uu.seUppsala University Publications
Change search
Refine search result
12345 1 - 50 of 202
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Ahlgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Rosik, Daniel
    Affibody AB, Stockholm, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöberg, Anna
    Affibody AB, Stockholm, Sweden.
    Baastrup, Barbro
    Affibody AB, Stockholm, Sweden.
    Widmark, Olof
    Affibody AB, Stockholm, Sweden.
    Fant, Gunilla
    Affibody AB, Stockholm, Sweden.
    Feldwisch, Joachim
    Affibody AB, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules2008In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 19, no 1, p. 235-243Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.

  • 2.
    Ahlgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Wållberg, Helena
    Affibody AB, Stockholm, Sweden.
    Hansson, Monika
    Affibody AB, Stockholm, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Lewsley, Richard
    Department of Metabolism, Covance Laboratories Ltd, Harrogate, UK.
    Wennborg, Anders
    Affibody AB, Stockholm, Sweden.
    Abrahmsén, Lars
    Affibody AB, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Targeting of HER2-Expressing Tumors Using 111In-ABY-025, a Second-Generation Affibody Molecule with a Fundamentally Reengineered Scaffold2010In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 51, no 7, p. 1131-1138Article in journal (Refereed)
    Abstract [en]

    Overexpression of HER2 in breast carcinomas predicts response to trastuzumab therapy. Affibody molecules based on a non-immunoglobulin scaffold have demon-strated high potential for in vivo molecular imaging of HER2-expressing tumors. Re-engineering of the molecular scaffold has led to a second generation of optimized Affibody molecules, having a surface distinctly different from the parental protein domain from staphylococcal protein A. The new tracer showed further increased melting point, stability and overall hydrophilicity compared to the parental molecule, and was shown to be more amenable for chemical peptide synthesis. The goal of this study was to assess potential effects of this extensive re-engineering on HER2 targeting, using ABY-025, a DOTA conjugated variant of the novel tracer.

    Methods: 111In-ABY-025 was compared with previously evaluated parent HER2-binding Affibody tracers in vitro and in vivo. The in vivo behavior was further evaluated in mice bearing SKOV-3 xenografts, in rats and in cynomolgus macaques.

    Results: 111In-ABY-025 bound specifically to HER2 in vitro and in vivo. Direct comparison with the previous generation of HER2-binding tracers showed that ABY-025 retained excellent targeting properties. Rapid blood clearance was shown in mice, rats and macaques. A highly specific tumor uptake of 16.7 ± 2.5 %IA/g was seen at 4 h after injection. The tumor-to-blood ratio was 6.3 at 0.5 h, 88 at 4 h, and increased up to 3 days after injection. Gamma camera imaging of tumors was already possible 0.5 h after injection. Furthermore, repeated i.v. administration of ABY-025 did not induce antibody formation in rats.

    Conclusions: The biodistribution of 111In-ABY-025 was in remarkably good agreement with the parent tracers, despite profound re-engineering of the non-binding surface. The molecule displayed rapid blood clearance in all species investigated and excellent targeting capacity in tumor bearing mice, leading to high tumor-to-organ-ratios and high contrast imaging shortly after injection.

  • 3.
    Ahlgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Wållberg, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tran, Thuy A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Widström, Charles
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Section of Medical Physics.
    Hjertman, Magnus
    Affibody AB, Stockholm, Sweden.
    Abrahmsén, Lars
    Affibody AB, Stockholm, Sweden.
    Berndorff, Dietmar
    Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany.
    Dinkelborg, Ludger M.
    Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany.
    Cyr, John E.
    Global Drug Discovery, Bayer Schering Pharma AG, Berlin, Germany.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine2009In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 50, no 5, p. 781-789Article in journal (Refereed)
    Abstract [en]

    The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.

  • 4.
    Almqvist, Ylva
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Jensen, Holger J.
    Danmark.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    In vitro characterization of 211 At-labeled antibody A33: a potential therapeutic agent against metastatic colorectal carcinoma2005In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 20, no 5, p. 514-523Article in journal (Refereed)
    Abstract [en]

    The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide 211At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the 211At-benzoate-A33 conjugate (211At-A33) were investigated and found to be similar to those of 125I-benzoate-A33 (125I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (Kd = 1.7 ± 0.2 nM, and 1.8 ± 0.1 nM for 211At-A33 and 125I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of 211At-A33 was also confirmed. After incubation with 211At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The 211At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma.

  • 5.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dunås, Finn
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Löfblom, John
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Selection of an optimal cysteine-containing peptide-based chelator for labeling of Affibody molecules with 188-Re2013In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 40, no Suppl. 2, p. S219-S220Article in journal (Other academic)
    Abstract [en]

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1±0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172±32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.

  • 6.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dunås, Finn
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Löfblom, John
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re2014In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 87, p. 519-528Article in journal (Refereed)
    Abstract [en]

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.

  • 7.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Liu, H.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gräslund, T.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Improving of molecular design of a novel Affibody-fused HER2-recognising anticancer toxin using radionuclide-based techniques2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S178-S178Article in journal (Refereed)
  • 8.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Radiolabeled Probes Targeting Tyrosine-Kinase Receptors For Personalized Medicine2014In: Current pharmaceutical design, ISSN 1381-6128, E-ISSN 1873-4286, Vol. 20, no 14, p. 2275-2292Article in journal (Refereed)
    Abstract [en]

    Receptor tyrosine kinases (RTK) are transmembrane receptors regulating cellular proliferation, differentiation, apoptosis, motility and recruitment of the vasculature. Aberrant expression and/or function of RTK have been detected in many malignant tumors and are considered to be a part of the transformed phenotype. The action of several classes of anti-cancer drugs is based on specific recognition of RTK. Monoclonal antibodies target extracellular binding domains, while tyrosine kinase inhibitors (TKI) bind to intracellular kinase domains to suppress RTK signaling. The issues regarding the efficient use of RTK targeting are the inter- and intra-patient heterogeneity of RTK expression and the changes of expression levels during the course of disease and in response to therapy. Radionuclide molecular imaging of RTK expression may aid in selecting patients who would benefit from RTK-targeting therapy and in identifying non-responders. Therefore, the therapy would be more personalized. Currently, radiolabeled proteins (monoclonal antibodies and their fragments, natural peptides ligands to RTK and de novo selected affinity proteins) and TKI and their analogues are under development for the visualization of RTK. In this review, we discuss the advantages and disadvantages of these approaches.

  • 9.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Perols, Anna
    Eriksson Karlström, Amelie
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Boschetti, Frederic
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA2012In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 39, no 4, p. 518-529Article in journal (Refereed)
    Abstract [en]

    Introduction

    Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule.

    Methods

    The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to ZHER2:2395 Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 were studied. Biodistribution of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 and [111In-MMA-DOTA-Cys61]-ZHER2:2395 was compared in mice.

    Results

    The affinity of [MMA-NODAGA-Cys61]-ZHER2:2395 binding to HER2 was 67 pM. The 111In-labeling yield was 99.6%±0.5% after 30 min at 60°C. [111In-MMA-NODAGA-Cys61]-ZHER2:2395 bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 in mice bearing DU-145 xenografts (4.7%±0.8% ID/g) was lower than uptake of [111In-MMA-DOTA-Cys61]-ZHER2:2395 (7.5%±1.6% ID/g). However, tumor-to-organ ratios were higher for [111In-MMA-NODAGA-Cys61]-ZHER2:2395 due to higher clearance rate from normal tissues.

    Conclusions

    MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.

  • 10.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Perols, Anna
    Tsourma, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Robillard, Marc
    Rossin, Raffaella
    Ten Hoeve, Wolter
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Eriksson Karlström, Amelie
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Feasibility of affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting2016In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 57, no 3, p. 431-436Article in journal (Refereed)
    Abstract [en]

    Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal re-absorption of affibody molecules prevents the use of residualizing radiometals, including a number of promising low energy beta- and alpha-emitters, for radionuclide therapy. We tested a hypothesis that affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys.

    Methods:

    TCO was conjugated to the anti-HER2 affibody molecule Z2395. DOTA-tetrazine was labeled with indium-111 and lutetium-177. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts.

    Results:

    125I-Z2395-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45±16 pM. 111In-tetrazine bound specifically and selectively to Z2395-TCO pre-treated cells. In vivo studies demonstrated HER2-specific 125I-Z2395-TCO accumulation in xenografts. TCO-mediated 111In-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z2395-TCO. At 1 h post injection, the tumor uptake of 111In-tetrazine and 177Lu-tetrazine was ca. 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of 111In in comparison with direct targeting.

    Conclusion:

    The feasibility of affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pretargeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.

  • 11.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Rosik, D.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Karlstrom, A. Eriksson
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Comparative evaluation of anti-HER2 affibody molecules labeled with 68Ga and 111In using maleimido derivatives of DOTA and NODAGA2012In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 39, no S2, p. S299-S299Article in journal (Other academic)
  • 12.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Rosik, Daniel
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Eriksson Karlström, Amelie
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Influence of Nuclides and Chelators on Imaging Using Affibody Molecules: Comparative Evaluation of Recombinant Affibody Molecules Site-Specifically Labeled with 68Ga and 111In via Maleimido Derivatives of DOTA and NODAGA2013In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 24, no 6, p. 1102-1109Article in journal (Refereed)
    Abstract [en]

    Accurate detection of cancer-associated molecular abnormalities in tumors could make cancer treatment more personalized. Affibody molecules enable high contrast imaging of tumor-associated protein expression shortly after injection. The use of the generator-produced positron-emitting radionuclide 68Ga should increase sensitivity of HER2 imaging. The chemical nature of radionuclides and chelators influences the biodistribution of Affibody molecules, providing an opportunity to further increase the imaging contrast. The aim of the study was to compare maleimido derivatives of DOTA and NODAGA for site-specific labeling of a recombinant ZHER2:2395 HER2-binding Affibody molecule with 68Ga. DOTA and NODAGA were site-specifically conjugated to the ZHER2:2395 Affibody molecule having a C-terminal cysteine and labeled with 68Ga and 111In. All labeled conjugates retained specificity to HER2 in vitro. Most of the cell-associated activity was membrane-bound with a minor difference in internalization rate. All variants demonstrated specific targeting of xenografts and a high tumor uptake. The xenografts were clearly visualized using all conjugates. The influence of chelator on the biodistribution and targeting properties was much less pronounced for 68Ga than for 111In. The tumor uptake of 68Ga-NODAGA-ZHER2:2395 and 68Ga-DOTA-ZHER2:2395 and tumor-to-blood ratios at 2 h p.i. did not differ significantly. However, the tumor-to-liver ratio was significantly higher for 68Ga-NODAGA- ZHER2:2395 (8 ± 2 vs 5.0 ± 0.3) offering the advantage of better liver metastases visualization. In conclusion, influence of chelators on biodistribution of Affibody molecules depends on the radionuclides and reoptimization of labeling chemistry is required when a radionuclide label is changed.

  • 13.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tsourma, M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Preclin PET Platform, Uppsala, Sweden..
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Perols, A.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Robillard, M.
    Tagworks Pharmaceut, Eindhoven, Netherlands..
    Rossin, R.
    Tagworks Pharmaceut, Eindhoven, Netherlands..
    ten Hoeve, W.
    Syncom BV, Groningen, Netherlands..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlstrom, A. Eriksson
    KTH, Div Prot Technol, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting: proof-of-principle2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S246-S246Article in journal (Other academic)
  • 14.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Eek, Annemarie
    Boerman, Otto
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    In Vivo and In Vitro Studies on Renal Uptake of Radiolabeled Affibody Molecules for Imaging of HER2 Expression in Tumors2013In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 28, no 3, p. 187-195Article in journal (Refereed)
    Abstract [en]

    Affibody molecules (6-7 kDa) are a new class of small robust three-helical scaffold proteins. Radiolabeled subnanomolar anti-HER2 affibody Z(HER2:342) was developed for imaging of HER2 expression in tumors, and a clinical study has demonstrated that the In-111- and Ga-68-labeled affibody molecules can efficiently detect HER2 expressing metastases in breast cancer patients. However, a significant renal accumulation of radioactivity after systemic injection of a radiolabeled anti-HER2 affibody conjugate is observed. The aim of this study was to investigate the mechanism of renal reabsorption of anti-HER2 affibody at the molecular level. Renal accumulation of radiolabeled anti-HER2 affibody molecules was studied in a murine model and in vitro using opossum-derived proximal tubule (OK) cells. It was found that kidney reabsorption of affibody molecule was not driven by megalin/cubilin. Amino acids in the target-binding side of affibody molecule were involved in binding to OK cells. On OK cells, two types of receptors for anti-HER2 affibody molecule were found: K-D1 = 0.8 nM, B-max1 = 71,500 and K-D2 = 9.2 nM, B-max2 = 367,000. The results of the present study indicate that affibody molecule and other scaffold-based targeting proteins with a relatively low kidney uptake can be selected using in vitro studies with tubular kidney cells.

  • 15.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Westerlund, K.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Velletta, J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Eriksson-Karlström, A.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparative evaluation of Lu-177-HP2 and In-111-HP2, secondary agents for affibody-based PNA-mediated radionuclide pretargeting2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S237-S237Article in journal (Refereed)
  • 16.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Löfblom, John
    Larsson, Erik
    Strand, Sven-Erik
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Ståhl, Stefan
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors: preclinical assessment2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 11, p. 1842-1848Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of 99mTc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide–based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate 188Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)–expressing tumors.

    Methods:

    ZHER2:V2 was labeled with 188Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.

    Results:

    Binding of 188Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that 188Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.

    Conclusion:

    188Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.

  • 17.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Hosseinimehr, Seyed Jalal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of (99m)Tc-labeled recombinant Affibody molecules2012In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 42, no 5, p. 1975-1985Article in journal (Refereed)
    Abstract [en]

    Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide (99m)Tc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of (99m)Tc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied (99m)Tc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of (99m)Tc. The biodistribution of all (99m)Tc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of (99m)Tc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.

  • 18.
    Andersson, Jennie
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Yavari, Nazila
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    In Vitro Therapy Modeling of HER2 Targeting Therapy in Disseminated Prostate Cancer2014In: International Journal of Oncology, ISSN 1019-6439, Vol. 45, no 5, p. 2153-2158Article in journal (Refereed)
    Abstract [en]

    Prostate cancer (PCa) is the most common cancer type among men. Treatments against advanced PCa are limited and in many cases only palliative. In a later, androgent independent, stage of PCa androgen receptors can be activated without interaction with ligand, i.e., by receptors of tyrosine kinase (RTK) family in the outlaw pathway. Human epidermal growth factor receptors HER2 and EGFR belong to RTK-family. HER2 is one of the main actors in the outlaw pathway with EGFR as the preferable heterodimerizing partner. We hypothesized that information on HER2 expression in advanced PCa could be useful for selection of patients for anti-RTK therapy and monitoring of therapy response. A panel of PCa cell lines (LNCap, PC3, DU-145) was subjected to a 8-week treatment using drugs influencing the RTK: trastuzumab (anti‑HER2), 17-DMAG (Hsp90 inhibitor), alone or in combination, and their HER2 and EGFR expressions were compared with non-treated cells. Treatment with trastuzumab decreased proliferation of LNCap and DU-145 cell lines, while 17-DMAG and trastuzumab/17‑DMAG combination affected all three cell lines. HER2 expression was significantly increased in PC3 cells, the most resistant cell line. On the contrary, in responding cells (LNCap and DU-145) HER2 expression decreased, accompanied by increased EGFR expression. However, additional treatment of cells with cetuximab (anti‑EGFR) did not give any additive effect to trastuzumab. In this study the response to anti-RTK therapy proved to vary between different PCa cell lines. We have demonstrated that RTK targeting treatments may affect the phenotypic profile of PCa tumor cells that correlates with therapy outcome. Observation of such changes during treatment could be used for monitoring and an improved therapy outcome.

  • 19.
    Andersson, Jennie
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Imaging of HER2 may improve the outcome of external irradiation therapy for prostate cancer patients2015In: Oncology Letters, ISSN 1792-1074, E-ISSN 1792-1082, Vol. 9, no 2, p. 950-954Article in journal (Refereed)
    Abstract [en]

    Prostate cancer (PCa) is the most common type of cancer among males. Human epidermal growth factor receptor type 2 (HER2) expression in PCa has been reported by several studies and its involvement in the progression towards androgen-independent PCa has been discussed. External irradiation is one of the existing therapies, which has been demonstrated to be efficient in combination with androgen deprivation therapy for the treatment of advanced PCa. However, 20-40% of patients develop recurrent and more aggressive PCa within 10 years. The current study investigates the involvement of HER2 in survival and radioresistance in PCa cells and we hypothesized that, by monitoring HER2 expression, treatment may be personalized. The PCa cell lines, LNCap, PC3 and DU-145, received a 6 Gy single dose of external irradiation. The number of PC3 cells was not affected by a single dose of radiation, whereas a 5-fold decrease in cell number was detected in LNCap (P<0.00001) and DU-145 (P<0.0001) cells. The HER2 expression in PC3 exhibited a significant increase post irradiation, however, the expression was stable in the remaining cell lines. The administration of trastuzumab post-irradiation resulted in a 2-fold decrease in the PC3 cell number, while the drug did not demonstrate additional effects in LNCap and DU-145 cells, when compared with that of irradiation treatment alone. The results of the present study demonstrated that an increase in membranous HER2 expression in response to external irradiation may indicate cell radioresistance. Furthermore, imaging of HER2 expression prior to and following external irradiation may present a step towards personalized therapy in PCa.

  • 20. Andersson, K. G.
    et al.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Malm, M.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lofblom, J.
    Stahl, S.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    111In-labeled NOTA-conjugated Affibody molecules for visualization of HER3 expression in malignant tumors2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S311-S311, article id OP681Article in journal (Other academic)
  • 21.
    Andersson, Ken G.
    et al.
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Ståhl, Stefan
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Löfblom, John
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR: 2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator2016In: International journal of oncology, ISSN 1791-2423, Vol. 49, no 6, p. 2285-2293Article in journal (Refereed)
    Abstract [en]

    The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo.

  • 22. Andersson, Ken G.
    et al.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Malm, Magdalena
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lofblom, John
    Stahl, Stefan
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparative evaluation of 111In-labeled NOTA‑conjugated affibody molecules for visualization of HER3 expression in malignant tumors2015In: Oncology Reports, ISSN 1021-335X, E-ISSN 1791-2431, Vol. 34, no 2, p. 1042-1048Article in journal (Refereed)
    Abstract [en]

    Expression of human epidermal growth factor receptor type 3 (HER3) in malignant tumors has been associated with resistance to a variety of anticancer therapies. Several anti-HER3 monoclonal antibodies are currently under pre-clinical and clinical development aiming to overcome HER3-mediated resistance. Radionuclide molecular imaging of HER3 expression may improve treatment by allowing the selection of suitable patients for HER3-targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. In a recent study, we selected affibody molecules with affinity to HER3 at a low picomolar range. The aim of the present study was to develop an anti-HER3 affibody molecule suitable for labeling with radiometals. The HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA HER3-specific affibody molecules were labeled with indium-111 (In-111) and assessed in vitro and in vivo for imaging properties using single photon emission computed tomography (SPECT). Labeling of HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA with In-111 provided stable conjugates. In vitro cell tests demonstrated specific binding of the two conjugates to HER3-expressing BT-474 breast carcinoma cells. In mice bearing BT-474 xenografts, the tumor uptake of the two conjugates was receptor-specific. Direct in vivo comparison of In-111-HEHEHE-Z08698-NOTA and In-111-HEHEHE-Z08699-NOTA demonstrated that the two conjugates provided equal radioactivity uptake in tumors, although the tumor-to-blood ratio was improved for In-111-HEHEHE-Z08698-NOTA [12 +/- 3 vs. 8 +/- 1,4 h post injection (p.i)] due to more efficient blood clearance. In-111-HEHEHE-Z08698-NOTA is a promising candidate for imaging of HER3-expression in malignant tumors using SPECT. Results of the present study indicate that this conjugate could be used for patient stratification for anti-HER3 therapy.

  • 23. Babaei, Mohammad Hossein
    et al.
    Almqvist, Ylva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Shafii, Mohammad
    Kairemo, Kalevi
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    [99mTc] HYNIC-hEGF, a potential agent for imaging of EGF receptors in vivo: preparation and pre-clinical evaluation2005In: Oncology Reports, ISSN 1021-335X, E-ISSN 1791-2431, Vol. 13, no 6, p. 1169-75Article in journal (Refereed)
    Abstract [en]

    Expression of epidermal growth factor receptors (EGFR) has prognostic and predictive value in many kinds of tumors. Imaging of expression of EGFR in vivo may give valuable diagnostic information. The epidermal growth factor (EGF), a natural ligand, is a possible candidate for the targeting of EGFR. The present study describes a method for preparation of (99m)Tc-EGF via the hydrazinopyridine-3-carboxylic acid (HYNIC) conjugation using tricine and ethylenediamine-N,N'-diacetic acid (EDDA) as co-ligands. Both conjugates bound EGFR expressing cells with nanomolar affinity, and demonstrated good intracellular retention. The complex with EDDA demonstrated much higher stability in blood serum and during cysteine challenge. Biodistribution of (99m)Tc-EDDA-HYNIC-EGF in normal mice demonstrated fast blood clearance of conjugate, and its ability to bind EGFR in vivo. (99m)Tc-EDDA-HYNIC-EGF is a promising candidate for visualization of EGFR expression in vivo.

  • 24. Barta, Pavel
    et al.
    Malmberg, Jennie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Melicharova, Ludmila
    Strandgård, John
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Laznicek, Milan
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Protein interactions with HER-family receptors can have different characteristics depending on the hosting cell line2012In: International Journal of Oncology, ISSN 1019-6439, Vol. 40, no 5, p. 1677-1682Article in journal (Refereed)
    Abstract [en]

    Cell lines are common model systems in the development of therapeutic proteins and in the research on cellular functions and dysfunctions. In this field, the protein interaction assay is a frequently used tool for assessing the adequacy of a protein for diagnostic and therapeutic purposes. In this study, we investigated the extent to which the interaction characteristics depend on the choice of cell line for HER-family receptors. The interaction characteristics of two therapeutic antibodies (trastuzumab and cetuximab) and one Affibody molecule (ZHER2:342), interacting with the intended receptor were characterized with high precision using an automated real-time interaction method, in different cell lines (HaCaT, A431, HEP-G2, SKOV3, PC3, DU-145). Clear differences in binding affinity and kinetics, up to one order of magnitude, were found for the interaction of the same protein binding to the same receptor on different cells for all three proteins. For HER-family receptors, it is therefore important to refer to the measured affinity for a protein-receptor interaction together with the hosting cell line. The ability to accurately measure affinity and kinetics of a protein-receptor interaction on cell lines of different origins may increase the understanding of underlying receptor biology, and impact the selection of candidates in the development of therapeutic or diagnostic agents.

  • 25.
    Bass, Tarek Z.
    et al.
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, SE-10691 Stockholm, Sweden..
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, SE-17163 Solna, Sweden.
    Löfblom, John
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, SE-10691 Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, SE-10691 Stockholm, Sweden..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin- binding therapeutic affibody construct2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 43118Article in journal (Refereed)
    Abstract [en]

    Overexpression of human epidermal growth factor receptor 3 (HER3) is involved in resistance to several therapies for malignant tumours. Currently, several anti-HER3 monoclonal antibodies are under clinical development. We introduce an alternative approach to HER3-targeted therapy based on engineered scaffold proteins, i.e. affibody molecules. We designed a small construct (22.5 kDa, denoted 3A3), consisting of two high-affinity anti-HER3 affibody molecules flanking an albumin-binding domain ABD, which was introduced for prolonged residence in circulation. In vitro, 3A3 efficiently inhibited growth of HER3-expressing BxPC-3 cells. Biodistribution in mice was measured using 3A3 that was site-specifically labelled with In-111 via a DOTA chelator. The residence time of In-111-DOTA-3A3 in blood was extended when compared with the monomeric affibody molecule. In-111-DOTA-3A3 accumulated specifically in HER3-expressing BxPC-3 xenografts in mice. However, In-111-DOTA-3A3 cleared more rapidly from blood than a size-matched control construct In-111-DOTA-TAT, most likely due to sequestering of 3A3 by mErbB3, the murine counterpart of HER3. Repeated dosing and increase of injected protein dose decreased uptake of In-111-DOTA-3A3 in mErbB3-expressing tissues. Encouragingly, growth of BxPC-3 xenografts in mice was delayed in an experimental (pilot-scale) therapy study using 3A3. We conclude that the 3A3 affibody format seems promising for treatment of HER3-overexpressing tumours.

  • 26. Baum, Richard P
    et al.
    Prasad, Vikas
    Müller, Dirk
    Schuchardt, Christiane
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Wennborg, Anders
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules2010In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 51, no 6, p. 892-897Article in journal (Refereed)
    Abstract [en]

    The clinical utility of a human epidermal growth factor receptor 2 (HER2)-targeting Affibody molecule for detection and characterization of HER2-positive lesions was investigated in patients with recurrent metastatic breast cancer. METHODS: Three patients received (111)In- or (68)Ga-labeled DOTA(0)-Z(HER2:342-pep2) (ABY-002). gamma-Camera, SPECT, or PET/CT images were compared with earlier (18)F-FDG PET/CT results. RESULTS: Administration of radiolabeled ABY-002 was well tolerated. Blood kinetics of radiolabeled ABY-002 showed a first half-life of 4-14 min, second half-life of 1-4 h, and third half-life of 12-18 h. Radiolabeled ABY-002 detected 9 of 11 (18)F-FDG-positive metastases as early as 2-3 h after injection. CONCLUSION: Molecular imaging using (111)In- or (68)Ga-labeled ABY-002 has the potential to localize metastatic lesions in vivo, adds qualitative information not available today by conventional imaging techniques, and may allow the HER2 status to be determined for metastases not amenable to biopsy. To our knowledge, this is the first report on clinical imaging data obtained with a non-immunoglobulin-based scaffold protein.

  • 27.
    Carlsson, Jörgen
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Steffen, Ann-Charlott
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sundberg, Åsa L.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Vikström, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Stenerlöw, Bo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Targeting EGFR and HER2 with 211At-labeled molecules: unexpected and expected dose-effect relations in cultured tumor cells2008In: Current radiopharmaceuticals, ISSN 1874-4710, Vol. 1, no 3, p. 225-233Article in journal (Refereed)
  • 28.
    Cheng, Junping
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Persson, Mikael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Siavaev, Igor
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Kairemo, Kalevi
    Anniko, Matti
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Targeting of a head and neck squamous cell carcinoma xenograft model using the chimeric monoclonal antibody U36 radioiodinated with a closo-dodecaborate-containing linker2004In: Acta Oto-Laryngologica, ISSN 0001-6489, E-ISSN 1651-2251, Vol. 124, no 9, p. 1078-85Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: High rates of local recurrence and distant metastases following surgery of high-grade head and neck squamous cell carcinoma (HNSCC) necessitate the use of adjuvant systemic treatment. Radioimmunotargeting might be a possible treatment modality in this case. The nuclear properties of 131I make it a suitable isotope for treatment of minimal residual disease and small metastases, but the conventional radioiodine label has poor cellular retention and its radiocatabolites accumulate in the thyroid. We attempted to overcome these problems by using closo-dodecaborate derivatives for attachment of radioiodine. MATERIAL AND METHODS: We investigated the feasibility of targeting an SCC25 HNSCC xenograft in vivo using a benzylisothiocyanate derivative of closo-dodecaborate (DABI) as radioiodine linker and the chimeric anti-CD44v6 antibody U36. 125I was used in biodistribution studies. RESULTS: The use of DABI enabled tumor targeting and decreased the radioactivity uptake of the thyroid. CONCLUSION: Tumor localization of DABI-labeled U36 was similar to its para-iodobenzoate-labeled counterpart, presumably due to the strong dependence of targeting efficiency on tumor size.

  • 29. Ekblad, Torun
    et al.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Feldwisch, Joachim
    Wennborg, Anders
    Karlström, Amelie Eriksson
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Positioning of Tc-99m-chelators influences radiolabeling, stability and biodistribution of Affibody molecules2009In: Bioorganic & Medicinal Chemistry Letters, ISSN 0960-894X, E-ISSN 1090-2120, Vol. 19, no 14, p. 3912-3914Article in journal (Refereed)
    Abstract [en]

    Affibody molecules represent a novel class of affinity proteins with a high potential as tracers for radio-nuclide molecular imaging. In this comparative structure-property study, a series of Affibody molecules with the Tc-99m-chelators maGGG, maSSS, or maESE attached to the e-amine of the internally positioned K49 was prepared by peptide synthesis, for comparison to molecules with similar chelators positioned at the N-terminus. The conjugates were labeled with Tc-99m and evaluated in vitro and in vivo. It was found that both composition and position of the chelating moiety influence the label stability, biodistribution and targeting properties of HER2-binding Affibody molecules. (C) 2009 Elsevier Ltd. All rights reserved.

  • 30. Ekblad, Torun
    et al.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lendel, Christofer
    Abrahmsén, Lars
    Karlström, Amelie Eriksson
    Synthesis and chemoselective intramolecular cross-linking of a HER2-binding Affibody2009In: Biopolymers, ISSN 0006-3525, E-ISSN 1097-0282, Vol. 92, no 2, p. 116-123Article in journal (Refereed)
    Abstract [en]

    The human epidermal growth factor receptor HER2 has emerged as an important target for molecular imaging of breast cancer. This article presents the design and synthesis of a HER2-targeting affibody molecule with improved stability and tumor targeting capacity, and with potential use as an imaging agent. The 58 aa three-helix bundle protein was assembled using solid-phase peptide synthesis, and a chemoselective ligation strategy was used to establish an intramolecular thioether bond between the side chain thiol group of a cysteine residue, positioned in the loop between helices I and II, and a chloroacetyl group on the side chain amino group of the C-terminal lysine residue. The tethered protein offered an increased thermal stability, with a melting temperature of 64 degrees C, compared to 54 degrees C for the linear control. The ligation did not have a major influence on the HER2 binding affinity, which was 320 and 380 pM for the crosslinked and linear molecules, respectively. Biodistribution studies were performed both in normal and tumor-bearing mice to evaluate the impact of the crosslinking on the in vivo behavior and on the tumor targeting performance. The distribution pattern was characterized by a low uptake in all organs except kidney, and rapid clearance from blood and normal tissue. Crosslinking of the protein resulted in a significantly increased tumor accumulation, rendering the tethered HER2-binding affibody molecule a valuable lead in the development of superior HER2 imaging agents.

  • 31.
    Ekblad, Torun
    et al.
    School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.
    Tran, Thuy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Widström, Charles
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Oncology.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Abrahmsén, Lars
    Wennborg, Anders
    Karlström, Amelie Eriksson
    School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake2008In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 35, no 12, p. 2245-2255Article in journal (Refereed)
    Abstract [en]

    Purpose  Affibody molecules are low molecular weight proteins (7 kDa), which can be selected to bind to tumour-associated target proteins with subnanomolar affinity. Because of rapid tumour localisation and clearance from nonspecific compartments, Affibody molecules are promising tracers for molecular imaging. Earlier, 99mTc-labelled Affibody molecules demonstrated specific targeting of tumour xenografts. However, the biodistribution was suboptimal either because of hepatobiliary excretion or high renal uptake of the radioactivity. The goal of this study was to optimise the biodistribution of Affibody molecules by chelator engineering.

    Materials and methods  Anti-HER2 ZHER2:342 Affibody molecules, carrying the mercaptoacetyl-glutamyl-seryl-glutamyl (maESE), mercaptoacetyl-glutamyl-glutamyl-seryl (maEES) and mercaptoacetyl-seryl-glutamyl-glutamyl (maSEE) chelators, were prepared by peptide synthesis and labelled with 99mTc. The tumour-targeting capacity of these conjugates was compared with each other and with the best previously available conjugate, 99mTc-maEEE-ZHER2:342, in nude mice bearing SKOV-3 xenografts. The tumour-targeting capacity of the most promising conjugate, 99mTc-maESE-ZHER2:342, was compared with radioiodinated ZHER2:342. Results  All novel conjugates demonstrated successful tumour targeting and a low degree of hepatobiliary excretion. The renal uptakes of serine-containing conjugates, 33 ± 5, 68 ± 21 and 71 ± 10%IA/g, for99mTc-maESE-ZHER2:342, 99mTc-maEES-ZHER2:342 and 99mTc-maSEE-ZHER2:342, respectively, were significantly reduced in comparison with 99mTc-maEEE-ZHER2:342 (102 ± 13%IA/g). For 99mTc-maESE-ZHER2:342, a tumour uptake of 9.6 ± 1.8%IA/g and a tumour-to-blood ratio of 58 ± 6 were reached at 4 h p.i. Conclusions  A combination of serine and glutamic acid residues in the chelator sequence confers increased renal excretion and relatively low renal uptake of 99mTc-labelled Affibody molecules. In combination with preserved targeting capacity, this improved imaging of targets in abdominal area.

  • 32. Engfeldt, Torun
    et al.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tran, Thuy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Bruskin, Alexander
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Widström, Charles
    Department of Hospital Physics, Uppsala University Hospital.
    Karlström, Amelie Eriksson
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence2007In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 34, no 5, p. 722-733Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Expression of human epidermal growth factor receptor type 2 (HER2) in malignant tumours possesses well-documented prognostic and predictive value. Non-invasive imaging of expression can provide valuable diagnostic information, thereby influencing patient management. Previously, we reported a phage display selection of a small (about 7 kDa) protein, the Affibody molecule Z(HER2:342), which binds HER2 with subnanomolar affinity, and demonstrated the feasibility of targeting of HER2-expressing xenografts using radioiodinated Z(HER2:342). The goal of this study was to develop a method for (99m)Tc labelling of Z(HER2:342) using the MAG3 chelator, which was incorporated into Z(HER2:342) using peptide synthesis, and evaluate the targeting properties of the labelled conjugate. METHODS: MAG3-Z(HER2:342) was assembled using Fmoc/tBu solid phase peptide synthesis. Biochemical characterisation of the agent was performed using RP-HPLC, ESI-MS, biosensor studies and circular dichroism. A procedure for (99m)Tc labelling in the presence of sodium/potassium tartrate was established. Tumour targeting was evaluated by biodistribution study and gamma camera imaging in xenograft-bearing mice. Biodistribution of (99m)Tc-MAG3-Z(HER2:342) and (125)I-para-iodobenzoate -Z(HER2:342) was compared 6 h p.i. RESULTS: Synthetic MAG3-Z(HER2:342) possessed an affinity of 0.2 nM for HER2 receptors. The peptide was labelled with (99m)Tc with an efficiency of about 75-80%. Labelled (99m)Tc-MAG3-Z(HER2:342) retained capacity to bind specifically HER2-expressing SKOV-3 cells in vitro. (99m)Tc-MAG3-Z(HER2:342) showed specific tumour targeting with a contrast similar to a radioiodinated analogue in mice bearing LS174T xenografts. Gamma camera imaging demonstrated clear and specific visualisation of HER2 expression. CONCLUSION: Incorporation of a mercaptoacetyl-containing chelating sequence during chemical synthesis enabled site-specific (99m)Tc labelling of the Z(HER2:342) Affibody molecule with preserved targeting capacity.

  • 33. Engfeldt, Torun
    et al.
    Tran, Thuy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Widström, Charles
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Section of Medical Physics.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Abrahmsen, Lars
    Wennborg, Anders
    Karlström, Amelie Eriksson
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule2007In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 34, no 11, p. 1843-1853Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Monitoring HER2 expression is crucial for selection of breast cancer patients amenable to HER2-targeting therapy. The Affibody molecule Z(HER2:342) binds to HER2 with picomolar affinity and enables specific imaging of HER2 expression. Previously, Z(HER2:342) with the additional N-terminal mercaptoacetyl-glycyl-glycyl-glycyl (maGGG) sequence was labelled with (99m)Tc and demonstrated specific targeting of HER2-expressing xenografts. However, hepatobiliary excretion caused high radioactivity accumulation in the abdomen. We investigated whether the biodistribution of Z(HER2:342) can be improved by substituting glycyl residues in the chelating sequence with more hydrophilic seryl residues. METHODS: The Affibody molecule Z(HER2:342), carrying the chelators mercaptoacetyl-glycyl-seryl-glycyl (maGSG), mercaptoacetyl-glycyl-D: -seryl-glycyl [maG(D-S)G] and mercaptoacetyl-seryl-seryl-seryl (maSSS), were prepared by peptide synthesis and labelled with (99m)Tc. The differences in the excretion pathways were evaluated in normal mice. The tumour targeting capacity of (99m)Tc-maSSS-Z(HER2:342) was studied in nude mice bearing SKOV-3 xenografts and compared with the capacity of radioiodinated Z(HER2:342). RESULTS: A shift towards renal excretion was obtained when glycine was substituted with serine in the chelating sequence. The radioactivity in the gastrointestinal tract was reduced threefold for the maSSS conjugate in comparison with the maGGG conjugate 4 h post injection (p.i.). The tumour uptake of (99m)Tc-maSSS-Z(HER2:342) was 11.5 +/- 0.5% IA/g 4 h p.i., and the tumour-to-blood ratio was 76. The pharmacokinetics and uptake characteristics of technetium-labelled Z(HER2:342) were better than those of radioiodinated Z(HER2:342). CONCLUSION: The introduction of serine residues in the chelator results in better tumour imaging properties of the Affibody molecule Z(HER2:342) compared with glycyl-containing chelators and is favourable for imaging of tumours and metastases in the abdominal area.

  • 34.
    Fortin, Marc-André
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Malmström, Per-Uno
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma2007In: International Journal of Molecular Medicine, ISSN 1107-3756, E-ISSN 1791-244X, Vol. 19, no 2, p. 285-291Article in journal (Refereed)
    Abstract [en]

    The direct instillation of radiolabelled conjugates in the urinary bladder is a promising path for the treatment of bladder carcinoma. The targeting of HER2/neu receptors expressed on the surface of many bladder carcinoma cells shows potential to be developed as a therapeutic strategy, and patients identified with a high risk of progression may benefit from adjuvant targeted radionuclide therapy. A phage-display selected Affibody molecule (Z(HER2:342)) which binds to HER2/neu with picomolar affinity, can be used for targeting HER2/neu-expressing bladder carcinomas. A DOTA-derivative of Z(HER2:342), designated as DOTA-Z(HER2:342)-3, is considered as a suitable targeting agent for therapy. The DOTA chelator provides stable labelling with radiometals, and the low molecular weight (7.2 kDa) of the DOTA-Z(HER2:342)-3 compound is expected to enable efficient tumor penetration. DOTA-Z(HER2:342)-3 was radiolabelled with 90Y and 177Lu in 1 M ammonium acetate buffer, at pH 5.5, and in the presence of ascorbic acid. Nearly quantitative labelling yields were achieved for both nuclides after 15 min of incubation at 60 degrees C. After chelation, the conjugates retained their capacity to specifically bind to HER2/neu-expressing SKOV-3 cells. The radiolabelled affibody conjugate (DOTA-Z(HER2:342)-3) demonstrated high antigen-binding capacity and good cellular retention. Biodistribution in normal mice demonstrated low uptake in all organs and tissues except for kidneys.

  • 35. Friedman, Mikaela
    et al.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Johansson, Eva
    Eriksson, Tove L. J.
    Höidén-Guthenberg, Ingmarie
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Nilsson, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule2008In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 376, no 5, p. 1388-1402Article in journal (Refereed)
    Abstract [en]

    The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (K(d)=5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, K(d), was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (K(d)=2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection.

  • 36.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Anderson, K.
    KTH Royal Inst Technol, Dept Prot Technol, Stockholm, Sweden..
    Dam, J. H.
    Odense Univ Hosp, Dept Nucl Med, DK-5000 Odense, Denmark..
    Olsen, B. B.
    Odense Univ Hosp, Dept Nucl Med, DK-5000 Odense, Denmark..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Stahl, S.
    KTH Royal Inst Technol, Dept Prot Technol, Stockholm, Sweden..
    Thisgaard, H.
    Odense Univ Hosp, Dept Nucl Med, DK-5000 Odense, Denmark..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    The use of radiocobalt as a label improves PET imaging of EGFR using DOTA-conjugated affibody molecules2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S244-S244Article in journal (Other academic)
  • 37.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Andersson, Ken G.
    KTH Royal Inst Technol, Dept Prot Technol.
    Dam, Johan H.
    Odense Univ Hosp, Dept Nucl Med.
    Olsen, Birgitte B.
    Odense Univ Hosp, Dept Nucl Med..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Technol.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Technol.
    Thisgaard, Helge
    Odense Univ Hosp, Dept Nucl Med.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 5961Article in journal (Refereed)
    Abstract [en]

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The In-111-labelled DOTA-conjugated Z(EGFR:2377) Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z(EGFR:2377). DOTA-Z(EGFR:2377) was labelled with Co-57 (T-1/2 = 271.8 d), Co-55 (T-1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide Ga-68 (T-1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope Co-57 was used in animal studies. Both Co-57-DOTA-Z(EGFR:2377) and Ga-68-DOTA-Z(EGFR:2377) demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z(EGFR:2377) were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, Co-57-DOTA-Z(EGFR:2377) demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for (68)GaDOTA-Z(EGFR:2377). The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-Z(EGFR:2377) and further development should concentrate on this radionuclide as a label.

  • 38.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Andersson, Ken G
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Pichl, Marie-Louise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ståhl, Stefan
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Löfblom, John
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR: 2377 affibody molecules.2016In: International journal of oncology, ISSN 1791-2423, Vol. 48, no 4, p. 1325-1332Article in journal (Refereed)
    Abstract [en]

    Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor, which is overexpressed in many types of cancer. The use of EGFR-targeting monoclonal antibodies and tyrosine-kinase inhibitors improves significantly survival of patients with colorectal, non-small cell lung cancer and head and neck squamous cell carcinoma. Detection of EGFR overexpression provides important prognostic and predictive information influencing management of the patients. The use of radionuclide molecular imaging would enable non-invasive repeatable determination of EGFR expression in disseminated cancer. Moreover, positron emission tomography (PET) would provide superior sensitivity and quantitation accuracy in EGFR expression imaging. Affibody molecules are a new type of imaging probes, providing high contrast in molecular imaging. In the present study, an EGFR-binding affibody molecule (ZEGFR:2377) was site-specifically conjugated with a deferoxamine (DFO) chelator and labelled under mild conditions (room temperature and neutral pH) with a positron-emitting radionuclide 89Zr. The 89Zr-DFO-ZEGFR:2377 tracer demonstrated specific high affinity (160±60 pM) binding to EGFR-expressing A431 epidermoid carcinoma cell line. In mice bearing A431 xenografts, 89Zr-DFO-ZEGFR:2377 demonstrated specific uptake in tumours and EGFR-expressing tissues. The tracer provided tumour uptake of 2.6±0.5% ID/g and tumour-to-blood ratio of 3.7±0.6 at 24 h after injection. 89Zr-DFO-ZEGFR:2377 provides higher tumour-to-organ ratios than anti-EGFR antibody 89Zr-DFO-cetuximab at 48 h after injection. EGFR‑expressing tumours were clearly visualized by microPET using 89Zr-DFO-ZEGFR:2377 at both 3 and 24 h after injection. In conclusion, 89Zr-DFO-ZEGFR:2377 is a potential probe for PET imaging of EGFR-expression in vivo.

  • 39.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, K.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala Univ, Uppsala, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Evaluation of Affibody Molecules for Radionuclide Imaging of Carbonic Abhydrase IX Expression In Vivo2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S428-S428Article in journal (Refereed)
  • 40.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Ridgeview Instruments AB, SE-74020 Vange, Sweden.
    Löfblom, John
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, SE-17163 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Comparative evaluation of Affibody molecules for radionuclide imaging of in vivo expression of carbonic anhydrase IX2016In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 13, no 11, p. 3676-3687Article in journal (Refereed)
    Abstract [en]

    Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification of CAIX-targeted therapies and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a non-immunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing 99mTc and non-residualizing 125I labels. All radiolabeled variants demonstrated high-affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. 125I-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with 99mTc-labed counterparts. Although all variants cleared rapidly from blood and non-specific compartments, there was noticeably difference in their biodistribution. The best variant for imaging of expression of CAIX- in disseminated cancer was 99mTc-(HE)3-ZCAIX:2 providing tumor uptake of 16.3±0.9 %ID/g and tumor-to-blood ratio of 44±7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was 125I-ZCAIX:4 providing tumor-kidney ratio of 2.1±0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.

  • 41.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, S.
    KTH Royal Inst Technol, Dept Prot Technol, Stockholm, Sweden..
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velletta, J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Hober, S.
    KTH Royal Inst Technol, Dept Prot Technol, Stockholm, Sweden..
    Influence of the N-terminal amino acid sequence on imaging properties of In-111-labeled anti-HER2 scaffold protein ADAPT62016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S55-S55Article in journal (Refereed)
  • 42.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindbo, S.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Astrand, M.
    Nilvebrant, J.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Hober, S.
    Development of ADAPT6 as a new scaffold protein for radionuclide molecular imaging2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S309-S309, article id OP676Article in journal (Other academic)
  • 43.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velletta, Justin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Bogdan, Mitran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    Influence of the N-Terminal Composition on Targeting Properties of Radiometal-Labeled Anti-HER2 Scaffold Protein ADAPT62016In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 27, no 11, p. 2678-2688Article in journal (Refereed)
    Abstract [en]

    Radionuclide-imaging-based stratification of patients to targeted therapies makes cancer treatment more personalized and therefore more efficient. Albumin-binding domain derived affinity proteins (ADAPTs) constitute a novel group of imaging probes based on the scaffold of an albumin-binding domain (ABD). To evaluate how different compositions of the N-terminal sequence of ADAPTs influence their biodistribution, a series of human epidermal growth factor receptor type 2 (HER2)-binding ADAPT6 derivatives with different N-terminal sequences were created: GCH6DANS (2), GC(HE)3DANS (3), GCDEAVDANS (4), and GCVDANS(5). These were compared with the parental variant: GCSS(HE)3DEAVDANS (1). All variants were site-specifically conjugated with a maleimido-derivative of a DOTA chelator and labeled with (111)In. Binding to HER2-expressing cells in vitro, in vivo biodistribution as well as targeting properties of the new variants were compared with properties of the (111)In-labeled parental ADAPT variant 1 ((111)In-DOTA-1). The composition of the N-terminal sequence had an apparent influence on biodistribution of ADAPT6 in mice. The use of a hexahistidine tag in (111)In-DOTA-2 was associated with elevated hepatic uptake compared to the (HE)3-containing counterpart, (111)In-DOTA-3. All new variants without a hexahistidine tag demonstrated lower uptake in blood, lung, spleen, and muscle compared to uptake in the parental variant. The best new variants, (111)In-DOTA-3 and (111)In-DOTA-5, provided tumor uptakes of 14.6 ± 2.4 and 12.5 ± 1.3% ID/g at 4 h after injection, respectively. The tumor uptake of (111)In-DOTA-3 was significantly higher than the uptake of the parental (111)In-DOTA-1 (9.1 ± 2.0% ID/g). The tumor-to-blood ratios of 395 ± 75 and 419 ± 91 at 4 h after injection were obtained for (111)In-DOTA-5 and (111)In-DOTA-3, respectively. In conclusion, the N-terminal sequence composition affects the biodistribution and targeting properties of ADAPT-based imaging probes, and its optimization may improve imaging contrast.

  • 44.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 14780Article in journal (Refereed)
    Abstract [en]

    ABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins. In this study we performed a comparative evaluation of the anti-HER2 ADAPT having an aspartate-glutamate-alanine-valine-aspartate-alanine-asparagine-serine (DEAVDANS) N-terminal sequence and labeled at C-terminus with (99)mTc using a cysteine-containing peptide based chelator, glycine-serine-serine-cysteine (GSSC), and a similar variant labeled with In-111 using a maleimido derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Both (99)mTc-DEAVDANS-ADAPT6-GSSC and In-111-DEAVDANS-ADAPT6-GSSC-DOTA accumulated specifically in HER2-expressing SKOV3 xenografts. The tumor uptake of both variants did not differ significantly and average values were in the range of 19-21% ID/g. However, there was an appreciable variation in uptake of conjugates in normal tissues that resulted in a notable difference in the tumor-to-organ ratios. The In-111-DOTA label provided 2-6 fold higher tumor-to-organ ratios than (99)mTc-GSSC and is therefore the preferable label for ADAPTs.

  • 45.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    Nilvebrant, Johan
    Åstrand, Mikael
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers2015In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 75, no 20, p. 4364-4371Article in journal (Refereed)
    Abstract [en]

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity ProTeins (ADAPT), have been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high affinity binders to various proteins. Further, ABD was engineered to rapidly purify ADAPT6, eradicate its binding to albumin and enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, 111In for SPECT imaging and 68Ga for PET imaging. Pharmacological studies in mice demonstrated that the fully engineered molecule 111In/68Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET by one hour post-infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for non-invasive in vivo imaging.

  • 46.
    Ghirmai, Senait
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Mume, Eskender
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Henssen, Cecile
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Ghaneolhusseini, Hadi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöberg, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Synthesis and Radioiodination of Some 9-Aminoacridine Derivatives2004In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 17, p. 3719-3725Article in journal (Refereed)
  • 47.
    Göstring, Lovisa
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Chew, Ming Tsuey
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Höidén-Guthenberg, Ingmarie
    Wennborg, Anders
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Quantification of internalization of EGFR-binding Affibody molecules: Methodological aspects2010In: International Journal of Oncology, ISSN 1019-6439, Vol. 36, no 4, p. 757-763Article in journal (Refereed)
    Abstract [en]

    Tumor cell internalization of targeting agents is of interest, since internalization influences the local retention time of a radionuclide and thereby imaging quality in PET and SPECT and effects of radionuclide therapy. In cases where nuclear methods are not applicable at the cellular level, quantitative fluorescent techniques are useful as described in this article. Two fluorescence-based methods to study cellular internalization were applied: the CypHer and the Alexa488-quenching methods, both utilized in fluorescence microscopy and flow cytometry. Two EGFR-binding Affibody molecules were analyzed in A431 cells: the monomer Z1907 and the dimer (Z1907)2. EGF, cetuximab and non-specific Affibody molecules were used as controls. For comparison, internalization of 111In-labeled Z1907 was studied with the acid wash internalization assay. The Cypher method is straightforward, but requires equal labeling of all compounds for accurate quantification. The Alexa488-quenching method is preferable since it is independent of the dye-to-protein ratio. According to this method, about 45% of EGF and 19-24% of the bound Affibody molecules and cetuximab were internalized within one hour. Similar results were seen with 111In-Z1907 in the acid wash method, while (Z1907)2 was not removed by acid and thus could not be studied this way. The fluorescence-based Alexa488-quenching method is well suited to quantitatively analyze internalization of targeting agents, also those that resist acid wash. The internalized fraction showed that both the monomeric and dimeric Affibody molecules are expected to give good uptake and thereby good retention of metallic radionuclides which will render good tumor to background values.

  • 48. Hofström, Camilla
    et al.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Malmberg, Jennie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hosseinimehr, Seyed Jalal
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Gräslund, Torbjörn
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    HAHAHA, HEHEHE, HIHIHI, or HKHKHK: Influence of Position and Composition of Histidine Containing Tags on Biodistribution of [99mTc(CO)3]+-Labeled Affibody Molecules2013In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 56, no 12, p. 4966-4974Article in journal (Refereed)
    Abstract [en]

    Engineered affibody molecules can be used for high contrast in vivo molecular imaging. Extending a recombinantly produced HER2 binding affibody molecule with a hexa-histidine tag allows for convenient purification by immobilized metal-ion affinity chromatography and labeling with [99mTc(CO)3]+ but increases radioactivity uptake in the liver. To investigate the impact of charge, lipophilicity, and position on biodistribution, 10 variants of a histidine-based tag was attached to a HER2 binding affibody molecule. The biochemical properties and the HER2 binding affinity appeared to be similar for all variants. In vivo, positive charge promoted liver uptake. For N-terminally placed tags, lipophilicity promoted liver uptake and decreased kidney uptake. Kidney uptake was higher for C-terminally placed tags compared to their N-terminal counterparts. The variant with the amino acid composition HEHEHE placed in the N-terminus gave the lowest nonspecific uptake.

  • 49. Hofström, Camilla
    et al.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wångsell, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Gräslund, Torbjörn
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Use of a HEHEHE Purification Tag Instead of a Hexahistidine Tag Improves Biodistribution of Affibody Molecules Site-Specifically Labeled with Tc-99m, In-111 and I-1252011In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 54, no 11, p. 3817-3826Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are a class of small (similar to 7 kDa) robust scaffold proteins suitable for radionuclide molecular imaging in vivo. The attachment of a hexahistidine (His(6))-tag to the Affibody molecule allows facile purification by immobilized metal ion affinity chromatography (IMAC) but leads to high accumulation of radioactivity in the liver. Earlier, we have demonstrated that replacement of the His(6)- tag with the negatively charged histidine-glutamate-histidine-glutamate-histidine-glutamate (HEHEHE)-tag permits purification of Affibody molecules by IMAC, enables labeling with [Tc-99m(CO)(3)](+), and provides low hepatic accumulation of radioactivity. In this study, we compared the biodistribution of cysteine-containing Affibody molecules site-specifically labeled with In-111, Tc-99m, and I-125 at the C-terminus, having a His(6)-tag at the N- or C-terminus or a HEHEHE-tag at the N-terminus. We show that the use of a HEHEHE-tag provides appreciable reduction of hepatic radioactivity, especially for radiometal labels. We hope that this information can also be useful for development of other scaffold protein-based imaging agents.

  • 50.
    Honarvar, Hadis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Calce, Enrica
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Doti, Nunzianna
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Langella, Emma
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    D'Amato, Valentina
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Bianco, Roberto
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Saviano, Michele
    CNR, Inst Crystallog, Bari, Italy..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    De Luca, Stefania
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 2998Article in journal (Refereed)
    Abstract [en]

    HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. In-111-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.

12345 1 - 50 of 202
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf