uu.seUppsala University Publications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Almqvist, Ylva
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Jensen, Holger J.
    Danmark.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    In vitro characterization of 211 At-labeled antibody A33: a potential therapeutic agent against metastatic colorectal carcinoma2005In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 20, no 5, p. 514-523Article in journal (Refereed)
    Abstract [en]

    The humanized antibody A33 binds to the A33 antigen, expressed in 95% of primary and metastatic colorectal carcinomas. The restricted pattern of expression in normal tissue makes this antigen a possible target for radioimmunotherapy of colorectal micrometastases. In this study, the A33 antibody was labeled with the therapeutic nuclide 211At using N-succinimidyl para-(tri-methylstannyl)benzoate (SPMB). The in vitro characteristics of the 211At-benzoate-A33 conjugate (211At-A33) were investigated and found to be similar to those of 125I-benzoate-A33 (125I-A33) in different assays. Both conjugates bound with high affinity to SW1222 cells (Kd = 1.7 ± 0.2 nM, and 1.8 ± 0.1 nM for 211At-A33 and 125I-A33, respectively), and both showed good intracellular retention (70% of the radioactivity was still cell associated after 20 hours). The cytotoxic effect of 211At-A33 was also confirmed. After incubation with 211At-A33, SW1222 cells had a survival of approximately 0.3% when exposed to some 150 decays per cell (DPC). The cytotoxic effect was found to be dose-dependent, as cells exposed to only 56 DPC had a survival of approximately 5%. The 211At-A33 conjugate shows promise as a potential radioimmunotherapy agent for treatment of micrometastases originating from colorectal carcinoma.

  • 2.
    Carlsson, Jörgen
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Blomquist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Oncology.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Liljegren, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Malmström, Per-Uno
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
    Westlin, Jan-Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Oncology.
    Zhao, Qinghai
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Conjugate chemistry and cellular processing of EGF-dextran1999In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 38, no 3, p. 313-321Article in journal (Refereed)
    Abstract [en]

    Conjugates with specific binding to the epidermal growth factor receptor, EGFR, of interest for radionuclide based imaging and therapy were prepared using mouse epidermal growth factor, mEGF, and dextran. In one type of conjugate, mEGF was coupled to dextran by reductive amination in which the free amino group on the mEGF N-terminal reacted with the aldehyde group on the reductive end of dextran. The end-end coupled conjugate could be further activated by the cyanopyridinium agent CDAP, thereby introducing tyrosines to the dextran part. In the other type of conjugate, the cyanylating procedure using CDAP was applied, first to activate dextran and then allowing for the amino terminus of mEGF to randomly attach to the dextran. In the latter case, radionuclide-labelled tyrosines or glycines could be added in the same conjugation step. All types of mEGF-dextran conjugates had EGFR-specific binding since the binding could be displaced by an excess of non-radioactive mEGF. The conjugates were to a large extent internalized in the test cells and the associated radioactivity was retained intracellularly for different times depending on both the type of cells and conjugate applied. Different intracellular 'traffic routes' for the radionuclides are discussed as well as applications for both imaging and therapy.

  • 3.
    Nilsson, Per
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöstrom, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Zhao, Qinghai
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Penetration and Binding of EGF-Dextran Conjugates in Cultured-Cell Spheroids1997In: European Journal of Cell Biology, ISSN 0171-9335, E-ISSN 1618-1298, Vol. 74, no suppl. 47, p. 118-118Article, book review (Other academic)
  • 4.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Bruskin, Alexander
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Cellular processing of (125)I- and (111)in-labeled epidermal growth factor(EGF) bound to cultured A431 tumor cells2000In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 27, no 8, p. 827-35Article in journal (Refereed)
    Abstract [en]

    Low molecular weight of epidermal growth factor (EGF) enables better intratumoral penetration in comparison with larger targeting proteins, but the cellular retention of EGF-associated radioactivity is poor for directly iodinated EGF. An attempt was made to improve intracellular retention by the use of metal-diethylenetriaminepentaacetic acid or nonphenolic linker (N-succinimidyl-para-iodobenzoate) as labeling agents. The use of nonphenolic linker did not improve retention of the radioactivity in A431 carcinoma cell line. The use of the radiometal label provided an appreciable prolongation of radioactivity residence inside the cell.

  • 5.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Bruskin, Alexander
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmavhev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Cellular processing of 125I- and 111in-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells2000In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 27, no 8, p. 827-835Article, book review (Other academic)
    Abstract [en]

    Low molecular weight of epidermal growth factor (EGF) enables better intratumoral penetration in comparison with larger targeting proteins, but the cellular retention of EGF-associated radioactivity is poor for directly iodinated EGF. An attempt was made to improve intracellular retention by the use of metal-diethylenetriaminepentaacetic acid or nonphenolic linker (N-succinimidyl-para-iodobenzoate) as labeling agents. The use of nonphenolic linker did not improve retention of the radioactivity in A431 carcinoma cell line. The use of the radiometal label provided an appreciable prolongation of radioactivity residence inside the cell.

  • 6.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Ericson, A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lebeda, Ondrej
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Cellular processing of indirectly astatinated and iodinated mAb A33 in SW1222 cultured cells2001In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 44, no suppl 1, p. S715-S717Article, book review (Other academic)
    Abstract [en]

    In principle, alpha-emitting radionuclides, such as 211At, are more efficient than beta-emitters to inactive single disseminated cancer cells. However, cellular processing of astatinated proteins has not yet been studied in detail. In this study an anti-colorectal cancer monoclonal antibody (mAb) A33 was indirectly labeled with 211At and for comparison with 125I. Binding and retention of radioactivity was studied in the colorectal cancer cell-line SW1222. A similar pattern of binding and retention of the two radiohalogens was seen. The main difference found, that the retention time of astatinated mAb in SW1222 was almost two times longer, might be of advantage in radionuclide therapy.

  • 7.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Lebeda, Ondrej
    Nuclear Physics Institute, Rez, Czech Republic.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Carlsson, Jorgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Targeting against epidermal growth factor receptors: Cellular processing of astatinated EGF after binding to cultured carcinoma cells2004In: Anticancer Research, ISSN 0250-7005, E-ISSN 1791-7530, Vol. 24, no 6, p. 4035-4042Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    The alpha-emitting nuclide 211At is of great interest for radionuclide therapy when coupled to a tumor-targeting biomolecule, e.g. epidermal growth factor (EGF) the receptors of which are overexpressed in many malignancies. However, almost no information concerning the cellular processing of astatinated targeting agents is available.

    MATERIALS AND METHODS:

    We indirectly astatinated EGF ([211At]-benzoate-EGF) and studied its cellular processing in A-431 carcinoma cells in comparison with data concerning [125I]-benzoate-EGF.

    RESULTS:

    The biological half-life of astatine (3.5 h) was longer than the half-life of the iodine label (1.5 h). The increase of the half-life was due to longer retention of the internalised astatine radioactivity. The maximum accumulation for the astatine label occurred later (4-6h) than that for the iodine label (2-4h), indicating a slower excretion of astatine that was confirmed in experiment with 211At/1251-benzoate-EGF.

    CONCLUSION:

    The long retention of astatine might be advantageous for radionuclide therapy.

  • 8.
    Sjöström, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Bue, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Nilsson, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Malmstrom, Per-Uno
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Binding of EGF-dextran conjugates to bladder cancer spheroids1998In: Eur Urol, Vol. 34, p. 245-Article, book review (Other academic)
  • 9.
    Wester, Kenneth
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Sjöström, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    de la Torre, Manuel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Malmström, Per-Uno
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    HER-2: A possible target for therapy of metastatic urinary bladder carcinoma2002In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 41, no 3, p. 282-288Article in journal (Refereed)
    Abstract [en]

    Human epidermal growth factor receptor 2, HER-2, is overexpressed in various tumours, e.g. breast- and bladder tumours. The aim of this study was to predict the potential use of HER-2 receptors as targets in systemic treatment of disseminated bladder tumours. HER-2 expression was assessed in bladder carcinoma metastases and the corresponding primary tumours, and subsequently compared with the EGFR expression. HER-2 and EGFR expression was analysed by immunohistochemistry in formalin-fixed, paraffin-embedded tissues from 21 patients with metastatic bladder carcinoma. HER-2 was overexpressed in 81% of the primary tumours and in 67% of the metastases. All HER-2-positive metastases were from HER-2-positive primary tumours. The results for EG FR were 71% of both primary and metastases-positive tumours. In 90% of the primary tumours and 86% of the metastases, at least one of the receptors was overexpressed. These results suggest that HER-2 targeted therapy can be considered as an alternative or a complement to other modalities in the treatment of metastatic urinary bladder carcinoma.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf