uu.seUppsala University Publications
Change search
Refine search result
12345 1 - 50 of 202
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abadpour, Shadab
    et al.
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Göpel, Sven O.
    AstraZeneca R&D Gothenburg, Dept CVMD Biosci, Gothenburg, Sweden..
    Schive, Simen W.
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Foss, Aksel
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Scholz, Hanne
    Oslo Univ Hosp, Sect Transplant Surg, Oslo, Norway.;Oslo Univ Hosp, Inst Surg Res, Oslo, Norway.;Univ Oslo, Inst Clin Med, Oslo, Norway..
    Glial cell-line derived neurotrophic factor protects human islets from nutrient deprivation and endoplasmic reticulum stress induced apoptosis2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 1575Article in journal (Refereed)
    Abstract [en]

    One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin: insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1 alpha and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre- treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1 alpha and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.

  • 2.
    Abadpour, Shadab
    et al.
    Oslo University Hospital, Oslo, Norway.
    Halvorsen, Bente
    Oslo University Hospital, Oslo, Norway.
    Sahraoui, Afaf
    University of Oslo, Oslo, Norway.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Aukrust, Pål
    Oslo University Hospital, Oslo, Norway.
    Scholz, Hanne
    Oslo University Hospital, Oslo, Norway.
    Interleukin-22 reverses human islet dysfunction and apoptosis triggered by hyperglycemia and LIGHT2018In: Journal of Molecular Endocrinology, ISSN 0952-5041, E-ISSN 1479-6813, Vol. 60, no 3, p. 171-183Article in journal (Refereed)
    Abstract [en]

    Interleukin (IL)-22 has recently been suggested as an anti-inflammatory cytokine that could protect the islet cells from inflammation- and glucose-induced toxicity. We have previously shown that the tumor necrosis factor family member, LIGHT can impair human islet function at least partly via pro-apoptotic effects. Herein, we aimed to investigate the protective role of IL-22 on human islets exposed to the combination of hyperglycemia and LIGHT. First, we found up-regulation of LIGHT receptors (LTβR and HVEM) in engrafted human islets exposed to hyperglycemia (>11 mM) for 17 days post transplantation by using a double islet transplantation mouse model as well as in human islets cultured with high glucose (HG) (20mM glucose) + LIGHT in vitro and this latter effect was attenuated by IL-22. The effect of HG + LIGHT impairing glucose stimulated insulin secretion was reversed by IL-22. The harmful effect of HG + LIGHT on human islet function seemed to involve enhanced endoplasmic reticulum stress evidenced by up-regulation of p-IRE1α and BiP, elevated secretion of pro-inflammatory cytokines (IL-6, IL-8, IP-10 and MCP-1) and the pro-coagulant mediator tissue factor (TF) release and apoptosis in human islets, whereas all these effects were at least partly reversed by IL-22. Our findings suggest that IL-22 could counteract the harmful effects of LIGHT/hyperglycemia on human islet cells and potentially support the strong protective effect of IL-22 on impaired islet function and survival.

  • 3.
    Anagandula, Mahesh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Richardson, Sarah J.
    University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK.
    Oberste, M. Steven
    Centers for Disease Control and Prevention, Atlanta, Georgia.
    Sioofy-Khojine, Amir-Babak
    School of Medicine, University of Tampere, Tampere, Finland.
    Hyoty, Heikki
    School of Medicine, University of Tampere, Tampere, Finland ,Fimlab Ltd, Pirkanmaa Hospital District, Finland.
    Morgan, Noel G.
    University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, UK.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Infection of Human Islets of Langerhans With Two Strains of Coxsackie B Virus Serotype 1: Assessment of Virus Replication, Degree of Cell Death and Induction of Genes Involved in the Innate Immunity Pathway2014In: Journal of Medical Virology, ISSN 0146-6615, E-ISSN 1096-9071, Vol. 86, no 8, p. 1402-1411Article in journal (Refereed)
    Abstract [en]

    Type 1 diabetes mellitus is believed to be triggered, in part, by one or more environmental factors and human enteroviruses (HEVs) are among the candidates. Therefore, this study has examined whether two strains of HEV may differentially affect the induction of genes involved in pathways leading to the synthesis of islet hormones, chemokines and cytokines in isolated, highly purified, human islets. Isolated, purified human pancreatic islets were infected with strains of Coxsackievirus B1. Viral replication and the degree of CPE/islet dissociation were monitored. The expression of insulin, glucagon, CXCL10, TLR3, IF1H1, CCL5, OAS-1, IFN beta, and DDX58 was analyzed. Both strains replicated in islets but only one of strain caused rapid islet dissociation/CPE. Expression of the insulin gene was reduced during infection of islets with either viral strain but the gene encoding glucagon was unaffected. All genes analyzed which are involved in viral sensing and the development of innate immunity were induced by Coxsackie B viruses, with the notable exception of TLR3. There was no qualitative difference in the expression pattern between each strain but the magnitude of the response varied between donors. The lack of virus induced expression of TLR3, together with the differential regulation of IF1H1, OAS1 and IFN beta, (each of which has polymorphic variants influence the predisposition to type 1 diabetes), that might result in defective clearance of virus from islet cells. The reduced expression of the insulin gene and the unaffected expression of the gene encoding glucagon by Coxsackie B1 infection is consistent with the preferential beta-cell tropism of the virus.

  • 4.
    Asif, Sana
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Sedigh, Amir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Nordström, Johan
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Brandhorst, Heide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Jorns, Carl
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Magnusson, Peetra U.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Nowak, Greg
    Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden.
    Theisinger, Sonja
    Novaliq GmbH, Heidelberg, Germany.
    Hoeger, Simone
    Department of Nephrology, Endocrinology and Rheumatology, University Medical Center Mannheim, Mannheim, Germany.
    Wennberg, Lars
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oxygen-charged HTK-F6H8 emulsion reduces ischemia: reperfusion injury in kidneys from brain-dead pigs2012In: Journal of Surgical Research, ISSN 0022-4804, E-ISSN 1095-8673, Vol. 178, no 2, p. 959-967Article in journal (Refereed)
    Abstract [en]

    Background:

    Prolonged cold ischemia is frequently associated with a greater risk of delayed graft function and enhanced graft failure. We hypothesized that media, combining a high oxygen-dissolving capacity with specific qualities of organ preservation solutions, would be more efficient in reducing immediate ischemia-reperfusion injury from organs stored long term compared with standard preservation media.

    Methods:

    Kidneys retrieved from brain-dead pigs were flushed using either cold histidine-tryptophan-ketoglutarate (HTK) or oxygen-precharged emulsion composed of 75% HTK and 25% perfluorohexyloctane. After 18 h of cold ischemia the kidneys were transplanted into allogeneic recipients and assessed for adenosine triphosphate content, morphology, and expression of genes related to hypoxia, environmental stress, inflammation, and apoptosis.

    Results:

    Compared with HTK-flushed kidneys, organs preserved using oxygen-precharged HTK-perfluorohexyloctane emulsion had increased elevated adenosine triphosphate content and a significantly lower gene expression of hypoxia inducible factor-1 alpha, vascular endothelial growth factor, interleukin-1 alpha, tumor necrosis factor-alpha, interferon-alpha, JNK-1, p38, cytochrome-c, Bax, caspase-8, and caspase-3 at all time points assessed. In contrast, the mRNA expression of Bcl-2 was significantly increased.

    Conclusions:

    The present study has demonstrated that in brain-dead pigs the perfusion of kidneys with oxygen-precharged HTK-perfluorohexyloctane emulsion results in significantly reduced inflammation, hypoxic injury, and apoptosis and cellular integrity and energy content are well maintained. Histologic examination revealed less tubular, vascular, and glomerular changes in the emulsion-perfused tissue compared with the HTK-perfused counterparts. The concept of perfusing organs with oxygen-precharged emulsion based on organ preservation media represents an efficient alternative for improved organ preservation.

  • 5. Banerjee, Meenal
    et al.
    Virtanen, Ismo
    Palgi, Jaan
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Otonkoski, Timo
    Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms2012In: Molecular and Cellular Endocrinology, ISSN 0303-7207, E-ISSN 1872-8057, Vol. 355, no 1, p. 78-86Article in journal (Refereed)
    Abstract [en]

    We have previously characterized the molecular composition of human islet basement membranes and shown that human beta cells bind to laminin 511 (LM511) through integrin alpha 3 beta 1 and Lutheran glycoprotein. We have now investigated the impact of physical contact between cultured human beta cells and the laminin isoforms occurring in their natural niche. Human islet preparations derived from 15 donors were used, beta cells and duct cells were purified by magnetic sorting. Overall beta-cell proliferation was low or undetectable. However, in many experiments the only proliferating beta cells were detected in contact with the laminin isoforms that are found in the human islets in vivo (511 and 411). Purified ductal and beta cells underwent epithelial-mesenchymal transition (EMT). LM511 partially blocked this dedifferentiation of purified beta cells, and did not affect purified duct cells. Interactions with the surrounding basement membrane are important for the growth and function of human beta cells. However, only a very limited level of beta-cell proliferation can be induced by exogenous factors. LM511 may be a useful substrate for human beta-cell maintenance in vitro.

  • 6.
    Bartlett, Stephen T.
    et al.
    Univ Maryland, Sch Med, Dept Surg, Baltimore, MD 21201 USA..
    Markmann, James F.
    Massachusetts Gen Hosp, Div Transplantat, Boston, MA 02114 USA..
    Johnson, Paul
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Hering, Bernhard J.
    Univ Minnesota, Dept Surg, Schulze Diabet Inst, Box 242 UMHC, Minneapolis, MN 55455 USA..
    Scharp, David
    Prodo Labs LLC, Irvine, CA USA.;Scharp Lacy Res Inst, Irvine, CA USA..
    Kay, Thomas W. H.
    St Vincents Hosp, St Vincents Inst Med Res, Dept Med, Fitzroy, Vic 3065, Australia.;Univ Melbourne, Melbourne, Vic 3010, Australia..
    Bromberg, Jonathan
    Massachusetts Gen Hosp, Div Transplantat, Boston, MA 02114 USA..
    Odorico, Jon S.
    Univ Wisconsin, Dept Surg, Sch Med & Publ Hlth, Div Transplantat, Madison, WI USA..
    Weir, Gordon C.
    Joslin Diabet Ctr, Boston, MA 02215 USA.;Harvard Univ, Sch Med, Boston, MA USA..
    Bridges, Nancy
    NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA..
    Kandaswamy, Raja
    Univ Minnesota, Dept Surg, Schulze Diabet Inst, Box 242 UMHC, Minneapolis, MN 55455 USA..
    Stock, Peter
    Univ San Francisco, Med Ctr, Div Transplantat, San Francisco, CA 94117 USA..
    Friend, Peter
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Gotoh, Mitsukazu
    Fukushima Med Univ, Dept Surg, Fukushima, Japan..
    Cooper, David K. C.
    Univ Pittsburgh, Thomas E Starzl Transplantat Inst, Pittsburgh, PA USA..
    Park, Chung-Gyu
    Seoul Natl Univ, Coll Med, Dept Biomed Sci, Xenotransplantat Res Ctr,Dept Microbiol & Immunol, Seoul, South Korea..
    O'Connell, Phillip
    Univ Sydney, Westmead Hosp, Westmead Millennium Inst, Ctr Transplant & Renal Res, Westmead, NSW 2145, Australia..
    Stabler, Cherie
    Univ Miami, Sch Med, Diabet Res Inst, Coral Gables, FL 33124 USA..
    Matsumoto, Shinichi
    Natl Ctr Global Hlth & Med, Tokyo, Japan.;Otsuka Pharmaceut Factory Inc, Naruto, Japan..
    Ludwig, Barbara
    Tech Univ Dresden, Dept Med 3, D-01062 Dresden, Germany.;Tech Univ Dresden, Univ Clin Carl Gustav Carus, Helmholtz Ctr, Paul Langerhans Inst Dresden, Dresden, Germany.;DZD German Ctr Diabet Res, Dresden, Germany..
    Choudhary, Pratik
    Kings Coll London, Weston Educ Ctr, Diabet Res Grp, London WC2R 2LS, England..
    Kovatchev, Boris
    Univ Virginia, Ctr Diabet Technol, Charlottesville, VA USA..
    Rickels, Michael R.
    Univ Penn, Dept Med, Perelman Sch Med, Div Endocrinol Diabet & Metab, Philadelphia, PA 19104 USA..
    Sykes, Megan
    Coulmbia Univ, Med Ctr, Columbia Ctr Translat Immunol, New York, NY USA..
    Wood, Kathryn
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Kraemer, Kristy
    NIAID, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA..
    Hwa, Albert
    Juvenile Diabet Res Fdn, New York, NY USA..
    Stanley, Edward
    Murdoch Childrens Res Inst, Parkville, Vic, Australia.;Monash Univ, Melbourne, Vic 3004, Australia..
    Ricordi, Camillo
    Univ Miami, Sch Med, Diabet Res Inst, Coral Gables, FL 33124 USA..
    Zimmerman, Mark
    BetaLogics, Raritan, NJ USA..
    Greenstein, Julia
    Juvenile Diabet Res Fdn, Discovery Res, New York, NY USA..
    Montanya, Eduard
    Univ Barcelona, Hosp Univ Bellvitge, CIBERDEM, Bellvitge Biomed Res Inst IDIBELL, Barcelona, Spain..
    Otonkoski, Timo
    Univ Helsinki, Childrens Hosp, Helsinki, Finland.;Univ Helsinki, Biomedicum Stem Cell Ctr, Helsinki, Finland..
    Report from IPITA-TTS Opinion Leaders Meeting on the Future of beta-Cell Replacement2016In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 100, p. S1-S44Article in journal (Refereed)
  • 7. Bennet, W
    et al.
    Björkland, Anna
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Sundberg, B
    Brandhorst, D
    Brendel, MD
    Richards, A
    White, DJ
    Nilsson, Bo
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Groth, CG
    Korsgren, Olle
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Expression of complement regulatory proteins on islets of Langerhans: a comparison between human islet and islets isolated from normal and hDAF transgenic pigs.2001In: Transplantation, Vol. 27, p. 312-Article in journal (Refereed)
  • 8. Bennet, W
    et al.
    Wundberg, B
    Elgue, Graciela
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Larsson, Rolf
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Nilsson, Bo
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    A new in vitro model for the study of pig-to human vascular hyperacute rejection.2001In: Xentotransplantation, Vol. 8, p. 176-Article in journal (Refereed)
  • 9.
    Berg, Anna-Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Olsson, Annika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Antiviral Treatment of Coxsackie B Virus Infection in Human Pancreatic Islets2007In: Antiviral Research, ISSN 0166-3542, E-ISSN 1872-9096, Vol. 74, no 1, p. 65-71Article in journal (Refereed)
    Abstract [en]

    Enterovirus infections of the pancreatic islets are believed to trigger or precipitate the near total destruction of β-cells that constitutes type 1 diabetes (T1D). This study investigated the ability of an anti-picornaviral compound, pleconaril, to block the replication of two β-cell tropic Coxsackie B4 virus (CBV-4) strains in isolated human islets. The two strains, VD2921 and V89 4557, with demonstrated abilities to cause non-lytic persistence or lytic infection, respectively, in islets, represented two different potential mechanisms behind virus-induced T1D. The virus replication in the islets was studied with and without addition of pleconaril. In addition, islet morphology was studied every day. To test the effects of pleconaril and/or DMSO on the β-cells’ insulin secretion, glucose perifusions were performed on treated and untreated islets. Virus titrations showed a clear reduction of the replication of both strains after pleconaril treatment. The VD2921 strain was inhibited to undetectable levels. The V89 4557 strain, however, showed an initial reduction of titers but virus titers then increased despite the addition of a second dose of pleconaril. This incomplete inhibition of viral replication suggested the existence of a resistant subtype within this strain. Pleconaril treatment reduced the β-cells’ insulin secretion in response to glucose stimulation in some experiments and induced slight morphological changes to the islets compared to untreated controls. In summary, pleconaril reduced the replication of the two β-cell tropic CBV-4 strains in human islets. However, genetic differences between these strains influenced the effectiveness of pleconaril treatment. This stresses the importance of using multiple viral strains in antiviral tests.

  • 10.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Karlsson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Biglarnia, Ali-Reza
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Obtaining regulatory T cells from uraemic patients awaiting kidney transplantation for use in clinical trials2013In: Clinical and Experimental Immunology, ISSN 0009-9104, E-ISSN 1365-2249, Vol. 173, no 2, p. 310-322Article in journal (Refereed)
    Abstract [en]

    Adoptive transfer of regulatory T cells (Tregs) has been proposed for use as a cellular therapy to induce transplantation tolerance. Preclinical data are encouraging, and clinical trials with Treg therapy are anticipated. In this study, we investigate different strategies for the isolation and expansion of CD4+CD25highCD127low Tregs from uraemic patients. We use allogeneic dendritic cells (DCs) as feeder cells for the expansion and compare Treg preparations isolated by either fluorescence activated cell sorting (FACS) or magnetic activated cell sorting (MACS) that have been expanded subsequently with either mature or tolerogenic DCs. Expanded Treg preparations have been characterized by their purity, cytokine production and in-vitro suppressive ability. The results show that Treg preparations can be isolated from uraemic patients by both FACS and MACS. Also, the type of feeder cells used in the expansion affects both the purity and the functional properties of the Treg preparations. In particular, FACS-sorted Treg preparations expanded with mature DCs secrete more interleukin (IL)-10 and granzyme B than FACS-sorted Treg preparations expanded with tolerogenic DCs. This is a direct comparison between different isolation techniques and expansion protocols with Tregs from uraemic patients that may guide future efforts to produce clinical-grade Tregs for use in kidney transplantation.

  • 11.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Karlsson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Palanisamy, Senthilkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Imaging the in vivo fate of human T cells following transplantation in immunoincompetent mice - Implications for clinical cell therapy trials2013In: Transplant Immunology, ISSN 0966-3274, E-ISSN 1878-5492, Vol. 29, no 1-4, p. 105-108Article in journal (Refereed)
    Abstract [en]

    Many forms of adoptive T cell therapy are on the verge of being translated to the clinic. To gain further insight in their immunomodulating functions and to optimize future clinical trials it is essential to develop techniques to study their homing capacity. CD4+ T cells were labeled using [In-111]oxine, and the radioactive uptake was determined in vitro before intravenous injection in immunodeficient mice. In vivo biodistribution of [In-111] oxine-labeled cells or tracer alone was subsequently measured by mu SPECT/CT and organ distribution. CD4+ T cells incorporated [In-111]oxine with higher labeling yield using Ringer-Acetate compared to 0.9% NaCl. Cellular viability after labeling with [In-111]oxine was not compromised using less than 0.4 MBq/million cells. After intravenous infusion CD4+ T cells preferentially homed to the liver (p < 0.01) and spleen (p < 0.05). This study presents a protocol for labeling of T cells by [In-111]oxine with preserved viability and in vivo tracking by SPECT for up to 8 days, which can easily be translated to clinical cell therapy trials. 

  • 12.
    Berglund, David
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Schneider, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Carlsson, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Isolation, expansion and functional assessment of CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients awaiting kidney transplantation2012In: Transplant Immunology, ISSN 0966-3274, E-ISSN 1878-5492, Vol. 26, no 1, p. 27-33Article in journal (Refereed)
    Abstract [en]

    Background: The immunosuppressive properties of regulatory T cells have emerged as an attractive tool for the development of immunotherapies in various disease contexts, e.g. to treat transplantation induced immune reactions. This paper focuses on the process of obtaining and functionally characterizing CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients awaiting kidney transplantation.

    Methods: From October 2010 to March 2011 uremic patients awaiting living donor kidney transplantation, and their corresponding kidney donors, were enrolled in the study. A total of seven pairs were included. Isolation of CD4+CD25+FoxP3+ regulatory T cells was performed by magnetic activated cell sorting of peripheral blood mononuclear cells obtained from the uremic patients. Donor specific Tr1 cells were differentiated by repetitive stimulation of immature CD4+ T cells with immature dendritic cells, with the T cells coming from the future kidney recipients and the dendritic cells from the corresponding kidney donors. Cells were then expanded and functionally characterized by the one-way mixed leukocyte reaction and assessment of IL-10 production. Phenotypic analysis was performed by flow cytometry.

    Results: The fraction of CD4+CD25+FoxP3+ regulatory T cells after expansion varied from 39.1 to 50.4% and the cells retained their ability to substantially suppress the mixed leukocyte reaction in all but one patient (3.8–19.2% of the baseline stimulated leukocyte activity, p<0.05). Tr1 cells were successfully differentiated from all but one patient and produced high levels of IL-10 when stimulated with immature dendritic cells (1,275–11,038% of the baseline IL-10 secretion, pb0.05).

    Conclusion: It is practically feasible to obtain and subsequently expand CD4+CD25+FoxP3+ regulatory T cells and Tr1 cells from uremic patients without loss of function as assessed by in vitro analyses. This forms a base for adoptive regulatory T cell therapy in the setting of living donor kidney transplantation.

  • 13.
    Biglarnia, Ali-Reza
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Bennet, William
    Nilsson, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Magnusson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Yamamoto, Shinji
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Sedigh, Amir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    von Zur-Mühlen, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Bäckman, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Utilization of Small Pediatric Donors Including Infants for Pancreas and Kidney Transplantation: Exemplification of the Surgical Technique and the Surveillance2014In: Annals of Surgery, ISSN 0003-4932, E-ISSN 1528-1140, Vol. 260, no 2, p. e5-7Article in journal (Refereed)
  • 14.
    Brandhorst, Daniel
    et al.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Parnaud, Geraldine
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Friberg, Andrew
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Lavallard, Vanessa
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Demuylder-Mischler, Sandrine
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Hughes, Stephen
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Saphoerster, Julia
    SERVA Electrophoresis GmbH, Uetersen, Germany..
    Kurfuerst, Manfred
    SERVA Electrophoresis GmbH, Uetersen, Germany..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Berney, Thierry
    Geneva Univ Hosp, Dept Surg, Cell Isolat & Transplantat Ctr, Geneva, Switzerland..
    Johnson, Paul R. V.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Churchill Hosp, OCDEM, Oxford, England..
    Multicenter Assessment of Animal-free Collagenase AF-1 for Human Islet Isolation2017In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 26, no 10, p. 1688-1693Article in journal (Refereed)
    Abstract [en]

    Animal-free (AF) SERVA Collagenase AF-1 and Neutral Protease (NP) AF GMP Grade have recently become available for human islet isolation. This report describes the initial experiences of 3 different islet transplant centers. Thirty-four human pancreases were digested using 1 vial of the 6 different lots of Collagenase AF-1 (2,000-2,583 PZ-U/vial) supplemented with 4 different lots of NP AF in a range of 50 to 160 DMC-U per pancreas. Isolation, culture, and quality assessment were performed using standard techniques as previously described. All data are presented as mean +/- standard error of the mean (SEM). Variability of pancreas weight was associated with a wide range of collagenase and NP activities, ranging from 12.7 to 46.6 PZ-U/g (26.0 +/- 1.5 PZ-U/g) and 0.4 to 3.0 DMC-U/g (1.5 +/- 0.1 DMC-U/g), respectively. Postpurification islet yield was 296,494 +/- 33,620 islet equivalents (IEQ) equivalent to 3,274 +/- 450 IEQ/g with a purity of 55.9% +/- 3.2%. Quality assessment performed after 2 to 4 d of culture demonstrated a viability of 88.1% +/- 1.5% and a stimulation index of 3.7 +/- 0.7. Eighteen of the 34 preparations were transplanted into type 1 diabetic patients equivalent to a transplantation rate of 52.9%. Six preparations, which were infused into patients as first transplant, could be analyzed and increased the fasting C-peptide level from 0.11 +/- 0.08 pretransplant to 1.23 +/- 0.24 and 2.27 +/- 0.31 ng/mL 3 and 6 mo posttransplant (P < 0.05), respectively. Insulin requirements were simultaneously reduced at the same time from 39.2 +/- 3.8 IU/d before transplantation to 10.8 +/- 4.1 and 4.0 +/- 2.3 IU/d, after 3 and 6 mo posttransplant (P < 0.05), respectively. This study demonstrates the efficiency of AF SERVA Collagenase AF-1 and NP AF for clinical islet isolation and transplantation. The new plant-based production process makes these products a safe new option for the islet field.

  • 15.
    Brandhorst, H.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Iken, M.
    Scott, W. E. , I I I
    Papas, K. K.
    Theisinger, B.
    Johnson, P. R.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Quality of Isolated Pig Islets Is Improved Using Perfluorohexyloctane for Pancreas Storage in a Split Lobe Model2013In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 22, no 8, p. 1477-1483Article in journal (Refereed)
    Abstract [en]

    Pancreas transportation between donor center and islet production facility is frequently associated with prolonged ischemia impairing islet isolation and transplantation outcomes. It is foreseeable that shipment of pig pancreases from distant centralized biosecure breeding facilities to institutes that have a long-term experience in porcine islet isolation is essentially required in future clinical islet xenotransplantation. Previously, we demonstrated that perfluorohexyloctan (F6H8) is significantly more efficient to protect rat and human pancreata from ischemically induced damage compared to perfluorodecalin (PFD). To evaluate the effect of F6H8 on long-term stored pig pancreases in a prospective study, we utilized the split lobe model to minimize donor variability. Retrieved pancreases were dissected into the connecting and splenic lobe, intraductally flushed with UW solution and immersed alternately in either preoxygenated F6H8 or PFD for 8-10 h. Prior to pancreas digestion, the intrapancreatic pO(2) and the ratio of ATP-to-inorganic phosphate was compared utilizing P-31-NMR spectroscopy. Isolated islets were cultured for 2-3 days at 37 degrees C and subjected to quality assessment. Pancreatic lobes stored in preoxygenated F6H8 had a significantly higher intrapancreatic pO(2) compared to pancreata in oxygen-precharged PFD (10.11 +/- 3.87 vs. 1.64 +/- 1.13 mmHg, p < 0.05). This correlated with a higher ATP-to-inorganic phosphate ratio (0.30 +/- 0.04 vs. 0.14 +/- 0.01). No effect was observed concerning yield and purity of freshly isolated islets. Nevertheless, a significantly improved glucose-stimulated insulin response, increased viability and postculture survival (57.2 +/- 5.7 vs. 39.3 +/- 6.4%, p < 0.01) was measured in islets isolated from F6H8-preserved pancreata. The present data suggest that F6H8 does not increase islet yield but improves quality of pig islets isolated after prolonged cold ischemia.

  • 16.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Asif, Sana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Andersson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Moench, Johanna
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Friedrich, Olaf
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Raemsch-Guenther, Nicole
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Raemsch, Christian
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Steffens, Melanie
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Lambrecht, Joerg
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Schraeder, Thomas
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Kurfuerst, Manfred
    Nordmark Arzneimittel GmbH & Co KG, Uetersen, Germany..
    Andersson, Helene H.
    Univ Hosp, Dept Nephrol & Transplantat, Malmo, Sweden..
    Felldin, Marie
    Univ Hosp, Dept Transplantat, Gothenburg, Sweden..
    Foss, Aksel
    Univ Oslo, Rikshosp, Oslo Univ Hosp, Div Surg,Sect Transplantat, N-0027 Oslo, Norway..
    Salmela, Kaija
    Univ Helsinki, Surg Hosp, Div Transplantat, Helsinki, Finland..
    Tibell, Annika
    Karolinska Inst, Div Transplantat Surg, CLINTEC, Stockholm, Sweden..
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    The Effect of Truncated Collagenase Class I Isomers on Human Islet Isolation Outcome2010In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 90, no 3, p. 334-335Article in journal (Refereed)
  • 17.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Asif, Sana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Andersson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Theisinger, Bastian
    Andersson, Helene H
    Felldin, Maria
    Foss, Aksel
    Salmela, Kaija
    Tibell, Annika
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    A new oxygen carrier for improved long-term storage of human pancreata before islet isolation2010In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 89, no 2, p. 155-60Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Pancreas oxygenation during cold storage has been established in islet isolation and transplantation to prevent ischemic tissue damage using perfluorodecalin (PFD) as hyperoxygen carrier. However, studies in humans and pigs provided conflicting results about the efficiency of PFD for pancreas oxygenation. The aim of this study was to compare PFD with a newly developed oxygen carrier composed of perfluorohexyloctane and polydimethylsiloxane 5 (F6H8S5) for long-term storage of human pancreata.

    METHODS: After 24-hr storage in preoxygenated PFD or F6H8S5, pancreata were processed using Liberase HI for pancreas dissociation and a Ficoll gradient for islet purification. Islet quality assessment was performed measuring glucose-stimulated insulin release, viability, islet ATP content, and posttransplant function in diabetic nude mice.

    RESULTS: Compared with PFD, F6H8S5 significantly increased the intrapancreatic partial oxygen pressure and islet ATP content. This corresponded to an increase of islet yield, recovery after culture, glucose stimulation index, viability, and improved graft function in diabetic nude mice.

    CONCLUSIONS: The present findings indicate clearly that F6H8S5 improves isolation outcome after prolonged ischemia compared with PFD. This observation seems to be related to the significant lipophilicity and almost pancreas-specific density of F6H8S5. Moreover, these characteristics facilitate pancreas shipment without using custom-made transport vessels as required for PFD.

  • 18.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.
    Johnson, Paul R.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England;Oxford NIHR Biomed Res Ctr, Oxford, England.
    Moench, Johanna
    Nordmark Arzneimittel, Uetersen, Germany.
    Kurfuerst, Manfred
    Nordmark Arzneimittel, Uetersen, Germany.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.
    Comparison of Clostripain and Neutral Protease as Supplementary Enzymes for Human Islet Isolation2019In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 28, no 2, p. 176-184Article in journal (Refereed)
    Abstract [en]

    Although human islet transplantation has been established as valid and safe treatment for patients with type 1 diabetes, the utilization rates of human pancreases for clinical islet transplantation are still limited and substantially determined by the quality and composition of collagenase blends. While function and integrity of collagenase has been extensively investigated, information is still lacking about the most suitable supplementary neutral proteases. The present study compared islet isolation outcome after pancreas digestion by means of collagenase used alone or supplemented with either neutral protease (NP), clostripain (CP), or both proteases. Decent amounts of islet equivalents (IEQ) were isolated using collagenase alone (3090 +/- 550 IEQ/g), or in combination with NP (2340 +/- 450 IEQ/g) or CP (2740 +/- 280 IEQ/g). Nevertheless, the proportion of undigested tissue was higher after using collagenase alone (21.1 +/- 1.1%, P < 0.05) compared with addition of NP (13.3 +/- 2.2%) or CP plus NP (13.7 +/- 2.6%). Likewise, the percentage of embedded islets was highest using collagenase only (13 +/- 2%) and lowest adding NP plus CP (4 +/- 1%, P < 0.01). The latter combination resulted in lowest post-culture overall survival (42.7 +/- 3.9%), while highest survival was observed after supplementation with CP (74.5 +/- 4.8%, P < 0.01). An insulin response toward glucose challenge was present in all experimental groups, but the stimulation index was significantly decreased using collagenase plus NP (2.0 +/- 0.12) compared with supplementation with CP (3.16 +/- 0.4, P < 0.001). This study demonstrates for the first time that it is possible to isolate significant numbers of human islets combining collagenase only with CP. The supplementation with CP is an effective means to substantially reduce NP activity, which significantly decreases survival and viability after culture. This will facilitate the manufacturing of enzyme blends with less harmful characteristics.

  • 19.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Johnson, Paul R. V.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford NIHR Biomed Res Ctr, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Quantifying the Effects of Different Neutral Proteases on Human Islet Integrity2017In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 26, no 11, p. 1733-1741Article in journal (Refereed)
    Abstract [en]

    Efficient islet release from the pancreas requires the combination of collagenase, neutral protease (cNP), or thermolysin (TL). Recently, it has been shown that clostripain (CP) may also contribute to efficient islet release from the human pancreas. The aim of this study was to evaluate the impact of these proteases on human islet integrity in a prospective approach. Islets were isolated from the pancreas of 10 brain-dead human organ donors. Purified islets were precultured for 3 to 4 d at 37 degrees C to ensure that preparations were cleared of predamaged islets, and only integral islets were subjected to 90 min of incubation at 37 degrees C in Hank's balanced salt solution supplemented with cNP, TL, or CP. The protease concentrations were calculated for a pancreas of 100 g trimmed weight utilizing 120 dimethyl-casein units of cNP, 70,000 caseinase units of TL, or 200 benzoyl-Larginine- ethyl-ester units of CP (1x). These activities were then increased both 5 x and 10 x. After subsequent 24-h culture in enzyme-free culture medium, treated islets were assessed and normalized to sham-treated controls. Compared with controls and CP, islet yield was significantly reduced by using the 5 x activity of cNP and TL, inducing also fragmentation and DNA release. Viability significantly decreased not until adding the 1 x activity of cNP, 5 x activity of TL, or 10 x activity of CP. Although mitochondrial function was significantly lowered by 1 x cNP and 5 x TL, CP did not affect mitochondria at any concentration. cNP-and TL-incubated islets significantly lost intracellular insulin already at 1 x activity, while the 10 x activity of CP had to be added to observe a similar effect. cNP and TL have a similar toxic potency regarding islet integrity. CP also induces adverse effects on islets, but the toxic threshold is generally higher. We hypothesize that CP can serve as supplementary protease to minimize cNP or TL activity for efficient pancreas digestion.

  • 20.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Kurfuerst, Manfred
    Serva Electrophoresis GmbH, Uetersen, Germany..
    Johnson, Paul R.
    Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford NIHR Biomed Res Ctr, Oxford, England..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Univ Oxford, Nuffield Dept Surg Sci, Oxford, England.;Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation2016In: TRANSPLANTATION DIRECT, ISSN 2373-8731, Vol. 2, no 1, article id e47Article in journal (Refereed)
    Abstract [en]

    Background. Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation.

    Methods. Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment.

    Results. Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 +/- 631 vs 3087 +/- 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 +/- 580 to 1312 +/- 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 +/- 1.6 to 24.4 +/- 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 +/- 2.8 to 22.5 +/- 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added.

    Conclusions. This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.

  • 21.
    Brandhorst, Heide
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Raemsch-Guenther, Nicole
    Raemsch, Christian
    Friedrich, Olaf
    Huettler, Silke
    Kurfuerst, Manfred
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    The ratio between collagenase class I and class II influences the efficient islet release from the rat pancreas2008In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 85, no 3, p. 456-61Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Previous studies indicated different roles of collagenase class I, class II and neutral protease in the enzymatic islet release from pancreatic tissue. Because no information has been available, this study was aimed to investigate the isolation efficiency of different ratios between collagenase class II and I (C-ratio) in the rat pancreas serving as model for the human pancreas without being restricted by the large variability observed in human donors. METHODS: Rat pancreata were digested using a marginal neutral protease activity and 20 PZ-U of purified collagenase classes recombined to create a C-ratio of 0.5, 1.0, or 1.5. Collagenase efficiency was evaluated in terms of isolation outcome and posttransplantation function in diabetic nude mice. RESULTS: The highest yield of freshly isolated islets was obtained using a C-ratio of 1.0. Purity and fragmentation of freshly isolated islets were not influenced by the C-ratio. After 24-hr culture performed for quality assessment, a marginal but significant reduction of viability was observed in islets isolated by means of a C-ratio of 0.5 and 1.5. Islet in vitro and posttransplantation function revealed no negative effect mediated by different C-ratios. CONCLUSIONS: The present study demonstrates that the C-ratio is of significant relevance for the outcome after enzymatic rat islet isolation. The data indicate further that purified collagenase class I or class II does not damage islet tissue even if used in excess. The present study can serve as a start for subsequent experiments in the human pancreas.

  • 22.
    Caballero-Corbalan, José
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Brandhorst, Heide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Asif, Sana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Engelse, Marten
    Leiden Univ, Med Ctr, Dept Nephrol, Leiden, Netherlands.
    de Koning, Eelco
    Leiden Univ, Med Ctr, Dept Nephrol, Leiden, Netherlands.
    Pattou, Francois
    Univ Hosp, INSERM ERIT M 0106 Diabet Cell Therapy, Lille, France.
    Kerr-Conte, Julie
    Univ Hosp, INSERM ERIT M 0106 Diabet Cell Therapy, Lille, France.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Mammalian Tissue-Free Liberase: A New GMP-Graded Enzyme Blend for Human Islet Isolation2010In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 90, no 3, p. 332-333Article in journal (Refereed)
  • 23.
    Caballero-Corbalán, José
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Heide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Malm, Helene
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Felldin, Marie
    Foss, Aksel
    Salmela, Kaija
    Tibell, Annika
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Using HTK for Prolonged Pancreas Preservation Prior to Human Islet Isolation2012In: Journal of Surgical Research, ISSN 0022-4804, E-ISSN 1095-8673, Vol. 175, no 1, p. 163-168Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Histidine-tryptophan-ketoglutarate (HTK) has been established as an alternative to University-of-Wisconsin solution (UWS) for abdominal organ preservation, but data about HTK efficiency to preserve pancreata during prolonged cold ischemia time (CIT) are conflicting. In human islet transplantation, HTK provided similar isolation outcomes after short CIT. The present study aimed to investigate whether islets can be successfully isolated from HTK-preserved pancreata after prolonged CIT compared with UWS.

    MATERIALS AND METHODS: Sixty-four human pancreata retrieved from donors meeting criteria for kidney donation were perfused utilizing either HTK or UWS and preserved for more or less than 10 h prior to islet isolation. Along with parameters related to isolation and islet quality assessment, the dry-to-wet weight ratio was evaluated.

    RESULTS: Donor- and procurement-related factors did not vary between HTK- and UWS-perfused pancreata. The dry-to-wet weight ratio was lower in HTK-preserved pancreata indicated tissue edema (21.0% ± 3.5% versus 24.8% ± 2.0%, P = 0.007). Isolation-related variables differed between experimental groups after prolonged CIT with respect to purified packed tissue volume (9.1 ± 5.0 versus 17.2 ± 8.1 μL/g, P = 0.004) and islet yield (1910 ± 980 versus 3150 ± 1420 IE/g, P = 0.012). Islet purity and survival after culture were similar after HTK or UWS perfusion. The preservation solution did not affect in vitro function and transplantability of isolated islets.

    CONCLUSIONS: Compared with UWS, HTK has similar efficiency to preserve human pancreata for subsequent islet isolation during <10 h CIT but seems to be limited for prolonged cold storage.

  • 24.
    Caballero-Corbalán, José
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Eich, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lundgren, Torbjörn
    Foss, Aksel
    Felldin, Marie
    Källen, Ragnar
    Salmela, Kalja
    Tibell, Annika
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    No beneficial effect of two-layer storage compared with UW-storage on human islet isolation and transplantation2007In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 84, no 7, p. 864-869Article in journal (Refereed)
    Abstract [en]

    Background. Shipment of pancreata between distant centers is frequently associated with prolonged cold ischemia time (CIT) that leads to poorer outcomes for islet transplantation. Clinical pilot trials have indicated that oxygenation of explanted human pancreata utilizing the two-layer method (TLM) allows the use of marginal donor pancreata for islet transplantation. The present study aimed to clarify whether TLM enhances the ischemic tolerance of human pancreata. Methods. We analyzed retrospectively the outcome of 200 human islet isolations performed after TLM preservation or storage in University of Wisconsin solution (UWS). Results. Donor characteristics and digestion parameters did not vary significantly between TLM-preserved and UWS-stored pancreata. No differences were observed between experimental groups with regard to islet yield, purity, or dynamic glucose stimulation index after either short or prolonged CIT. However, CIT and stimulation index were negatively correlated in each experimental group. The isolation outcome in donors aged ≥60 years was not increased after TLM preservation when compared to UWS storage. No effect was observed regarding islet posttransplant function in recipients with established kidney grafts. Conclusions. The present study suggests that the ischemic tolerance of human pancreata cannot be extended by TLM preservation. In addition, TLM does not seem to improve the isolation outcome for pancreata from elderly donors.

  • 25.
    Cabric, Sanja
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Sanchez, Javier
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Johansson, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Nilsson, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Magnusson, Peetra U.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Anchoring of vascular endothelial growth factor to surface-immobilized heparin on pancreatic islets: implications for stimulating islet angiogenesis2010In: Tissue engineering. Part A, ISSN 1937-3341, Vol. 16, no 3, p. 961-970Article in journal (Refereed)
    Abstract [en]

    In pancreatic islet transplantation, early revascularization is necessary for long-term graft function. We have shown in in vitro and in vivo models that modification with surface-attached heparin protects the islets from acute attack by the innate immune system of the blood following intraportal islet transplantation. In this study, we have investigated the ability of an immobilized conjugate composed of heparin to bind the angiogenic growth factor vascular endothelial growth factor-A (VEGF-A) as a means of attracting endothelial cells (ECs) to induce angiogenesis and revascularization. We analyzed the capacity of VEGF-A to bind to immobilized heparin and how this affected the proliferation and adherence of ECs to both artificial glass surfaces and islets. Quartz crystal microbalance with dissipation monitoring and slot-blot demonstrated the binding of VEGF-A to heparin-coated surfaces upon which ECs showed protein-dependent proliferation. Also, ECs cultured on heparin-coated glass surfaces exhibited effects upon focal contacts. Heparinized islets combined with VEGF-A demonstrated unaffected insulin release. Further, covering islets with heparin also increased the adhesion of ECs to the islet surface. Immobilized heparin on the islet surface may be a useful anchor molecule for achieving complete coverage of islets with angiogenic growth factors, ultimately improving islet revascularization and engraftment in pancreatic islet transplantation.

  • 26. Campbell-Thompson, M. L.
    et al.
    Atkinson, M. A.
    Butler, A. E.
    Chapman, N. M.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Gianani, R.
    Giepmans, B. N.
    von Herrath, M. G.
    Hyoty, H.
    Kay, T. W.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Morgan, N. G.
    Powers, A. C.
    Pugliese, A.
    Richardson, S. J.
    Rowe, P. A.
    Tracy, S.
    Veld, P. A. In't
    The diagnosis of insulitis in human type 1 diabetes2013In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 56, no 11, p. 2541-2543Article in journal (Refereed)
  • 27.
    Carlbom, Lina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Espes, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Jansson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine.
    Pancreatic perfusion and subsequent response to glucose in healthy individuals and patients with type 1 diabetes2016In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 59, no 9, p. 1968-1972Article in journal (Refereed)
    Abstract [en]

    AIMS/HYPOTHESIS: The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals.

    METHODS: Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references.

    RESULTS: Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion.

    CONCLUSIONS/INTERPRETATION: Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.

  • 28.
    Carlbom, Lina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Espes, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Martinell, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    [(11)C]5-Hydroxy-Tryptophan PET for Assessment of Islet Mass During Progression of Type 2 Diabetes2017In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 66, no 5, p. 1286-1292Article in journal (Refereed)
    Abstract [en]

    [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP) PET of the pancreas has been shown to be a surrogate imaging biomarker of pancreatic islet mass. The change in islet mass in different stages of type 2 diabetes (T2D) as measured by non-invasive imaging is currently unknown. Here, we describe a cross-sectional study where subjects at different stages of T2D development with expected stratification of pancreatic islet mass were examined in relation to non-diabetic individuals. The primary outcome was the [(11)C]5-HTP uptake and retention in pancreas, as a surrogate marker for the endogenous islet mass.We found that metabolic testing indicated a progressive loss of beta cell function, but that this was not mirrored by a decrease in [(11)C]5-HTP tracer accumulation in the pancreas. This provides evidence of retained islet mass despite decreased beta cell function. The results herein indicates that beta cell dedifferentiation, and not necessarily endocrine cell loss, constitute a major cause of beta cell failure in T2D.

  • 29.
    Carlbom, Lina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Weis, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Pre-transplantation ³¹P-magnetic resonance spectroscopy for quality assessment of human pancreatic grafts: A feasibility study2017In: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 39, p. 98-102Article in journal (Refereed)
    Abstract [en]

    Objective: To investigate the feasibility of using (31)P-MRS for objective non-invasive quality assessment of human pancreas grafts prior to transplantation or islet isolation.

    Materials and methods: Pancreata from 5 human donors, 3 males and 2 females, aged 49-78years, with body mass index (BMI) 22-31kg/m(2), were included. Pancreata were perfused with histidine-tryptophan-ketoglutarate solution during procurement and stored in hypothermic condition (4°C) for 21-44h. During the period of hypothermic storage repeated spectra were obtained for each graft by (31)P-MRS (1.5Tesla) to measure the cold ischemia time (CIT) dependent changes of the phosphorous metabolites adenosine triphosphate (ATP), phosphomonoesters (PME), phosphodiesters (PDE) and inorganic phosphate (Pi), in the grafts. Graft temperature was measured immediately before and after MR-examination. Reference spectrum for non-viable tissue was obtained after graft exposure to room temperature.

    Results: PME/Pi, PDE/Pi and ATP/Pi spectral intensities ratios decreased with increasing CIT, reflecting the decreased viability of the grafts. PME/Pi ratio was the most discriminatory variable at prolonged CIT. (31)P-MRS could be performed without significantly increasing graft temperature.

    Conclusions: (31)P-MRS may provide quantitative parameters for evaluating graft viability ex vivo, and is a promising tool for objective non-invasive assessment of the quality of human pancreas grafts prior to transplantation or islet isolation.

  • 30.
    Carlsson, Per-Ola
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Espes, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Sedigh, Amir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Rotem, Avi
    Zimermann, Baruch
    Grinberg, Helena
    Goldman, Tali
    Barkai, Uriel
    Avni, Yuval
    Westermark, Gunilla T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Carlbom, Lina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Antaros Medical AB, Mölndal, Sweden.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Olerud, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus2018In: American Journal of Transplantation, ISSN 1600-6135, E-ISSN 1600-6143, Vol. 18, no 7, p. 1735-1744Article in journal (Refereed)
    Abstract [en]

    Macroencapsulation devices provide the dual possibility to immunoprotect transplanted cells while also being retrievable; the latter bearing importance for safety in future trials with stem-cell derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the βAir device containing allogeneic human pancreatic islets to patients with type 1 diabetes. Four patients were transplanted with 1-2 βAir devices, each containing 155000-180000 IEQ (i.e. 1800-4600 IEQ per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the βAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the βAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited.

  • 31.
    Carlsson, Per-Ola
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Le Blanc, Katarina
    Mesenchymal Stromal Cells to Halt the Progression of Type 1 Diabetes?2015In: Current Diabetes Reports, ISSN 1534-4827, E-ISSN 1539-0829, Vol. 15, no 7, article id 46Article in journal (Refereed)
    Abstract [en]

    No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.

  • 32.
    Carlsson, Per-Ola
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Schwarcz, Erik
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Le Blanc, Katarina
    Preserved Beta-Cell Function in Type 1 Diabetes by Mesenchymal Stromal Cells2015In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 64, no 2, p. 587-592Article in journal (Refereed)
    Abstract [en]

    The retention of endogenous insulin secretion in type 1 diabetes is an attractive clinical goal, which opens possibilities for long-term restoration of glucose metabolism. Mesenchymal stromal cells (MSCs) constitute, based on animal studies, a promising interventional strategy for the disease. This prospective clinical study describes the translation of this cellular intervention strategy to patients with recent onset type 1 diabetes. Twenty adult patients with newly diagnosed type 1 diabetes were enrolled and randomized to MSC treatment or to the control group. Residual beta-cell function was analyzed as C-peptide concentrations in blood in response to a mixed meal tolerance test (MMTT) at one-year follow-up. In contrast to the patients in the control arm, who showed loss in both C-peptide peak values and C-peptide when calculated as area under the curve during the first year, these responses were preserved or even increased in the MSC-treated patients. Importantly, no side effects of MSC treatment were observed. We conclude that autologous MSC treatment in new onset type 1 diabetes constitute a safe and promising strategy to intervene in disease progression and preserve beta-cell function.

  • 33.
    Cooper, David K. C.
    et al.
    Thomas E Starzl Transplantat Inst, Pittsburgh, PA USA..
    Bottino, Rita
    Allegheny Singer Res Inst, Inst Cellular Therapeut, 320 E N Ave, Pittsburgh, PA 15212 USA..
    Gianello, Pierre
    Catholic Univ Louvain, Fac Med, Expt Surg Lab, Brussels, Belgium..
    Graham, Melanie
    Univ Minnesota, Preclin Res Ctr, Dept Surg, St Paul, MN 55108 USA..
    Hawthorne, Wayne J.
    Univ Sydney, Westmead Hosp, Dept Surg, Westmead, NSW 2145, Australia..
    Kirk, Allan D.
    Duke Univ, Sch Med, Dept Surg, Durham, NC USA..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Park, Chung-Gyu
    Seoul Natl Univ, Dept Microbiol & Immunol, Dept Biomed Sci, Xenotransplantat Res Ctr,Coll Med, Seoul, South Korea..
    Weber, Collin
    Emory Univ, Sch Med, Dept Surg, Atlanta, GA 30322 USA..
    First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes - Chapter 4: pre-clinical efficacy and complication data required to justify a clinical trial2016In: Xenotransplantation, ISSN 0908-665X, E-ISSN 1399-3089, Vol. 23, no 1, p. 46-52Article in journal (Refereed)
    Abstract [en]

    In 2009, the International Xenotransplantation Association (IXA) published a consensus document that provided guidelines and recommendations (not regulations) for those contemplating clinical trials of porcine islet transplantation. These guidelines included the IXA's opinion on what constituted rigorous pre-clinical studies using the most relevant animal models and were based on non-human primate testing. We now report our discussion following a careful review of the 2009 guidelines as they relate to pre-clinical testing. In summary, we do not believe there is a need to greatly modify the conclusions and recommendations of the original consensus document. Pre-clinical studies should be sufficiently rigorous to provide optimism that a clinical trial is likely to be safe and has a realistic chance of success, but need not be so demanding that success might only be achieved by very prolonged experimentation, as this would not be in the interests of patients whose quality of life might benefit immensely from a successful islet xenotransplant. We believe these guidelines will be of benefit to both investigators planning a clinical trial and to institutions and regulatory authorities considering a proposal for a clinical trial. In addition, we suggest consideration should be given to establishing an IXA Clinical Trial Advisory Committee that would be available to advise (but not regulate) researchers considering initiating a clinical trial of xenotransplantation.

  • 34.
    Danielsson, Angelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    Hallstrom, Bjorn M.
    Schwenk, Jochen M.
    Uhlen, Mathias
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lindskog, Cecilia Bergström
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 12, p. e115421-Article in journal (Refereed)
    Abstract [en]

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.

  • 35.
    Davies, Lindsay C.
    et al.
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Alm, Jessica J.
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Heldring, Nina
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Moll, Guido
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Gavin, Caroline
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Batsis, Ioannis
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden..
    Qian, Hong
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden..
    Sigvardsson, Mikael
    Linkoping Univ, Inst Clin & Expt Med, Linkoping, Sweden..
    Nilsson, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Kyllonen, Lauri E.
    Helsinki Univ Hosp, Div Transplantat, Helsinki, Finland..
    Salmela, Kaija T.
    Helsinki Univ Hosp, Div Transplantat, Helsinki, Finland..
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Le Blanc, Katarina
    Karolinska Inst, Ctr Hematol & Regenerat Med, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Clin Immunol, Stockholm, Sweden.;Karolinska Inst, Dept Lab Med, Div Transfus Med, Stockholm, Sweden.;Karolinska Univ Hosp, Stockholm, Sweden..
    Type 1 Diabetes Mellitus Donor Mesenchymal. Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro2016In: Stem Cells Translational Medicine, ISSN 2157-6564, E-ISSN 2157-6580, Vol. 5, no 11, p. 1485-1495Article in journal (Refereed)
    Abstract [en]

    Bone marrow mesenchymal stromal cells (BM-MSCs) have been characterized and used in many clinical studies based on their immunomodulatory and regenerative properties. We have recently reported the benefit of autologous MSC systemic therapy in the treatment of type 1 diabetes mellitus (T1D). Compared with allogeneic cells, use of autologous products reduces the risk of eliciting undesired complications in the recipient, including rejection, immunization, and transmission of viruses and prions; however, comparable potency of autologous cells is required for this treatment approach to remain feasible. To date, no analysis has been reported that phenotypically and functionally characterizes MSCs derived from newly diagnosed and late-stage T1D donors in vitro with respect to their suitability for systemic immunotherapy. In this study, we used gene array in combination with functional in vitro assays to address these questions. MSCs from T1D donors and healthy controls were expanded from BM aspirates. BM mononuclear cell counts and growth kinetics were comparable between the groups, with equivalent colony-forming unit-fibroblast capacity. Gene microarrays demonstrated differential gene expression between healthy and late-stage T1D donors in relation to cytokine secretion, immunomodulatory activity, and wound healing potential. Despite transcriptional differences, T1D MSCs did not demonstrate a significant difference from healthy controls in immunosuppressive activity, migratory capacity, or hemocompatibility. We conclude that despite differential gene expression, expanded MSCs from T1D donors are phenotypically and functionally similar to healthy control MSCs with regard to their immunomodulatory and migratory potential, indicating their suitability for use in autologous systemic therapy.

  • 36.
    Domsgen, Erna
    et al.
    Karolinska Univ Hosp, Karolinska Inst, Dept Med HS, Ctr Infect Med, S-14186 Stockholm, Sweden..
    Lind, Katharina
    Karolinska Univ Hosp, Karolinska Inst, Dept Med HS, Ctr Infect Med, S-14186 Stockholm, Sweden..
    Kong, Lingjia
    Univ Turku, Turku Ctr Biotechnol, FIN-20520 Turku, Finland.;Abo Akad Univ, FIN-20520 Turku, Finland..
    Huhn, Michael H.
    Karolinska Univ Hosp, Karolinska Inst, Dept Med HS, Ctr Infect Med, S-14186 Stockholm, Sweden.;Astra Zeneca AB R&D, Pepparedsleden 1, S-43150 Molndal, Sweden..
    Rasool, Omid
    Univ Turku, Turku Ctr Biotechnol, FIN-20520 Turku, Finland.;Abo Akad Univ, FIN-20520 Turku, Finland..
    van Kuppeveld, Frank
    Univ Utrecht, Div Virol, Dept Infect Dis & Immunol, Fac Vet Med, NL-3584 Utrecht, Netherlands..
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Lahesmaa, Riitta
    Univ Turku, Turku Ctr Biotechnol, FIN-20520 Turku, Finland.;Abo Akad Univ, FIN-20520 Turku, Finland..
    Flodstrom-Tullberg, Malin
    Karolinska Univ Hosp, Karolinska Inst, Dept Med HS, Ctr Infect Med, S-14186 Stockholm, Sweden.;Univ Tampere, Inst Biosci & Med Technol, Tampere 33520, Finland..
    An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 39378Article in journal (Refereed)
    Abstract [en]

    The IFIH1 gene encodes the pattern recognition receptor MDA5. A common polymorphism in IFIH1 (rs1990760, A946T) confers increased risk for autoimmune disease, including type 1-diabetes (T1D). Coxsackievirus infections are linked to T1D and cause beta-cell damage in vitro. Here we demonstrate that the rs1990760 polymorphism regulates the interferon (IFN) signature expressed by human pancreatic islets following Coxsackievirus infection. A strong IFN signature was associated with high expression of IFN lambda 1 and IFN lambda 2, linking rs1990760 to the expression of type III IFNs. In the highresponding genotype, IRF-1 expression correlated with that of type III IFN, suggesting a positivefeedback on type III IFN transcription. In summary, our study uncovers an influence of rs1990760 on the canonical effector function of MDA5 in response to an acute infection of primary human parenchymal cells with a clinically relevant virus linked to human T1D. It also highlights a previously unrecognized connection between the rs1990760 polymorphism and the expression level of type III IFNs.

  • 37.
    Duprez, Ida Rasmusson
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Johansson, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Nilsson, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Magnusson, Peetra U
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation2011In: Upsala Journal of Medical Sciences, ISSN 0300-9734, E-ISSN 2000-1967, Vol. 116, no 1, p. 8-17Article in journal (Refereed)
    Abstract [en]

    Abstract Background. Low engraftment and adverse immune reactions hamper the success rate of clinical islet transplantation. In this study, we investigated the capacity of human mesenchymal stem cells (MSCs) to adhere to human islets of Langerhans and their effects in immune modulation and during blood interactions in vitro. Methods. Composite MSC-islets were formed by suspension co-culture, and the phenotype was evaluated by confocal microscopy. Islet function was assessed by dynamic insulin release in response to glucose in vitro. Mixed lymphocyte-islet reactions (MLIR) and the tubing blood loop model were utilized as in vitro tools to analyse the effect of MSCs on the innate and adaptive immune reactions triggered by the islets. Results. MSCs rapidly adhered to islets and spread out to cover the islet surface. Insulin expression and secretion were sustained with the MSC coating. MSC-coated islets showed unaffected reactions with blood in vitro in comparison to control islets. Furthermore, MSCs suppressed lymphocyte proliferation induced by islet cells in MLIR. Conclusion. We conclude that it is possible to create composite MSC-islets to enable delivery of the MSCs by utilizing the adhesive capacity of the MSCs. This could have beneficial immunosuppressive effects in optimizing pancreatic islet transplantation.

  • 38.
    Eich, Torsten
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Estrada, Sergio
    Brandhorst, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Brandhorst, Heide
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Nilsson, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lundgren, Torbjörn
    Positron emission tomography: A real-time tool to quantify early islet engraftment in a preclinical large animal model2007In: Transplantation, ISSN 0041-1337, E-ISSN 1534-6080, Vol. 84, no 7, p. 893-898Article in journal (Refereed)
    Abstract [en]

    Background. Clinical islet transplantation is currently being explored as a therapeutic option for persons with type I diabetes and hypoglycemic unawareness. Techniques to monitor graft survival are urgently needed to optimize the procedure. Therefore, the objective of the present study was to develop a technique for imaging survival of transplanted islets in the peritransplant and early posttransplant phase.

    Methods. Isolated porcine islets were labeled in vitro with 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) and infused intraportally into anesthetized pigs (n=10). Dynamic examination was performed on a positron emission tomography/computed tomography hybrid system.

    Results. More than 95% of the radioactivity was confined to the islets at the time of transplantation. The peak percentage of infused radioactivity within the liver, quantified at the end of the islet infusion, was only 54±5.1%. The distribution of the radioactivity in the liver was found to be heterogeneous. A whole-body examination showed no accumulation in the lungs or brain; extrahepatic radioactivity was, except urinary excretion, evenly distributed in the pig body.

    Conclusions. Our results imply that almost 50% of the islets were damaged to the extent that the FDG contained was release within minutes after intraportal transplantation. The distribution of radioactivity without accumulation in the brain indicates that the activity is released from lysed islet cells in the form of [18F]FDG-6P rather than native [18F]FDG. The presented technique shows promise to become a powerful and quantitative tool, readily available in the clinic, to evaluate initial islet engraftment and survival.

  • 39.
    Eich, Torsten
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Ståhle, Magnus U.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Gustafsson, Bengt
    Sahlgrens Univ Hosp, Dept Transplantat, Gothenburg, Sweden.
    Horneland, Rune
    Oslo Univ Hosp, Rikshosp, Dept Transplantat, Oslo, Norway.
    Lempinen, Marko
    Helsinki Univ Hosp, Dept Transplantat & Liver Surg, Helsinki, Finland.
    Lundgren, Torbjorn
    Karolinska Univ Hosp, Div Transplantat Surg, CLINTEC, Stockholm, Sweden.
    Rafael, Ehab
    Skåne Univ Hosp, Dept Surg, Transplantat Unit, Malmö, Sweden.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    von Zur-Mühlen, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Olerud, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Scholz, Hanne
    Oslo Univ Hosp, Rikshosp, Dept Transplantat, Oslo, Norway.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Univ Gothenburg, Dept Biomed, Gothenburg, Sweden.
    Calcium: A Crucial Potentiator for Efficient Enzyme Digestion of the Human Pancreas2018In: Cell Transplantation, ISSN 0963-6897, E-ISSN 1555-3892, Vol. 27, no 7, p. 1031-1038Article in journal (Refereed)
    Abstract [en]

    Background: Effective digestive enzymes are crucial for successful islet isolation. Supplemental proteases are essential because they synergize with collagenase for effective pancreatic digestion. The activity of these enzymes is critically dependent on the presence of Ca2+ ions at a concentration of 5–10 mM. The present study aimed to determine the Ca2+ concentration during human islet isolation and to ascertain whether the addition of supplementary Ca2+ is required to maintain an optimal Ca2+ concentration during the various phases of the islet isolation process.

    Methods: Human islets were isolated according to standard methods and isolation parameters. Islet quality control and the number of isolations fulfilling standard transplantation criteria were evaluated. Ca2+ was determined by using standard clinical chemistry routines. Islet isolation was performed with or without addition of supplementary Ca2+ to reach a Ca2+ of 5 mM.

    Results: Ca2+ concentration was markedly reduced in bicarbonate-based buffers, especially if additional bicarbonate was used to adjust the pH as recommended by the Clinical Islet Transplantation Consortium. A major reduction in Ca2+ concentration was also observed during pancreatic enzyme perfusion, digestion, and harvest. Additional Ca2+ supplementation of media used for dissolving the enzymes and during digestion, perfusion, and harvest was necessary in order to obtain the concentration recommended for optimal enzyme activity and efficient liberation of a large number of islets from the human pancreas.

    Conclusions: Ca2+ is to a large extent consumed during clinical islet isolation, and in the absence of supplementation, the concentration fell below that recommended for optimal enzyme activity. Ca2+ supplementation of the media used during human pancreas digestion is necessary to maintain the concentration recommended for optimal enzyme activity. Addition of Ca2+ to the enzyme blend has been implemented in the standard isolation protocols in the Nordic Network for Clinical Islet Transplantation.

  • 40.
    Elshebani, Asma
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Olsson, Annika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Westman, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Tuvemo, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Frisk, Gun
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes2007In: Virus Research, ISSN 0168-1702, E-ISSN 1872-7492, Vol. 124, no 1-2, p. 193-203Article in journal (Refereed)
    Abstract [en]

    Enterovirus (EV) infections have been associated with the pathogenesis of type 1 diabetes (T1D). They may cause β-cell destruction either by cytolytic infection of the cells or indirectly by triggering the autoimmune response. Evidence for EV involvement have been presented in several studies, EV-IgM antibodies have been reported in T1D patients, EV-RNA has been found in the blood from T1D patients at onset, and EV have been isolated from newly diagnosed T1D. Our aim was to study infections with EV isolates from newly diagnosed T1D patients in human pancreatic islets in vitro. Two of them (T1 and T2) originated from a mother and her son diagnosed with T1D on the same day, the other two (A and E) were isolated from a pair of twins at the time of diagnosis of T1D in one of them. Isolated human pancreatic islets were infected and viral replication, viability and degree of cytolysis as well as insulin release in response to high glucose were measured. All four EV isolates replicated in the islet cells and virus particles and virus-induced vesicles were seen in the cytoplasm of the β-cells. The isolates varied in their ability to induce cytolysis and to cause destruction of the islets and infection with two of the isolates (T1 and A) caused more pronounced destruction of the islets. Infection with the isolate from the healthy twin boy (E) was the least cytolytic. The ability to secrete insulin in response to high glucose was reduced in all infected islets as early as 3 days post infection, before any difference in viability was observed. To conclude, strains of EV isolated from T1D patients at clinical presentation of T1D revealed β-cell tropism, and clearly affected the function of the β-cell. In addition, the infection caused a clear increase in the number of dead cells.

  • 41.
    Engstrand, Mats
    et al.
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Johnsson, Cecilia
    Department of Surgical Sciences.
    Larsson, Erik
    Department of Genetics and Pathology.
    Tufveson, Gunnar
    Department of Surgical Sciences.
    Korsgren, Olle
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Quantification of lymphocytes propagating from rat-kidney allografts--a tool to monitor anti-rejection treatment.2002In: Transpl Immunol, ISSN 0966-3274, Vol. 10, no 1, p. 31-6Article in journal (Refereed)
  • 42.
    Engstrand, Mats
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Naghibi, Mansour
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Tufveson, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Clinical Immunology.
    Johnsson, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Lymphocyte propagation from biopsies of kidney allografts2006In: Transplant Immunology, ISSN 0966-3274, E-ISSN 1878-5492, Vol. 16, no 3-4, p. 215-219Article in journal (Refereed)
    Abstract [en]

    Morphological evaluation of transplant biopsies, usually using the Banff classification, is the most important tool to diagnose rejection after kidney transplantation. However, morphological analysis only scores the amount and localisation of infiltrating cells, and studies show that up to 30% of grafts with a stable function display infiltration of lymphocytes consistent with acute cellular rejection. Methods to study the functional properties of the infiltrating lymphocytes are therefore needed. We applied a tissue culture system on biopsies from transplanted human kidneys, allowing infiltrating cells to propagate out from the tissue. Cells were then counted and subtyped by flow cytometry. The results were correlated to morphology. In total, 92 biopsies from 69 patients were analysed. For 14 patients, serial biopsies were available. In grafts with cellular or combined cellular and vascular rejection, the number of ex vivo propagated mononuclear cells was higher than from non-rejecting grafts. A similar pattern was seen for CD3(+) T cells as well as for T cells expressing CD25 or MHC class II antigens. However, the proportion of CD25(+) or MHC class II(+) T lymphocytes was similar in all groups (no rejection, vascular rejection, borderline changes, cellular rejection, combined cellular and vascular rejection). In all groups the number of CD4(+) cells was higher than the number of CD8(+) cells. The results confirm previous experimental studies showing that graft-infiltrating cells are possible to culture in vitro and that lymphocyte propagation correlates to acute cellular rejection. Tissue culturing is easy to perform and evaluate and can be used to determine and analyse the cellular immune response to allografts and may thus be used as a complement to morphological analyses.

  • 43.
    Engstrand, Mats
    et al.
    Division of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden.
    Lidehäll, Anna Karin
    Division of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden.
    Tötterman, Thomas H.
    Division of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden.
    Herrmann, Björn
    Division of Microbiology, University Hospital, Uppsala, Sweden.
    Eriksson, Britt-Marie
    Division of Infectious Diseases, University Hospital, Uppsala, Sweden.
    Korsgren, Olle
    Division of Clinical Immunology and Transfusion Medicine, University Hospital, Uppsala, Sweden.
    Cellular responses to cytomegalovirus in immunosuppressed patients: circulating CD8+ T cells recognizing CMVpp65 are present but display functional impairment2003In: Clinical and Experimental Immunology, ISSN 0009-9104, E-ISSN 1365-2249, Vol. 132, no 1, p. 96-104Article in journal (Refereed)
    Abstract [en]

    The availability of tetrameric complexes of HLA class I molecules folded with immunodominant peptides makes it possible to utilize flow cytometry for rapid and highly specific visualization of virus specific CD8+ T cells. An alternate technique is to incubate whole blood with specific antigens and to subsequently detect and characterize responding T cells (e.g. by performing intracellular staining of interferon-gamma). By using an HLA-A2 tetramer construct folded with the same immunodominant CMV-peptide as that used for peptide pulsing, we monitored both the presence and functional capacity of CMV-specific CD8+ T cells. In addition T cell activation was assayed by determination of CD38 and CD69 expression. Twelve organ transplant patients and 31 healthy blood donors with latent CMV infection were investigated using CMV pp65 tetramer staining and intracellular staining of interferon-gamma after CMV pp65 peptide pulsing or CMV lysate pulsing. CMV-specific T cells were detected in similar absolute numbers as well as frequencies of T cells in the two groups investigated. However, the CMV-specific CD8+ T cells in immunosuppressed individuals showed a decreased functional response to the CMV-peptide, as evidenced by reduced interferon-gamma production when compared to healthy blood donors (19%; 42%, P < 0·005). In addition, CD38 expression was markedly higher in immunosuppressed patients compared to healthy blood donors (24%; 6%, P < 0·005). In a case report we demonstrate that reactivation of CMV can occur in an immunosuppressed patient with high number of CMV-specific T cells, but without functional capacity. Hence, these findings reflect impaired activation of cytotoxic T cells controlling latent CMV infection in immunosuppressed patients.

  • 44. Eriksson, B.
    et al.
    Eriksson, O.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Selvaraju, R.
    Kandeel, F.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Detection of metastatic insulinoma by positron emission tomography with [68Ga]Exendin-4-a case report2014In: Wiener Klinische Wochenschrift, ISSN 0043-5325, E-ISSN 1613-7671, Vol. 126, no S3, p. S152-S152Article in journal (Other academic)
  • 45.
    Eriksson, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Roy, Tamal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sawadjoon, Supaporn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Bachmann, Kim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Sköld, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Weis, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Synthesis and preclinical evaluation of the CRTH2 antagonist [11C]MK-7246 as a novel PET tracer and potential surrogate marker for pancreatic beta-cell mass2019In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 71, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Introduction: MK-7246 is a potent and selective antagonist for chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). Within the pancreas CRTH2 is selectively expressed in pancreatic β-cells where it is believed to play a role in insulin release. Reduction in β-cell mass and insufficient insulin secretion in response to elevated blood glucose levels is a hallmark for type 1 and type 2 diabetes. Reported here is the synthesis of [11C]MK-7246 and initial preclinical evaluation towards CRTH2 imaging. The aim is to develop a method to quantify β-cell mass with PET and facilitate non-invasive studies of disease progression in individuals with type 2 diabetes.

    Methods: The precursor N-desmethyl-O-methyl MK-7246 was synthesized in seven steps and subjected to methylation with [11C]methyl iodide followed by hydrolysis to obtain [11C]MK-7246 labelled in the N-methyl position. Preclinical evaluation included in vitro radiography and immune-staining performed in human pancreatic biopsies. Biodistribution studies were performed in rat by PET-MRI and in pig by PET-CT imaging. The specific tracer uptake was examined in pig by scanning before and after administration of MK-7246 (1 mg/kg). Predicted dosimetry of [11C]MK-7246 in human males was estimated based on the biodistribution in rat.

    Results: [11C]MK-7246 was obtained with activities sufficient for the current investigations (270±120 MBq) and a radiochemical purity of 93±2%. The tracer displayed focal binding in areas with insulin positive islet of Langerhans in human pancreas sections. Baseline uptake in pig was significantly reduced in CRTH2-rich areas after administration of MK-7246; pancreas (66% reduction) and spleen (88% reduction). [11C]MK-7246 exhibited a safe human predicted dosimetry profile as extrapolated from the rat biodistribution data.

    Conclusions: Initial preclinical in vitro and in vivo evaluation of [11C]MK-7246 show binding and biodistribution properties suitable for PET imaging of CRTH2. Further studies are warranted to assess its potential in β-cell mass imaging and CRTH2 drug development.

  • 46.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Carlsson, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Blom, Elisabeth
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation2012In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 39, no 3, p. 415-421Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION:

    Islet transplantation is a promising treatment for type 1 diabetes mellitus, but the fate of the cells after intraportal infusion is unclear. It is therefore imperative to develop novel techniques for noninvasive imaging and quantification of events following islet transplantation.

    METHODS:

    Small islet-like microbeads, avidin-covered agarose resins (AARs), were used as a model system for islet transplantation. Capability for specific [(68)Ga]Ga-DOTA-(PEG)(2)-biotin uptake and retention for either AARs or human islets conjugated with avidin by means of a heparin scaffold was studied in vitro. Biodistribution of the novel positron emission tomography (PET) tracer [(68)Ga]Ga-DOTA-(PEG)(2)-biotin was evaluated in mice treated by intraportal transplantation of AARs by μPET/computed tomography and ex vivo organ distribution and compared with control mice.

    RESULTS:

    AARs had high capability to bind [(68)Ga]Ga-DOTA-(PEG)(2)-biotin, close to 50% of administrated tracer/μl in vitro (>0.25 MBq/μl). Avidin-tagged human islets could bind on average 2.2% of administered tracer/μl. Specificity (>90%) and retention (>90% after 1 h) were high for both AARs and avidin-tagged islets. Hepatic tracer uptake and retention were increased in mice transplanted with AARs [standardized uptake value (SUV)=2.6] compared to the untreated group (SUV=1.4). In vivo uptake of tracer to AARs was blocked by preadministration of unlabeled biotin.

    CONCLUSIONS:

    Avidin-tagged islet-like objects can be tracked in hepatic volume after intraportal transplantation by using [(68)Ga]Ga-DOTA-(PEG)(2)-biotin and PET.

  • 47.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Espes, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Selvaraju, Ram K
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Jansson, Emma
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Biglarnia, Alireza
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Eriksson, Jan W
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical diabetology and metabolism.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Transplantation and regenerative medicine.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    The Positron Emission Tomography ligand [11C]5-Hydroxy-Tryptophan can be used as a surrogate marker for the human endocrine pancreas2014In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 63, no 10, p. 3428-3437Article in journal (Refereed)
    Abstract [en]

    In humans a well-developed serotonin system is localized to the pancreatic islets while being absent in exocrine pancreas. Assessment of pancreatic serotonin biosynthesis could therefore be used to estimate the human endocrine pancreas. Proof of concept was tested in a prospective clinical trial by comparisons of type 1 diabetic (T1D) patients, with extensive reduction of beta cells, with healthy volunteers (HV).C-peptide negative (i.e. insulin-deficient) T1D subjects (n=10) and HV (n=9) underwent dynamic Positron Emission Tomography with the radiolabeled serotonin precursor [(11)C]5-Hydroxy-Tryptophan ([(11)C]5-HTP).A significant accumulation of [(11)C]5-HTP was obtained in the pancreas of the HV, with large inter-individual variation. A substantial and highly significant reduction (66%) in the pancreatic uptake of [(11)C]5-HTP in T1D subjects was observed, and this was most evident in the corpus and caudal regions of the pancreas where beta-cells normally are the major constituent of the islets.[(11)C]5-HTP retention in the pancreas was reduced in T1D compared to non-diabetic subjects. Accumulation of [(11)C]5-HTP in the pancreas of both HV and subjects with T1D were in agreement with previously reported morphological observations on the beta cell volume implying that [(11)C]5-HTP retention is a useful non-invasive surrogate marker for the human endocrine pancreas.

  • 48.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Johnström, Peter
    Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
    Cselenyi, Zsolt
    Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
    Jahan, Mahabuba
    Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
    Selvaraju, Ram kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Jensen-Waern, Marianne
    Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Takano, Akihiro
    Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
    Sörhede Winzell, Maria
    AstraZeneca R&D, Mölndal, Sweden.
    Halldin, Christer
    6Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
    Skrtic, Stanko
    Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden .
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    In Vivo Visualization of beta-Cells by Targeting of GPR442018In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 67, no 2, p. 182-192Article in journal (Refereed)
    Abstract [en]

    GPR44 expression has recently been described as highly beta-cell selective in the human pancreas and constitutes a tentative surrogate imaging biomarker in diabetes. A radiolabeled small-molecule GPR44 antagonist, [C-11]AZ12204657, was evaluated for visualization of beta-cells in pigs and non-human primates by positron emission tomography as well as in immunodeficient mice transplanted with human islets under the kidney capsule. In vitro autoradiography of human and animal pancreatic sections from subjects without and with diabetes, in combination with insulin staining, was performed to assess beta-cell selectivity of the radiotracer. Proof of principle of in vivo targeting of human islets by [C-11]AZ12204657 was shown in the immunodeficient mouse transplantation model. Furthermore, [C-11]AZ12204657 bound by a GPR44-mediated mechanism in pancreatic sections from humans and pigs without diabetes, but not those with diabetes. In vivo [C-11]AZ12204657 bound specifically to GPR44 in pancreas and spleen and could be competed away dose-dependently in nondiabetic pigs and nonhuman primates. [C-11]AZ12204657 is a first-in-class surrogate imaging biomarker for pancreatic beta-cells by targeting the protein GPR44.

  • 49.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Mollaret, Marjorie
    Mellitech SAS, Grenoble, France.
    de Boysson, Yann
    Mellitech SAS, Grenoble, France.
    Chimienti, Fabrice
    Mellitech SAS, Grenoble, France;Innovative Medicines and Early Development Biotech Unit (IMED Biotech), AstraZeneca, ABMölndal, Sweden.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Pancreatic imaging using an antibody fragment targeting the zinc transporter type 8: a direct comparison with radio-iodinated Exendin-42018In: Acta Diabetologica, ISSN 0940-5429, E-ISSN 1432-5233, Vol. 55, no 1, p. 49-57Article in journal (Refereed)
    Abstract [en]

    AIM: The zinc transporter 8 (ZnT8) has been suggested as a suitable target for non-invasive visualization of the functional pancreatic beta cell mass, due to both its pancreatic beta cell restricted expression and tight involvement in insulin secretion.

    METHODS: In order to examine the potential of ZnT8 as a surrogate target for beta cell mass, we performed mRNA transcription analysis in pancreatic compartments. A novel ZnT8 targeting antibody fragment Ab31 was radiolabeled with iodine-125, and evaluated by in vitro autoradiography in insulinoma and pancreas as well as by in vivo biodistribution. The evaluation was performed in a direct comparison with radio-iodinated Exendin-4.

    RESULTS: Transcription of the ZnT8 mRNA was higher in islets of Langerhans compared to exocrine tissue. Ab31 targeted ZnT8 in the cytosol and on the plasma membrane with 108 nM affinity. Ab31 was successfully radiolabeled with iodine-125 with high yield and > 95% purity. [(125)I]Ab31 binding to insulinoma and pancreas was higher than for [(125)I]Exendin-4, but could only by partially competed away by 200 nM Ab31 in excess. The in vivo uptake of [(125)I]Ab31 was higher than [(125)I]Exendin-4 in most tissues, mainly due to slower clearance from blood.

    CONCLUSIONS: We report a first-in-class ZnT8 imaging ligand for pancreatic imaging. Development with respect to ligand miniaturization and radionuclide selection is required for further progress. Transcription analysis indicates ZnT8 as a suitable target for visualization of the human endocrine pancreas.

  • 50.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Selvaraju, Ram K
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Eriksson, Jan W
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical diabetology and metabolism.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Quantitative Imaging of Serotonergic Biosynthesis and Degradation in the Endocrine Pancreas2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 3, p. 460-465Article in journal (Refereed)
    Abstract [en]

    Serotonergic biosynthesis in the endocrine pancreas, of which the islets of Langerhans is the major constituent, has been implicated in insulin release and β cell proliferation. In this study, we investigated the feasibility of quantitative noninvasive imaging of the serotonergic metabolism in the pancreas using the PET tracer (11)C-5-hydroxy-l-tryptophan ((11)C-5-HTP).

    METHODS: Uptake of (11)C-5-HTP, and its specificity for key enzymes in the serotonergic metabolic pathway, was assessed in vitro (INS-1 and PANC1 cells and human islet and exocrine preparations) and in vivo (nonhuman primates and healthy and diabetic rats).

    RESULTS: In vitro tracer uptake in endocrine cells (INS-1 and human islets), but not PANC1 and exocrine cells, was mediated specifically by intracellular conversion into serotonin. Pancreatic uptake of (11)C-5-HTP in nonhuman primates was markedly decreased by inhibition of the enzyme dopa decarboxylase, which converts (11)C-5-HTP to (11)C-serotonin and increased after inhibition of monoamine oxidase-A, the main enzyme responsible for serotonin degradation. Uptake in the rat pancreas was similarly modulated by inhibition of monoamine oxidase-A and was reduced in animals with induced diabetes.

    CONCLUSION: The PET tracer (11)C-5-HTP can be used for quantitative imaging of the serotonergic system in the endocrine pancreas.

12345 1 - 50 of 202
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf