnetic field line in the northward lobe can be accelerated in the perpendicular direction during substorm dipolarizations. The change of the move direction of O+ ions is useful for O+ transferring from the lobe into the central plasma sheet in the magnetotail. Thus, KAWE can play an important role in O+ ion transfer process from the lobe into the plasma sheet during intense substorms.

  • 24.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alho, M.
    Aalto Univ, Sch Elect Engn, Dept Radio Sci & Engn, POB 13000, FI-00076 Aalto, Finland..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andrews, David J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Behar, E.
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Burch, J. L.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Carr, C. M.
    Imperial Coll London, Exhibit Rd, London SW7 2AZ, England..
    Cupido, E.
    Imperial Coll London, Exhibit Rd, London SW7 2AZ, England..
    Engelhardt, Ilka. A. D.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Glassmeier, K. -H
    Goetz, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Goldstein, R.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA..
    Henri, P.
    Lab Phys & Chim Environm & Espace, F-45071 Orleans 2, France..
    Johansson, Fredrik L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Koenders, C.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Mandt, K.
    Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA..
    Moestl, C.
    Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria..
    Nilsson, H.
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Richter, I.
    TU Braunschweig, Inst Geophys & Extraterr Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany..
    Wedlund, C. Simon
    Univ Oslo, Dept Phys, Box 1048 Blindern, N-0316 Oslo, Norway..
    Wieser, G. Stenberg
    Swedish Inst Space Phys, Box 812, SE-98128 Kiruna, Sweden..
    Szego, K.
    Wigner Res Ctr Phys, Konkoly Thege Miklos Ut 29-33, H-1121 Budapest, Hungary..
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Volwerk, M.
    Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria..
    CME impact on comet 67P/Churyumov-Gerasimenko2016In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 462, p. S45-S56Article in journal (Refereed)
    Abstract [en]

    We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 2015 Oct 5-6, when Rosetta was about 800 km from the comet nucleus, and 1.4 au from the Sun. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of similar to 2.5. The plasma density increases by a factor of 10 and reaches 600 cm(-3), due to increased particle impact ionization, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the limited orbit of Rosetta, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.

  • 25.
    Edberg, Niklas J. T.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Henri, P.
    Lebreton, J. -P
    Gasc, S.
    Rubin, M.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Gill, Reine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Erik P. G.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Carr, C. M.
    Cupido, E.
    Glassmeier, K. -H
    Goldstein, R.
    Koenders, C.
    Mandt, K.
    Nemeth, Z.
    Nilsson, H.
    Richter, I.
    Wieser, G. Stenberg
    Szego, K.
    Volwerk, M.
    Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 11, p. 4263-4269Article in journal (Refereed)
    Abstract [en]

    We use measurements from the Rosetta plasma consortium Langmuir probe and mutual impedance probe to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e., the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be approximate to 1-210(-6), at a cometocentric distance of 10km and at 3.1AU from the Sun. A clear 6.2h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisionless plasma within 260km from the nucleus falls off with radial distance as approximate to 1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.

  • 26.
    Engwall, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cully, Christopher M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Puhl-Quinn, Pamela
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Vaith, Hans
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Torbert, Roy
    Space Science Center, University of New Hampshire, Durham, New Hampshire 03824-3525, USA.
    Survey of cold ionospheric outflows in the magnetotail2009In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 27, no 8, p. 3185-3201Article in journal (Refereed)
    Abstract [en]

    Low-energy ions escape from the ionosphere and constitute a large part of the magnetospheric content, especially in the geomagnetic tail lobes. However, they are normally invisible to spacecraft measurements, since the potential of a sunlit spacecraft in a tenuous plasma in many cases exceeds the energy-per-charge of the ions, and little is therefore known about their outflow properties far from the Earth. Here we present an extensive statistical study of cold ion outflows (0-60 eV) in the geomagnetic tail at geocentric distances from 5 to 19 R-E using the Cluster spacecraft during the period from 2001 to 2005. Our results were obtained by a new method, relying on the detection of a wake behind the spacecraft. We show that the cold ions dominate in both flux and density in large regions of the magnetosphere. Most of the cold ions are found to escape from the Earth, which improves previous estimates of the global outflow. The local outflow in the magnetotail corresponds to a global outflow of the order of 10(26) ions s(-1). The size of the outflow depends on different solar and magnetic activity levels.

  • 27.
    Ergun, R. E.
    et al.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Holmes, J. C.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Goodrich, K. A.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Stawarz, J. E.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Eriksson, S.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Newman, D. L.
    Univ Colorado, Dept Phys, Boulder, CO 80309 USA..
    Schwartz, S. J.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA.;Imperial Coll London, Blackett Lab, London, England..
    Goldman, M. V.
    Univ Colorado, Dept Phys, Boulder, CO 80309 USA..
    Sturner, A. P.
    Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.;Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Usanova, M. E.
    Univ Colorado, Lab Atmospher & Space Sci, Boulder, CO 80309 USA..
    Torbert, R. B.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.;Southwest Res Inst, San Antonio, TX USA..
    Argall, M.
    Univ New Hampshire, Dept Phys, Durham, NH 03824 USA..
    Lindqvist, P-A
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Hesse, M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Chen, L. J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, Toulouse, France..
    Le Contel, O.
    Lab Phys Plasmas, Palaiseau, France..
    Retino, A.
    Lab Phys Plasmas, Palaiseau, France..
    Phan, T. D.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England..
    Oieroset, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Drake, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Shay, M. A.
    Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA..
    Cassak, P. A.
    West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA..
    Nakamura, R.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Zhou, M.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA..
    Ashour-Abdalla, M.
    Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA USA..
    Andre, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 11, p. 5626-5634Article in journal (Refereed)
    Abstract [en]

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  • 28.
    Eriksson, Anders I.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Engelhardt, Ilka. A. D.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Boström, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Edberg, Niklas J. T.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Johansson, Fredrik L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Odelstad, Elias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vigren, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Wahlund, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Henri, P.
    LPC2E, Lab Phys & Chim Environm & Espace.
    Lebreton, J. -P
    LPC2E, Lab Phys & Chim Environm & Espace.
    Miloch, W. J.
    Univ Oslo, Dept Phys.
    Paulsson, J. J. P.
    Univ Oslo, Dept Phys.
    Wedlund, Cyril Simon
    Univ Oslo, Dept Phys.
    Yang, L.
    Univ Oslo, Dept Phys.
    Karlsson, T.
    Royal Inst Technol, Alfvén Lab.
    Jarvinen, R.
    Finnish Meteorol Inst, Helsinki 00560.
    Broiles, Thomas
    Southwest Res Inst, San Antonio.
    Mandt, K.
    Southwest Res Inst, San Antonio; Univ Texas San Antonio, Dept Phys & Astron.
    Carr, C. M.
    Imperial Coll London, Dept Phys.
    Galand, M.
    Imperial Coll London, Dept Phys.
    Nilsson, H.
    Swedish Inst Space Phys, S-98128 Kiruna.
    Norberg, C.
    Swedish Inst Space Phys, S-98128 Kiruna.
    Cold and warm electrons at comet 67P/Churyumov-Gerasimenko2017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 605, article id A15Article in journal (Refereed)
    Abstract [en]

    Context. Strong electron cooling on the neutral gas in cometary comae has been predicted for a long time, but actual measurements of low electron temperature are scarce. Aims. Our aim is to demonstrate the existence of cold electrons in the inner coma of comet 67P/Churyumov-Gerasimenko and show filamentation of this plasma.

    Methods. In situ measurements of plasma density, electron temperature and spacecraft potential were carried out by the Rosetta Langmuir probe instrument, LAP. We also performed analytical modelling of the expanding two-temperature electron gas.

    Results. LAP data acquired within a few hundred km from the nucleus are dominated by a warm component with electron temperature typically 5-10 eV at all heliocentric distances covered (1.25 to 3.83 AU). A cold component, with temperature no higher than about 0.1 eV, appears in the data as short (few to few tens of seconds) pulses of high probe current, indicating local enhancement of plasma density as well as a decrease in electron temperature. These pulses first appeared around 3 AU and were seen for longer periods close to perihelion. The general pattern of pulse appearance follows that of neutral gas and plasma density. We have not identified any periods with only cold electrons present. The electron flux to Rosetta was always dominated by higher energies, driving the spacecraft potential to order -10 V.

    Conclusions. The warm (5-10 eV) electron population observed throughout the mission is interpreted as electrons retaining the energy they obtained when released in the ionisation process. The sometimes observed cold populations with electron temperatures below 0.1 eV verify collisional cooling in the coma. The cold electrons were only observed together with the warm population. The general appearance of the cold population appears to be consistent with a Haser-like model, implicitly supporting also the coupling of ions to the neutral gas. The expanding cold plasma is unstable, forming filaments that we observe as pulses.

  • 29.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Electron acceleration in a magnetotail reconnection outflow region using Magnetospheric MultiScale dataManuscript (preprint) (Other academic)
  • 30.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Divin, Andrey
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Physics Department, St. Petersburg State University, St. Petersburg, Russia.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Electron Energization at a Reconnecting Magnetosheath Current Sheet2018In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, no 16Article in journal (Refereed)
    Abstract [en]

    We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (∼0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations.Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail,the acceleration mechanism and corresponding heating of electrons is similar.

  • 31.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Graham, Daniel. B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Yordanova, Emiliya
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Hietala, H.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Lavraud, B.
    CNRS, IRAP, Toulouse, France..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Saito, Y.
    JAXA, Chofu, Tokyo, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C.
    Torbert, R.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Ergun, R.
    Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA..
    Lindqvist, P-A
    Burch, J.
    Southwest Res Inst, San Antonio, TX USA..
    Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 10, p. 9608-9618Article in journal (Refereed)
    Abstract [en]

    Localized kinetic-scale regions of strong current are believed to play an important role in plasma thermalization and particle acceleration in turbulent plasmas. We present a detailed study of a strong localized current, 4900 nA m(-2), located at a fast plasma jet observed in the magnetosheath downstream of a quasi-parallel shock. The thickness of the current region is similar to 3 ion inertial lengths and forms at a boundary separating magnetosheath-like and solar wind-like plasmas. On ion scales the current region has the shape of a sheet with a significant average normal magnetic field component but shows strong variations on smaller scales. The dynamic pressure within the magnetosheath jet is over 3 times the solar wind dynamic pressure. We suggest that the current sheet is forming due to high velocity shears associated with the jet. Inside the current sheet we observe local electron acceleration, producing electron beams, along the magnetic field. However, there is no clear sign of ongoing reconnection. At higher energies, above the beam energy, we observe a loss cone consistent with part of the hot magnetosheath-like electrons escaping into the colder solar wind-like plasma. This suggests that the acceleration process within the current sheet is similar to the one that occurs at shocks, where electron beams and loss cones are also observed. Therefore, electron beams observed in the magnetosheath do not have to originate from the bow shock but can also be generated locally inside the magnetosheath.

  • 32.
    Eriksson, Elin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyayintsev, V. M.
    Taras Shevchenko Natl Univ Kyiv, Dept Theoret Phys, Kiev, Ukraine..
    Andre, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Statistics and accuracy of magnetic null identification in multispacecraft data2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, p. 6883-6889Article in journal (Refereed)
    Abstract [en]

    Complex magnetic topologies are ubiquitous in astrophysical plasmas. Analyzing magnetic nulls, regions of vanishing magnetic field, is one way to characterize 3-D magnetic topologies. Magnetic nulls are believed to be important in 3-D reconnection and turbulence. In the vicinity of a null, plasma particles become unmagnetized and can be accelerated to high energies by electric fields. We present the first statistical study of the occurrence of magnetic nulls and their types in the Earth's nightside magnetosphere. We are able to identify the nulls both in the tail and in the magnetopause current sheets. On average, we find one null for every few current sheet crossings. We show that the type identification of magnetic nulls may be sensitive to local fluctuations in the magnetic field. We develop and demonstrate a method to estimate the reliability of the magnetic null type identification.

  • 33. Fu, H. S.
    et al.
    Cao, J. B.
    Cully, C. M.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Angelopoulos, V.
    Zong, Q. -G
    Santolik, O.
    Macusova, E.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Liu, W. L.
    Lu, H. Y.
    Zhou, M.
    Huang, S. Y.
    Zhima, Z.
    Whistler-mode waves inside flux pileup region: Structured or unstructured?2014In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 119, no 11, p. 9089-9100Article in journal (Refereed)
    Abstract [en]

    During reconnection, a flux pileup region (FPR) is formed behind a dipolarization front in an outflow jet. Inside the FPR, the magnetic field magnitude and Bz component increase and the whistler-mode waves are observed frequently. As the FPR convects toward the Earth during substorms, it is obstructed by the dipolar geomagnetic field to form a near-Earth FPR. Unlike the structureless emissions inside the tail FPR, we find that the whistler-mode waves inside the near-Earth FPR can exhibit a discrete structure similar to chorus. Both upper band and lower band chorus are observed, with the upper band having a larger propagation angle (and smaller wave amplitude) than the lower band. Most chorus elements we observed are rising-tone type, but some are falling-tone type. We notice that the rising-tone chorus can evolve into falling-tone chorus within <3s. One of the factors that may explain why the waves are unstructured inside the tail FPR but become discrete inside the near-Earth FPR is the spatial inhomogeneity of magnetic field: we find that such inhomogeneity is small inside the near-Earth FPR but large inside the tail FPR.

  • 34.
    Fu, H. S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cao, J. B.
    Khotyaintsev, Yu. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Sitnov, M. I.
    Runov, A.
    Fu, S. Y.
    Hamrin, M.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Retino, A.
    Ma, Y. D.
    Lu, H. Y.
    Wei, X. H.
    Huang, S. Y.
    Dipolarization fronts as a consequence of transient reconnection: In situ evidence2013In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 23, p. 6023-6027Article in journal (Refereed)
    Abstract [en]

    Dipolarization fronts (DFs) are frequently detected in the Earth's magnetotail from XGSM = −30 RE to XGSM = −7 RE. How these DFs are formed is still poorly understood. Three possible mechanisms have been suggested in previous simulations: (1) jet braking, (2) transient reconnection, and (3) spontaneous formation. Among these three mechanisms, the first has been verified by using spacecraft observation, while the second and third have not. In this study, we show Cluster observation of DFs inside reconnection diffusion region. This observation provides in situ evidence of the second mechanism: Transient reconnection can produce DFs. We suggest that the DFs detected in the near-Earth region (XGSM > −10 RE) are primarily attributed to jet braking, while the DFs detected in the mid- or far-tail region (XGSM < −15 RE) are primarily attributed to transient reconnection or spontaneous formation. In the jet-braking mechanism, the high-speed flow “pushes” the preexisting plasmas to produce the DF so that there is causality between high-speed flow and DF. In the transient-reconnection mechanism, there is no causality between high-speed flow and DF, because the frozen-in condition is violated.

  • 35.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andre, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Dunlop, M.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Liu, W. L.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Lu, H. Y.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China..
    Ma, Y. D.
    Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China..
    Eriksson, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Identifying magnetic reconnection events using the FOTE method2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 2, p. 1263-1272Article in journal (Refereed)
    Abstract [en]

    A magnetic reconnection event detected by Cluster is analyzed using three methods: Single-spacecraft Inference based on Flow-reversal Sequence (SIFS), Multispacecraft Inference based on Timing a Structure (MITS), and the First-Order Taylor Expansion (FOTE). Using the SIFS method, we find that the reconnection structure is an X line; while using the MITS and FOTE methods, we find it is a magnetic island (O line). We compare the efficiency and accuracy of these three methods and find that the most efficient and accurate approach to identify a reconnection event is FOTE. In both the guide and nonguide field reconnection regimes, the FOTE method is equally applicable. This study for the first time demonstrates the capability of FOTE in identifying magnetic reconnection events; it would be useful to the forthcoming Magnetospheric Multiscale (MMS) mission. ion

  • 36.
    Fu, H. S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Y. V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andre, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Sergeev, V. A.
    Huang, S. Y.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Kronberg, E. A.
    Daly, P. W.
    Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview2012In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 117, p. A12221-Article in journal (Refereed)
    Abstract [en]

    We examine the pitch angle distribution (PAD) of suprathermal electrons (> 40 keV) inside the flux pileup regions (FPRs) that are located behind the dipolarization fronts (DFs), in order to better understand the particle energization mechanisms operating therein. The 303 earthward-propagating DFs observed during 9 years (2001-2009) by Cluster 1 have been analyzed and divided into two groups according to the differential fluxes of the > 40 keV electrons inside the FPR. One group, characterized by the low flux (F < 500/cm(2) , s . sr . keV), consists of 153 events and corresponds to a broad distribution of IMF Bz components. The other group, characterized by the high flux (F >= 500/cm(2) . s . sr . keV), consists of 150 events and corresponds to southward IMF Bz components. Only the high-flux group is considered to investigate the PAD of the > 40 keV electrons as the low-flux situation may lead to large uncertainties in computing the anisotropy factor that is defined as A = F-perpendicular to/F-parallel to - 1 for F-perpendicular to > F-parallel to, and A = -F-parallel to/F-perpendicular to + 1 for F-perpendicular to < F-parallel to. We find that, among the 150 events, 46 events have isotropic distribution (vertical bar A vertical bar <= 0.5); 60 events have perpendicular distribution (A > 0.5), and 44 events have field-aligned distribution inside the FPR (A < -0.5). The perpendicular distribution appears mainly inside the growing FPR, where the flow velocity is increasing and the local flux tube is compressed. The field-aligned distribution occurs mainly inside the decaying FPR, where the flow velocity is decreasing and the local flux tube is expanding. Inside the steady FPR, we observed primarily the isotropic distribution of suprathermal electrons. This statistical result confirms the previous case study and gives an overview of the PAD of suprathermal electrons behind DFs.

  • 37.
    Fu, H. S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Retino, A.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Energetic electron acceleration by unsteady magnetic reconnection2013In: Nature Physics, ISSN 1745-2473, E-ISSN 1745-2481, Vol. 9, no 7, p. 426-430Article in journal (Refereed)
    Abstract [en]

    The mechanism that produces energetic electrons during magnetic reconnection is poorly understood. This is a fundamental process responsible for stellar flares(1,2),substorms(34), and disruptions in fusion experiments(5,6).Observations in the solar chromosphere(1) and the Earth's magnetosphere(7-10) indicate significant electron acceleration during reconnection, whereas in the solar wind, energetic electrons are absent(11). Here we show that energetic electron acceleration is caused by unsteady reconnection. In the Earth's magnetosphere and the solar chromosphere, reconnection is unsteady, so energetic electrons are produced; in the solar wind, reconnection is steady(12), so energetic electrons are absent(11). The acceleration mechanism is quasi-adiabatic: betatron and Fermi acceleration in outflow jets are two processes contributing to electron energization during unsteady reconnection. The localized betatron acceleration in the outflow is responsible for at least half of the energy gain for the peak observed fluxes.

  • 38.
    Fu, H. S.
    et al.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China..
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Cao, J. B.
    Beihang Univ, Sch Space & Environm, Beijing, Peoples R China..
    Olshevsky, V.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Leuven, Belgium..
    Eastwood, J. P.
    Imperial Coll London, Blackett Lab, London, England..
    Retino, A.
    UPMC, Ecole Polytech, CNRS, Lab Phys Plasmas, Palaiseau, France..
    Intermittent energy dissipation by turbulent reconnection2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 1, p. 37-43Article in journal (Refereed)
    Abstract [en]

    Magnetic reconnectionthe process responsible for many explosive phenomena in both nature and laboratoryis efficient at dissipating magnetic energy into particle energy. To date, exactly how this dissipation happens remains unclear, owing to the scarcity of multipoint measurements of the diffusion region at the sub-ion scale. Here we report such a measurement by Clusterfour spacecraft with separation of 1/5 ion scale. We discover numerous current filaments and magnetic nulls inside the diffusion region of magnetic reconnection, with the strongest currents appearing at spiral nulls (O-lines) and the separatrices. Inside each current filament, kinetic-scale turbulence is significantly increased and the energy dissipation, Ej, is 100 times larger than the typical value. At the jet reversal point, where radial nulls (X-lines) are detected, the current, turbulence, and energy dissipations are surprisingly small. All these features clearly demonstrate that energy dissipation in magnetic reconnection occurs at O-lines but not X-lines.

  • 39.
    Fu, H. S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Beihang Univ, Space Sci Inst, Sch Astronaut, Beijing 100191, Peoples R China.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Olshevsky, V.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium.;Main Astron Observ NAS, Kiev, Ukraine..
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Cao, J. B.
    Beihang Univ, Space Sci Inst, Sch Astronaut, Beijing 100191, Peoples R China..
    Huang, S. Y.
    Ecole Polytech, CNRS, UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France.;Wuhan Univ, Sch Elect & Informat, Wuhan 430072, Peoples R China.
    Retino, A.
    Ecole Polytech, CNRS, UPMC, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Lapenta, G.
    Katholieke Univ Leuven, Ctr Math Plasma Astrophys, Dept Math, Leuven, Belgium..
    How to find magnetic nulls and reconstruct field topology with MMS data?2015In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 120, no 5, p. 3758-3782Article in journal (Refereed)
    Abstract [en]

    In this study, we apply a new method-the first-order Taylor expansion (FOTE)-to find magnetic nulls and reconstruct magnetic field topology, in order to use it with the data from the forthcoming MMS mission. We compare this method with the previously used Poincare index (PI), and find that they are generally consistent, except that the PI method can only find a null inside the spacecraft (SC) tetrahedron, while the FOTE method can find a null both inside and outside the tetrahedron and also deduce its drift velocity. In addition, the FOTE method can (1) avoid limitations of the PI method such as data resolution, instrument uncertainty (Bz offset), and SC separation; (2) identify 3-D null types (A, B, As, and Bs) and determine whether these types can degenerate into 2-D (X and O); (3) reconstruct the magnetic field topology. We quantitatively test the accuracy of FOTE in positioning magnetic nulls and reconstructing field topology by using the data from 3-D kinetic simulations. The influences of SC separation (0.05 similar to 1 d(i)) and null-SC distance (0 similar to 1 d(i)) on the accuracy are both considered. We find that (1) for an isolated null, the method is accurate when the SC separation is smaller than 1 d(i), and the null-SC distance is smaller than 0.25 similar to 0.5 d(i); (2) for a null pair, the accuracy is same as in the isolated-null situation, except at the separator line, where the field is nonlinear. We define a parameter xi vertical bar(lambda(1) +lambda(2) +lambda(3))vertical bar/vertical bar lambda vertical bar(max) in terms of the eigenvalues (lambda(i)) of the null to quantify the quality of our method-the smaller this parameter the better the results. Comparing to the previously used parameter (eta vertical bar del center dot B vertical bar/vertical bar del x B vertical bar), xi is more relevant for null identification. Using the new method, we reconstruct the magnetic field topology around a radial-type null and a spiral-type null, and find that the topologies are well consistent with those predicted in theory. We therefore suggest using this method to find magnetic nulls and reconstruct field topology with four-point measurements, particularly from Cluster and the forthcoming MMS mission. For the MMS mission, this null-finding algorithm can be used to trigger its burst-mode measurements.

  • 40.
    Fu, Huishan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Huang, S. Y.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Occurrence rate of earthward-propagating dipolarization fronts2012In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, p. L10101-Article in journal (Refereed)
    Abstract [en]

    The occurrence rate of earthward-propagating dipolarization fronts (DFs) is investigated in this paper based on the 9 years (2001-2009) of Cluster 1 data. For the first time, we select the DF events by fitting the characteristic increase in B-z using a hyperbolic tangent function. 303 earthward-propagating DFs are found; they have on average a duration of 4 s and a B-z increase of 8 nT. DFs have the maximum occurrence at Z(GSM) approximate to 0 and r approximate to 15 R-E with one event occurring every 3.9 hours, where r is the distance to the center of the Earth in the XYGSM plane. The maximum occurrence rate at Z(GSM) approximate to 0 can be explained by the steep and large increase of B-z near the central current sheet, which is consistent with previous simulations. Along the r direction, the occurrence rate increases gradually from r approximate to 20 to r approximate to 15 R-E but decreases rapidly from r approximate to 15 to r approximate to 10 R-E. This may be due to the increasing pileup of the magnetic flux from r approximate to 20 to r approximate to 15 R-E and the strong background magnetic field at r <similar to 13 R-E, where the magnetic field changes from the tail-like to dipolar shape. The maximum occurrence rate of DFs (one event per 3.9 hours) is comparable to that of substorms, indicating a relation between the two.

  • 41.
    Fu, Huishan S.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Huang, S. Y.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Electric structure of dipolarization front at sub-proton scale2012In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, p. L06105-Article in journal (Refereed)
    Abstract [en]

    Using Cluster data, we investigate the electric structure of a dipolarization front (DF) - the ion inertial length (c/omega(pi)) scale boundary in the Earth's magnetotail formed at the front edge of an earthward propagating flow with reconnected magnetic flux. We estimate the current density and the electron pressure gradient throughout the DF by both single-spacecraft and multi-spacecraft methods. Comparison of the results from the two methods shows that the single-spacecraft analysis, which is capable of resolving the detailed structure of the boundary, can be applied for the DF we study. Based on this, we use the current density and the electron pressure gradient from the single-spacecraft method to investigate which terms in the generalized Ohm's law balance the electric field throughout the DF. We find that there is an electric field at ion inertia scale directed normal to the DF; it has a duskward component at the dusk flank of DF but a dawnward component at the dawn flank of DF. This electric field is balanced by the Hall (j x B/ne) and electron pressure gradient (del P-e/ne) terms at the DF, with the Hall term being dominant. Outside the narrow DF region, however, the electric field is balanced by the convection (V-i x B) term, meaning the frozen-in condition for ions is broken only at the DF itself. In the reference frame moving with the DF the tangential electric field is almost zero, indicating there is no flow of plasma across the DF and that the DF is a tangential discontinuity. The normal electric field at the DF constitutes a potential drop of similar to 1 keV, which may reflect and accelerate the surrounding ions. 

  • 42.
    Fuselier, S. A.
    et al.
    Southwest Res Inst, San Antonio, TX 78238 USA;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA.
    Trattner, K. J.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.
    Petrinec, S. M.
    Lockheed Martin Adv Technol Ctr, Palo Alto, CA USA.
    Denton, M. H.
    New Mexico Consortium, Los Alamos, NM USA.
    Toledo-Redondo, S.
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Aunai, N.
    Lab Phys Plasmas, Paris, France.
    Chappell, C. R.
    Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
    Glocer, A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Haaland, S. E.
    Max Planck Inst Solar Syst Res, Gottingen, Germany;Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Hesse, M.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Kistler, L. M.
    Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA.
    Lavraud, B.
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France.
    Li, W.
    Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China.
    Moore, T. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Graham, Daniel B.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Alm, Love
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Tenfjord, P.
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway.
    Dargent, J.
    Univ Pisa, Phys Dept E Fermi, Pisa, Italy.
    Vines, S. K.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
    Nykyri, K.
    Embry Riddle Aeronaut Univ, Ctr Space & Atmospher Res, Daytona Beach, FL USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    Strangeway, R. J.
    Univ Calif Los Angeles, Earth & Space Sci, Los Angeles, CA USA.
    Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, no 12, p. 6204-6213Article in journal (Refereed)
    Abstract [en]

    When the interplanetary magnetic field is northward for a period of time, O+ from the high-latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual-lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+-rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high-shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high-latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.

  • 43.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Swedish Inst Space Phys, Uppsala, Sweden..
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Norgren, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden..
    Ergun, R. E.
    Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Planetol, Toulouse, France.;CNRS, Toulouse, France..
    Saito, Y.
    JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria..
    Russell, C. T.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria.;Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Strangeway, R. J.
    Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria.;Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA..
    Burch, J. L.
    SW Res Inst, San Antonio, TX USA..
    Electron currents and heating in the ion diffusion region of asymmetric reconnection2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 10, p. 4691-4700Article in journal (Refereed)
    Abstract [en]

    In this letter the structure of the ion diffusion region of magnetic reconnection at Earth's magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.

  • 44.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Norgren, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Toledo-Redondo, S.
    European Space Agcy ESAC, Madrid, Spain..
    Lindqvist, P. -A
    Marklund, G. T.
    KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden..
    Ergun, R. E.
    Univ Colorado Boulder, Lab Atmospher & Space Phys, Boulder, CO USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD USA..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Pollock, C. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Dorelli, J. C.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA..
    Avanov, L. A.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.;Univ Maryland, Dept Astron, College Pk, MD USA..
    Lavraud, B.
    Univ Toulouse UPS, Inst Rech Astrophys & Plantol, Toulouse, France.;Ctr Natl Rech Sci, Toulouse, France..
    Saito, Y.
    JAXA, Inst Space & Aeronaut Sci, Sagamihara, Kanagawa, Japan..
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    Strangeway, R. J.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA..
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH USA..
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA..
    Lower hybrid waves in the ion diffusion and magnetospheric inflow regions2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 1, p. 517-533Article in journal (Refereed)
    Abstract [en]

    The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.

  • 45.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Andre, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Electrostatic solitary waves and electrostatic waves at the magnetopause2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 4, p. 3069-3092Article in journal (Refereed)
    Abstract [en]

    Electrostatic solitary waves (ESWs) are characterized by localized bipolar electric fields parallel to the magnetic field and are frequently observed in space plasmas. In this paper a study of ESWs and field-aligned electrostatic waves, which do not exhibit localized bipolar fields, near the magnetopause is presented using the Cluster spacecraft. The speeds, length scales, field strengths, and potentials are calculated and compared with the local plasma conditions. A large range of speeds is observed, suggesting different generation mechanisms. In contrast, a smaller range of length scales normalized to the Debye length lambda(D) is found. For ESWs the average length between the positive and negative peak fields is 9 lambda(D), comparable to the average half wavelength of electrostatic waves. Statistically, the lengths and speeds of ESWs and electrostatic waves are shown to be similar. The length scales and potentials of the ESWs are consistent with predictions for stable electron holes. The maximum ESW potentials are shown to be constrained by the length scale and the magnetic field strength at the magnetopause and in the magnetosheath. The observed waves are consistent with those generated by the warm bistreaming instability, beam-plasma instability, and electron-ion instabilities, which account for the observed speeds and length scales. The large range of wave speeds suggests that the waves can couple different electron populations and electrons with ions, heating the plasma and contributing to anomalous resistivity.

  • 46.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Electrostatic solitary waves with distinct speeds associated with asymmetric reconnection2015In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 42, no 2, p. 215-224Article in journal (Refereed)
    Abstract [en]

    Electrostatic solitary waves (ESWs) are observed at the magnetopause with distinct time scales. These ESWs are associated with asymmetric reconnection of the cold dense magnetosheath plasma with the hot tenuous magnetospheric plasma. The distinct time scales are shown to be due to ESWs moving at distinct speeds and having distinct length scales. The length scales are of order 5-50 Debye lengths, and the speeds range from approximate to 50 km s(-1) to approximate to 1000 km s(-1). The ESWs are observed near the reconnection separatrices. The observation of ESWs with distinct speeds suggests that multiple instabilities are occurring. The implications for reconnection at the magnetopause are discussed.

  • 47.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Fazakerley, A. N.
    Electron Dynamics in the Diffusion Region of an Asymmetric Magnetic Reconnection2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 21, p. 215004-Article in journal (Refereed)
    Abstract [en]

    During a magnetopause crossing near the subsolar point Cluster observes the ion diffusion region of antiparallel magnetic reconnection. The reconnecting plasmas are asymmetric, differing in magnetic field strength, density, and temperature. Spatial changes in the electron distributions in the diffusion region are resolved and investigated in detail. Heating of magnetosheath electrons parallel to the magnetic field is observed. This heating is shown to be consistent with trapping of magnetosheath electrons by parallel electric fields.

  • 48.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Norgren, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Webster, J. M.
    Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX 78238 USA.
    Lindqvist, P. -A
    Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm SE-11428, Sweden.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA.
    Torbert, R. B.
    Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA.
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Gershman, D. J.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria.
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA.
    Instability of Agyrotropic Electron Beams near the Electron Diffusion Region2017In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 119, no 2, article id 025101Article in journal (Refereed)
    Abstract [en]

    During a magnetopause crossing the Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) of asymmetric reconnection. The EDR is characterized by agyrotropic beam and crescent electron distributions perpendicular to the magnetic field. Intense upper-hybrid (UH) waves are found at the boundary between the EDR and magnetosheath inflow region. The UH waves are generated by the agyrotropic electron beams. The UH waves are sufficiently large to contribute to electron diffusion and scattering, and are a potential source of radio emission near the EDR. These results provide observational evidence of wave-particle interactions at an EDR, and suggest that waves play an important role in determining the electron dynamics.

  • 49.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Le Contel, O.
    Univ Paris Sud, UPMC Univ Paris 06, Observ Paris, LPP,UMR7648,CNRS,Ecole Polytech, Paris, France.
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Lindqvist, P. -A
    Wilder, F. D.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
    Magnes, W.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA.
    Burch, J. L.
    Southwest Res Inst, San Antonio, TX USA.
    Torbert, R. B.
    Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA.
    Large-Amplitude High-Frequency Waves at Earth's Magnetopause2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 4, p. 2630-2657Article in journal (Refereed)
    Abstract [en]

    Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1Vm(-1), and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.

  • 50.
    Graham, Daniel B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Vaivads, Andris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Khotyaintsev, Yuri V.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Eriksson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    André, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
    Malaspina, D. M.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA.
    Lindqvist, P-A
    KTH Royal Inst Technol, Sch Elect Engn, Space & Plasma Phys, Stockholm, Sweden.
    Gershman, D. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;Univ Maryland, Dept Astron, College Pk, MD 20742 USA.
    Plaschke, F.
    Austrian Acad Sci, Space Res Inst, Graz, Austria.
    Enhanced Escape of Spacecraft Photoelectrons Caused by Langmuir and Upper Hybrid Waves2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 9, p. 7534-7553Article in journal (Refereed)
    Abstract [en]

    The spacecraft potential is often used to infer rapid changes in the thermal plasma density. The variations in spacecraft potential associated with large-amplitude Langmuir and upper hybrid waves are investigated with the Magnetospheric Multiscale (MMS) mission. When large-amplitude Langmuir and upper hybrid waves are observed, the spacecraft potential increases. The changes in spacecraft potential are shown to be due to enhanced photoelectron escape from the spacecraft when the wave electric fields reach large amplitude. The fluctuations in spacecraft potential follow the envelope function of the Langmuir and upper hybrid waves. Comparison with the high-resolution electron moments shows that the changes in spacecraft potential associated with the waves are not due to density perturbations. Indeed, using the spacecraft potential as a density probe leads to unphysically large density fluctuations. In addition, the changes in spacecraft potential are shown to increase as density decreases: larger spacecraft potential changes are observed in the magnetosphere, than in the magnetosheath and solar wind. These results show that external electric fields can lead to unphysical results when the spacecraft potential is used as a density probe. The results suggest that fluctuations in the spacecraft potential alone cannot be used to determine whether nonlinear processes associated with Langmuir and upper hybrid waves, such as the ponderomotive force and three-wave decay, are occurring.

123 1 - 50 of 109
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf