uu.seUppsala University Publications
Change search
Refine search result
1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dunås, Finn
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Löfblom, John
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Selection of an optimal cysteine-containing peptide-based chelator for labeling of Affibody molecules with 188-Re2013In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 40, no Suppl. 2, p. S219-S220Article in journal (Other academic)
    Abstract [en]

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1±0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172±32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.

  • 2.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dunås, Finn
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Löfblom, John
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Ståhl, Stefan
    Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re2014In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 87, p. 519-528Article in journal (Refereed)
    Abstract [en]

    Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.

  • 3.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tsourma, M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Preclin PET Platform, Uppsala, Sweden..
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Perols, A.
    KTH, Div Prot Technol, Stockholm, Sweden..
    Robillard, M.
    Tagworks Pharmaceut, Eindhoven, Netherlands..
    Rossin, R.
    Tagworks Pharmaceut, Eindhoven, Netherlands..
    ten Hoeve, W.
    Syncom BV, Groningen, Netherlands..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlstrom, A. Eriksson
    KTH, Div Prot Technol, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting: proof-of-principle2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S246-S246Article in journal (Other academic)
  • 4.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wållberg, Helena
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Strand, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Löfblom, John
    Larsson, Erik
    Strand, Sven-Erik
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Ståhl, Stefan
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors: preclinical assessment2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 11, p. 1842-1848Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of 99mTc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide–based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate 188Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)–expressing tumors.

    Methods:

    ZHER2:V2 was labeled with 188Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.

    Results:

    Binding of 188Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that 188Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.

    Conclusion:

    188Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.

  • 5.
    Borges, João Batista
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Suarez-Sipmann, Fernando
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Bohm, Stephan H
    Tusman, Gerardo
    Melo, Alexandre
    Maripuu, Enn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Park, Marcelo
    Costa, Eduardo L V
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Amato, Marcelo
    Regional Lung Perfusion estimated by Electrical Impedance Tomography in a piglet model of lung collapse2011In: Journal of applied physiology, ISSN 8750-7587, E-ISSN 1522-1601, Vol. 112, no 1, p. 225-236Article in journal (Refereed)
    Abstract [en]

    The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology which provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT) based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6 %, with a standard deviation of 2.9 %. This method outperformed the estimates of lung perfusion based on impedance-pulsatility. In conclusion, we describe a novel method based on Electrical Impedance Tomography for estimating regional lung perfusion at the bedside. In both, healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this paper has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

  • 6.
    Ebeling Barbier, Charlotte
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Nyman, Rickard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Selective internal radiation therapy in patients with progressive neuroendocrine liver metastases2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, no 8, p. 1425-1431Article in journal (Refereed)
    Abstract [en]

    PURPOSE: To evaluate the safety and efficacy of selective internal radiation therapy (SIRT) in patients with unresectable liver metastases from neuroendocrine tumours (NETLMs).

    METHODS: This retrospective study included 40 patients with progressive NETLMs (22 women, 18 men, mean age 61.6 years) who underwent SIRT with (90)Y-labelled resin microspheres. Tumour response was evaluated according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST) on CT or MR images. Medical records were reviewed.

    RESULTS: In the 40 patients, 54 evaluable SIRT procedures were performed, 33 to the right liver lobe (mean activity 1.31 GBq), 13 to the left lobe (mean activity 0.85 GBq), and 8 to both lobes (mean activity 1.61 GBq). Late follow-up imaging (mean 20 months) was performed after 44 of the treatments. Objective tumour response and disease control rates were 54 % (29 of 54 treatments) and 94 % (51 treatments), respectively, at the early follow-up examination (mean 3 months) and 34 % (15 treatments) and 57 % (25 treatments), respectively at the late follow-up examination. Mean overall survival from the first SIRT was 34,8 months and survival rates at 1, 2, 3 and 5 years were 76 %, 59 %, 52 % and 35 % respectively. Adverse effects were generally mild and easily manageable, except in one patient who died from radiation-induced liver failure. Of the 45 patients, 18 (45 %) had received peptide receptor radionuclide therapy (PRRT) prior to SIRT.

    CONCLUSION: SIRT with (90)Y-labelled resin microspheres is a safe and effective treatment for patients with progressive NETLM, and also for those who have received prior PRRT.

  • 7.
    Ebeling-Barbier, Charlotte
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Antonodimitrakis, Pantelis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Nyman, Rickard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Radioembolization with 90Y-Labelled Resin Microspheres in Patients with Liver Metastases from Neuroendocrine Tumors2015In: Neuroendocrinology, ISSN 0028-3835, E-ISSN 1423-0194, Vol. 102, no 1-2, p. 136-137Article in journal (Other academic)
  • 8.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    Nilvebrant, Johan
    Åstrand, Mikael
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers2015In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 75, no 20, p. 4364-4371Article in journal (Refereed)
    Abstract [en]

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity ProTeins (ADAPT), have been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high affinity binders to various proteins. Further, ABD was engineered to rapidly purify ADAPT6, eradicate its binding to albumin and enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, 111In for SPECT imaging and 68Ga for PET imaging. Pharmacological studies in mice demonstrated that the fully engineered molecule 111In/68Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET by one hour post-infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for non-invasive in vivo imaging.

  • 9.
    Garske, Ulrike
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Lundin, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Hellman, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Endocrine Surgery.
    Welin, Staffan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrin Oncology.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Khan, Tanweera Shaheena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrin Oncology.
    Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no 6, p. 970-988Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Peptide receptor radionuclide therapy in patients with neuroendocrine tumours has yielded promising results. This prospective study investigated the feasibility of dosimetry of the kidneys and bone marrow during therapy and its impact on efficacy and outcome.

    METHODS: Lu-DOTA-octreotate with co-infusion of a mixed amino acid solution, and cycles were repeated until the absorbed dose to the kidneys reached 23 Gy or there were other reasons for stopping therapy. The Ki-67 index was ≤2% in 47 patients (23.5%), 3-20% in 121 (60.5%) and >20% in 16 (8%).

    RESULTS: In 123 patients (61.5%) the absorbed dose to the kidneys reached 23 Gy with three to nine cycles during first-line therapy; in no patient was a dose to the bone marrow of 2 Gy reached. The best responses (according to RECIST 1.1) were a complete response (CR) in 1 patient (0.5%), a partial response (PR) in 47 (23.5%), stable disease (SD) in 135 (67.5%) and progressive disease (PD) in 7 (3.5%). Median progression-free survival was 27 months (95% CI 22-30 months) in all patients, 33 months in those in whom the absorbed dose to the kidneys reached 23 Gy and 15 months in those in whom it did not. Median overall survival (OS) was 43 months (95% CI 39-53 months) in all patients, 54 months in those in whom the absorbed dose to the kidneys reached 23 Gy and 25 months in those in whom it did not. Median OS was 60 months in patients with a best response of PR or CR, 42 months in those with SD and 16 months in those with PD. Three patients (1.5%) developed acute leukaemia, 1 patient (0.5%) chronic leukaemia (unconfirmed) and 30 patients (15%) grade 3 or 4 bone marrow toxicity. Eight patients (4%) developed grade 2 kidney toxicity and one patient (0.5%) grade 4 kidney toxicity.

    CONCLUSIONS: Lu-DOTA-octreotate is feasible. Patients in whom the absorbed dose to the kidneys reached 23 Gy had a longer OS than those in whom it did not. Patients with CR/PR had a longer OS than those with SD. Bone marrow dosimetry did not predict toxicity.

  • 10.
    Garske, Ulrike
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Minor changes in effective half-life during fractionated 177Lu-Octreotate therapy2011In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 51, no 1, p. 86-96Article in journal (Refereed)
    Abstract [en]

    Fractionated (177)Lu-DOTA-octreotate therapy has been reported to be an effective treatment option for patients with generalized neuroendocrine tumors. In our clinic, full individual dosimetry is performed during the first therapy cycle, while dosimetry at later cycles is based on the 24 h uptake measurement assuming an unchanged effective half-life. Our aim was to evaluate this assumption and the variation in the 24 h uptake during therapy. Patients. Thirty patients, 13 women and 17 men, were included in the study. Methods. During the first therapy cycle the (177)Lu-concentration was measured with SPECT/CT over the abdomen at 24 h, 96 h and 168 h after infusion. The effective half-life was determined for the kidneys, liver and spleen. The procedure was repeated at cycle 4 or 5. Results. The median ratio between the effective half-lives of the latter and the first cycle was 0.97 and 1.01 for the right and left kidney, with a range of 0.89-1.01 (1st-3rd quartile) and 0.93-1.05, respectively. Discussion. The mean value of the ratios was slightly lower than one, indicating a tendency towards increased activity elimination during therapy. In individual patients, significant changes were found for all organs, often when a large tumor burden reduction occurred during treatment. Possible contributing factors appeared to be larger amounts of non-tumor bound tracer, improved organ function (kidneys), decrease of vessel obstruction (spleen), less scatter from large tumors and reduction of small metastases (liver and spleen). Conclusion. With most patients it is safe to estimate absorbed doses to kidneys, liver and spleen from 24 h activity concentration assuming an unchanged effective half-life during therapy. Patients with risk factors for kidney dysfunction need to be monitored in more detail. Simplified dosimetry based on the assumption of unchanged effective half-life can function as guidance to the number of therapy cycles an individual patient can tolerate.

  • 11.
    Honarvar, Hadis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Westerlund, K.
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandstrom, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlstrom, A. Eriksson
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Feasibility of Affibody molecule-based PNA-mediated pretargeting2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S101-S102Article in journal (Other academic)
  • 12.
    Honarvar, Hadis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Westerlund, Kristina
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Karlström, Amelie Eriksson
    Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors2016In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 6, no 1, p. 93-103Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small (7 kDa), non-immunoglobulin scaffold proteins with a potential as targeting agents for radionuclide imaging of cancer. However, high renal re-absorption of Affibody molecules prevents their use for radionuclide therapy with residualizing radiometals. We hypothesized that the use of Affibody-based peptide nucleic acid (PNA)-mediated pretargeting would enable higher accumulation of radiometals in tumors than in kidneys. To test this hypothesis, we designed an Affibody-PNA chimera ZHER2:342-SR-HP1 containing a 15-mer HP1 PNA recognition tag and a complementary HP2 hybridization probe permitting labeling with both (125)I and (111)In. (111)In-ZHER2:342-SR-HP1 bound specifically to HER2-expressing BT474 and SKOV-3 cancer cells in vitro, with a KD of 6±2 pM for binding to SKOV-3 cells. Specific high affinity binding of the radiolabeled complementary PNA probe (111)In-/(125)I-HP2 to ZHER2:342-SR-HP1 pre-treated cells was demonstrated. (111)In-ZHER2:342-SR-HP1 demonstrated specific accumulation in SKOV-3 xenografts in BALB/C nu/nu mice and rapid clearance from blood. Pre-saturation of SKOV-3 with non-labeled anti-HER2 Affibody or the use of HER2-negative Ramos xenografts resulted in significantly lower tumor uptake of (111)In-ZHER2:342-SR-HP1. The complementary PNA probe (111)In/(125)I-HP2 accumulated in SKOV-3 xenografts when ZHER2:342-SR-HP1 was injected 4 h earlier. The tumor accumulation of (111)In/(125)I-HP2 was negligible without ZHER2:342-SR-HP1 pre-injection. The uptake of (111)In-HP2 in SKOV-3 xenografts was 19±2 %ID/g at 1 h after injection. The uptake in blood and kidneys was approximately 50- and 2-fold lower, respectively. In conclusion, we have shown that the use of Affibody-based PNA-mediated pretargeting enables specific delivery of radiometals to tumors and provides higher radiometal concentration in tumors than in kidneys.

  • 13.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Jahn, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Andersson, Camilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Comparison of Ga-68-DOTATATE and Lu-177-DOTATATE kinetics in neuroendocrine tumors2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S276-S277Article in journal (Other academic)
  • 14.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Parametric Net Influx Rate Images of 68Ga-DOTATOC and 68Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast2017In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 58, no 5, p. 744-749Article in journal (Refereed)
    Abstract [en]

    (68)Ga-DOTATOC and (68)Ga-DOTATATE are radiolabelled somatostatin analogs used for diagnosis of somatostatin receptor expressing neuroendocrine tumors (NETs) and SUV -measurements are suggested for treatment monitoring. However, changes in net-influx rate (Ki) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing Ki at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric Ki images by comparison to volume of interest based methods and to assess image contrast in terms of tumor-to-liver ratio.

    METHODS: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h post injection of (68)Ga-DOTATOC and (68)Ga-DOTATATE on consecutive days. Parametric Ki images were computed using a basis function method (BFM) implementation of the two tissue irreversible compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor Ki values were determined for 50% isocontour VOIs and compared to Ki values based on non-linear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and Ki images and tumor-to-liver ratios were calculated in order to evaluate image contrast. Correlation and agreement between VOI-based and parametric Ki values were assessed using regression and Bland-Altman analysis.

    RESULTS: Correlation (R2) between NLR-based and parametric image-based (BFM) tumor Ki values was 0.98 (slope 0.81) and 0.97 (slope 0.88) for (68)Ga-DOTATOC and (68)Ga DOTATATE, respectively. For Patlak analysis, correlation between NLR-based and parametric based (Patlak) tumor Ki were 0.95 (slope 0.71) and 0.92 (slope 0.74) for (68)Ga-DOTATOC and (68)Ga-DOTATATE, respectively. There was no bias between NLR and parametric based Ki-values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric BFM-Ki images, and 2.3 and 3.0 times in the Patlak images, than in the whole-body images for (68)Ga-DOTATOC and (68)Ga-DOTATATE, respectively.

    CONCLUSION: A high correlation and agreement between NLR- and parametric based Ki values was found, showing that parametric net influx rate images are quantitatively accurate. In addition, tumor-to-liver contrast was superior in the parametric Ki images compared to whole-body images both for (68)Ga-DOTATOC and (68)Ga DOTATATE.

  • 15.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Validation of parametric net influx rate images of Ga-68-DOTATOC and Ga-68-DOTATATE2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S232-S232Article in journal (Other academic)
  • 16.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wassberg, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Dose Response of Pancreatic Neuroendocrine Tumors Treated with Peptide Receptor Radionuclide Therapy Using 177Lu-DOTATATE2015In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 56, no 2, p. 177-182Article in journal (Refereed)
    Abstract [en]

    UNLABELLED: Peptide receptor radionuclide therapy (PRRT) is a promising treatment for patients with neuroendocrine tumors, giving rise to improved survival. Dosimetric calculations in relation to PRRT have been concentrated to normal organ dosimetry in order to limit side effects. However, the relation between the absorbed dose to the tumor and treatment response has so far not been established. Better knowledge in this respect may improve the understanding of treatment effects, allow for improved selection of those patients who are expected to benefit from PRRT, and avoid unnecessary treatments. The aim of the present work was to evaluate the dose-response relationship for pancreatic neuroendocrine tumors treated with PRRT using (177)Lu-DOTATATE.

    METHODS: Tumor-absorbed dose calculations were performed for 24 lesions in 24 patients with metastasized pancreatic neuroendocrine tumors treated with repeated cycles of (177)Lu-DOTATATE at 8-wk intervals. The absorbed dose calculations relied on sequential SPECT/CT imaging at 24, 96, and 168 h after infusion of (177)Lu-DOTATATE. The unit density sphere model from OLINDA was used for absorbed dose calculations. The absorbed doses were corrected for partial-volume effect based on phantom measurements. On the basis of these results, only tumors larger than 2.2 cm in diameter at any time during the treatment were included for analysis. To further decrease the effect of partial-volume effect, a subgroup of tumors (>4.0 cm) was analyzed separately. Tumor response was evaluated by CT using Response Evaluation Criteria In Solid Tumors.

    RESULTS: Tumor-absorbed doses until best response ranged approximately from 10 to 340 Gy. A 2-parameter sigmoid fit was fitted to the data, and a significant correlation between the absorbed dose and tumor reduction was found, with a Pearson correlation coefficient (R(2)) of 0.64 for tumors larger than 2.2 cm and 0.91 for the subgroup of tumors larger than 4.0 cm. The largest tumor reduction was 57% after a total absorbed dose of 170 Gy.

    CONCLUSION: The results imply a significant correlation between absorbed dose and tumor reduction. However, further studies are necessary to address the large variations in response for similar absorbed doses.

  • 17.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Comparison of PET/CT and PET/MR-based Ga-68-DOTATOC standardized uptake values2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S447-S447Article in journal (Refereed)
  • 18.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Low tracer availability of Ga-68-DOTATOC and Ga-68-DOTATATE in blood for patients with high SSTR density leads to non-linear correlation between SUV and K-i2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S279-S279Article in journal (Other academic)
  • 19.
    Jahn, Ulrika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PetCtr, Uppsala, Sweden.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PetCtr, Uppsala, Sweden.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    177Lu-DOTATATE Peptide Receptor Radionuclide Therapy; Gender Differences in Small Intestinal and Pancreatic Neuroendocrine Tumors2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S61-S62Article in journal (Other academic)
  • 20.
    Lindman, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Wennborg, Anders
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Non-invasive determination of HER2-expression in metastatic breast cancer by using Ga-68-ABY025 PET/CT.2015In: Journal of Clinical Oncology, ISSN 0732-183X, E-ISSN 1527-7755, Vol. 33, no 15Article in journal (Other academic)
  • 21.
    Malmberg, Jennie
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Wester, Kenneth
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Comparative biodistribution of imaging agents for in vivo molecular profiling of disseminated prostate cancer in mice bearing prostate cancer xenografts: focus on (111)In- and (125)I-labeled anti-HER2 humanized monoclonal trastuzumab and ABY-025 Affibody2011In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 38, no 8, p. 1093-1102Article in journal (Refereed)
    Abstract [en]

    Introduction: Human epidermal growth factor receptor type 2 (HER2) overexpression supports proliferation of androgen-independent prostate cancer (PC). Radionuclide molecular imaging of HER2 expression in disseminated PC would aid in the selection of patients who are likely responders to HER2 targeting therapy. In this study, we evaluated whether ABY-025 Affibody molecule, a small (similar to 7-kDa) HER2-binding scaffold protein, produces superior tumor-to-nontumor ratios compared with those obtained through the use of radiolabeled humanized anti-HER2 antibody, trastuzumab. The influence of (111)In vs. (125)I radiolabel was evaluated for both tracers.

    Methods: ABY-025 was labeled with (111)In using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelator, site-specifically coupled to the C-terminus via the maleimido derivative. Trastuzumab was labeled with (111)In using a CHX-A" diethylene triamine pentaacetic acid (DTPA) chelator. An indirect radioiodination with [(125)I]-N-succinimidyl-para-iodobenzoate was used for both targeting proteins. Biodistribution of all labeled targeting proteins was evaluated in mice bearing DU-145 PC xenografts.

    Results: The use of residualizing (111)In-label facilitated better tumor uptake and better tumor-to-nontumor ratios for both targeting agents. [(111)In]-ABY-025 provided tumor uptake of 7.1 +/- 0.8% injected dose per gram of tissue (% ID/g) and tumor-to-blood ratio of 47 +/- 13 already at 6 h postinjection. The maximum tumor-to-nontumor ratios with [(111)In]-CHX-DTPA-trastuzumab were achieved at 72 h postinjection, whereas tumor uptake was 11 +/- 4% ID/g and tumor-to-blood ratio was 18 +/- 7. The biodistribution data were confirmed with gamma-camera imaging.

    Conclusions: Radiolabeled ABY-025 Affibody molecule provides higher contrast in imaging of HER2-expressing PC xenografts than radiolabeled trastuzumab. Residualizing radiometal label for ABY-025 provides better contrast in imaging of HER2-expressing PC xenografts than nonresidualizing radiohalogen.

  • 22.
    Persson, Mikael
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Gedda, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    [(177)Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells2005In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 32, no 12, p. 1457-62Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The new antibody pertuzumab (Omnitarg) targets the dimerisation subdomain of HER-2. The purpose of this study was to analyse whether pertuzumab retains HER-2 targeting capacity after labelling with the therapeutically interesting beta emitter (177)Lu and to make initial characterizations in vitro and in vivo. METHODS: Pertuzumab was conjugated with isothiocyanate-benzyl-CHX-A''-DTPA and chelated to (177)Lu. Immunoreactivity, affinity, cellular retention and internalisation were analysed using SKOV-3 cells. The affinity of non-radioactive pertuzumab was measured using a surface plasmon resonance biosensor. In vivo targeting and specific binding were assessed in Balb/c (nu/nu) mice carrying SKOV-3 xenografts. The biodistribution of (177)Lu was determined 1, 3 and 7 days after [(177)Lu]pertuzumab administration. Gamma camera images were taken after 3 days. RESULTS: The immunoreactivity of [(177)Lu]pertuzumab was 85.8+/-1.3%. The affinity of non-radioactive pertuzumab was 1.8+/-1.1 nM, and that of [(177)Lu]pertuzumab, 4.1+/-0.7 nM. The cellular retention after 5 h pre-incubation was 90+/-2% at 20 h. The targeting was HER-2 specific both in vitro and in vivo, since excess amounts of non-labelled antibody inhibited the uptake of labelled antibody (p<0.0001 and p<0.01, respectively). The biodistribution and gamma camera images of (177)Lu showed extensive tumour uptake. Normal tissues had a surprisingly low uptake. CONCLUSION: Pertuzumab was efficiently labelled with (177)Lu and showed good intracellular retention and HER-2 specific binding both in vitro and in vivo. The gamma camera images and the biodistribution study gave excellent tumour targeting results. Thus, [(177)Lu]pertuzumab is of interest for further studies aimed at radionuclide therapy.

  • 23.
    Razifar, Pasha
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Schneider, Harald
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Maripuu, Enn
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
    Bengtsson, Ewert
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis.
    Bergström, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM.2005In: Bio Medical Central (BMC): Medical Imaging, Vol. 5, no 5Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone.Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. METHODS: Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. RESULTS: The most important finding was that the pattern of noise correlation is rotation symmetric or isotropic, independent of object shape in PET and PET/CT images reconstructed using the iterative method. This is, however, not the case in FBP images when the shape of phantom is not circular. Also CT images reconstructed using FBP show the same non-isotropic pattern independent of slice thickness and utilization of care dose function. SPECT images show an isotropic correlation of the noise independent of object shape or applied reconstruction algorithm. Noise in PET/CT images was identical independent of the applied X-ray dose in the transmission part (CT), indicating that the noise from transmission with the applied doses does not propagate into the PET images showing that the noise from the emission part is dominant. The results indicate that in human studies it is possible to utilize a low dose in transmission part while maintaining the noise behaviour and the quality of the images. CONCLUSION: The combined effect of noise correlation for asymmetric objects and a varying noise variance across the image field significantly complicates the interpretation of the images when statistical methods are used, such as with statistical estimates of precision in average values, use of statistical parametric mapping methods and principal component analysis. Hence it is recommended that iterative reconstruction methods are used for such applications. However, it is possible to calculate the noise analytically in images reconstructed by FBP, while it is not possible to do the same calculation in images reconstructed by iterative methods. Therefore for performing statistical methods of analysis which depend on knowing the noise, FBP would be preferred.

  • 24.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Dosimetry of Radionuclide Therapy with 177Lu-octreotate2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In radionuclide therapy it is still common to administer standard activities or to scale administered activity with blunt parameters such as body weight or surface area. This is not ideal because, due to considerable variation in kinetics, large safety margins have to be applied to avoid radiation damage to healthy organs, which causes under-treatment of many patients. To base the administered activity on individual dosimetry, as in other therapy modalities using ionizing radiation, will essentially solve this problem. However, dosimetry in radionuclide therapy is resource-demanding and debilitating for the patient because it involves a number of measurements to determine the kinetics of the therapy radionuclide and needs to be optimized for clinical feasibility.

    First, the ability to measure radioactivity distributions of radionuclides for therapy was investigated. SPECT measurements of 177Lu, which was later used clinically, showed good spatial resolution and a reasonable quantitative accuracy.

    A new method to calculate absorbed dose to solid risk organs and tumours was developed and applied in the clinic. Kinetic data were obtained by repeated SPECT measurements. Radiation concentration determined in small volumes of interest could then be multiplied by a constant to obtain absorbed dose because it was shown that cross-fire was negligible in organs with high activity concentration. The new dosimetry method, compared to other methods, was found to give better results with less effort. In addition, a method to calculate absorbed dose to bone marrow was developed and clinically implemented.

    In 200 patients, individual kinetics and absorbed dose were studied and variations were found to be large. Kidney was the dose-limiting organ in almost all patients (98.5%). Keeping the kidney dose < 23Gy, about half of the patients could receive 5, or up to 10 treatments instead of the stipulated 4.

    List of papers
    1. Performance of coincidence imaging with long-lived positron emitters as an alternative to dedicated PET and SPECT
    Open this publication in new window or tab >>Performance of coincidence imaging with long-lived positron emitters as an alternative to dedicated PET and SPECT
    Show others...
    2004 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 49, no 24, p. 5419-32Article in journal (Refereed) Published
    Abstract [en]

    An important application of quantitative imaging in nuclear medicine is the estimation of absorbed doses in radionuclide therapy. Depending on the radionuclide used for therapy, quantitative imaging of the kinetics of the therapeutic radiopharmaceutical could be done using planar imaging, SPECT or PET. Since many nuclear medicine departments have a gamma camera system that is also suitable for coincidence imaging, the performance of these systems with respect to quantitative imaging of PET isotopes that could be of use in radionuclide dosimetry is of interest. We investigated the performance of a gamma camera with coincidence imaging capabilities with 99mTc, 111In, 18F and 76Br and a dedicated PET system with 18F and 76Br, using a single standard set of phantom measurements. Here, 76Br was taken as a typical example of prompt gamma-emitting PET isotopes that are applicable in radionuclide therapy dosimetry such as 86Y and 124I. Image quality measurements show comparable image contrasts for 76Br coincidence imaging and 111In SPECT. Although the spatial resolution of coincidence imaging is better than single photon imaging, the contrast obtained with 76Br is not better than that with 99mTc or 111In because of the prompt gamma involved. Additional improvements are necessary to allow for quantitative coincidence imaging of long-lived, prompt gamma producing positron emitters.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-72947 (URN)10.1088/0031-9155/49/24/002 (DOI)15724533 (PubMedID)
    Available from: 2005-09-26 Created: 2005-09-26 Last updated: 2017-12-14Bibliographically approved
    2. Individualized dosimetry in patients undergoing therapy with Lu-177-DOTA-D-Phe(1)-Tyr(3)-octreotate
    Open this publication in new window or tab >>Individualized dosimetry in patients undergoing therapy with Lu-177-DOTA-D-Phe(1)-Tyr(3)-octreotate
    Show others...
    2010 (English)In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 37, no 2, p. 212-225Article in journal (Refereed) Published
    Abstract [en]

    In recent years, targeted radionuclide therapy with [Lu-177-DOTA(0), Tyr(3)]octreotate for neuroendocrine tumours has yielded promising results. This therapy may be further improved by using individualized dosimetry allowing optimization of the absorbed dose to the tumours and the normal organs. The aim of this study was to investigate the feasibility and reliability of individualized dosimetry based on SPECT in comparison to conventional planar imaging. Attenuation-corrected SPECT data were analysed both by using organ-based volumes of interest (VOIs) to obtain the total radioactivity in the organ, and by using small VOIs to measure the tissue radioactivity concentration. During the first treatment session in 24 patients, imaging was performed 1, 24, 96 and 168 h after [Lu-177-DOTA(0), Tyr(3)]octreotate infusion. Absorbed doses in non tumour-affected kidney, liver and spleen were calculated and compared for all three methods (planar imaging, SPECT organ VOIs, SPECT small VOIs). Planar and SPECT dosimetry were comparable in areas free of tumours, but due to overlap the planar dosimetry highly overestimated the absorbed dose in organs with tumours. Furthermore, SPECT dosimetry based on small VOIs proved to be more reliable than whole-organ dosimetry. We conclude that SPECT dosimetry based on small VOIs is feasible and more accurate than conventional planar dosimetry, and thus may contribute towards optimising targeted radionuclide therapy.

    Keywords
    Neuroendocrine tumours, Individualized dosimetry, Targeted radionuclide therapy, [Lu-177-DOTA(0), Tyr(3)]Octreotate
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-138035 (URN)10.1007/s00259-009-1216-8 (DOI)000274293900003 ()19727718 (PubMedID)
    Available from: 2010-12-16 Created: 2010-12-16 Last updated: 2017-12-11Bibliographically approved
    3. Minor changes in effective half-life during fractionated 177Lu-Octreotate therapy
    Open this publication in new window or tab >>Minor changes in effective half-life during fractionated 177Lu-Octreotate therapy
    Show others...
    2011 (English)In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 51, no 1, p. 86-96Article in journal (Refereed) Published
    Abstract [en]

    Fractionated (177)Lu-DOTA-octreotate therapy has been reported to be an effective treatment option for patients with generalized neuroendocrine tumors. In our clinic, full individual dosimetry is performed during the first therapy cycle, while dosimetry at later cycles is based on the 24 h uptake measurement assuming an unchanged effective half-life. Our aim was to evaluate this assumption and the variation in the 24 h uptake during therapy. Patients. Thirty patients, 13 women and 17 men, were included in the study. Methods. During the first therapy cycle the (177)Lu-concentration was measured with SPECT/CT over the abdomen at 24 h, 96 h and 168 h after infusion. The effective half-life was determined for the kidneys, liver and spleen. The procedure was repeated at cycle 4 or 5. Results. The median ratio between the effective half-lives of the latter and the first cycle was 0.97 and 1.01 for the right and left kidney, with a range of 0.89-1.01 (1st-3rd quartile) and 0.93-1.05, respectively. Discussion. The mean value of the ratios was slightly lower than one, indicating a tendency towards increased activity elimination during therapy. In individual patients, significant changes were found for all organs, often when a large tumor burden reduction occurred during treatment. Possible contributing factors appeared to be larger amounts of non-tumor bound tracer, improved organ function (kidneys), decrease of vessel obstruction (spleen), less scatter from large tumors and reduction of small metastases (liver and spleen). Conclusion. With most patients it is safe to estimate absorbed doses to kidneys, liver and spleen from 24 h activity concentration assuming an unchanged effective half-life during therapy. Patients with risk factors for kidney dysfunction need to be monitored in more detail. Simplified dosimetry based on the assumption of unchanged effective half-life can function as guidance to the number of therapy cycles an individual patient can tolerate.

    Keywords
    Absorbed dose, Neuroendocrine tumour, 177Lu-octreotate
    National Category
    Cancer and Oncology
    Research subject
    Physics; Oncology; Radiology
    Identifiers
    urn:nbn:se:uu:diva-158969 (URN)10.3109/0284186X.2011.618511 (DOI)000298002000012 ()21961497 (PubMedID)
    Available from: 2011-09-19 Created: 2011-09-19 Last updated: 2017-12-08Bibliographically approved
    4. Absorbed doses to kidney and bone marrow in 200 patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate
    Open this publication in new window or tab >>Absorbed doses to kidney and bone marrow in 200 patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Keywords
    177Lu-octreotate, Absorbed dose, Neuroendocrine tumour
    National Category
    Cancer and Oncology
    Research subject
    Physics; Oncology; Radiology
    Identifiers
    urn:nbn:se:uu:diva-158971 (URN)
    Available from: 2011-09-19 Created: 2011-09-19 Last updated: 2011-11-04
  • 25.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Khan, Tanweera Shaheena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrin Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Absorbed doses based on a single measurement point versus three measurement points in 600 patients with neuroendocrine tumours receiving 177Lu-DOTATATE therapy2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no Supplement 1, p. S31-S31Article in journal (Other academic)
  • 26.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garske, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Freedman, Nanette
    Hadassah Hebrew Univ Med Ctr, Dept Med Biophys & Nucl Med, Jerusalem, Israel;Tel Aviv Sourasky Med Ctr, Inst Nucl Med, Dept Imaging, Tel Aviv, Israel.
    Kidney dosimetry during (177)Lu-DOTATATE therapy in patients with neuroendocrine tumors: aspects on calculation and tolerance2018In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 57, no 4, p. 516-521Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Fractionated therapy with (177)Lu-DOTATATE has been reported to be an effective treatment for patients with metastasized neuroendocrine tumors. To optimize the treatment, absorbed doses to risk organs are calculated for the individual patient. For each organ, absorbed dose due to activity in the organ itself (self-dose) and that originating from other organs (cross-dose) are calculated from serial measurements to obtain the activity distribution following treatment. The main aim of the present work were to calculate the cross-dose contribution to the total absorbed kidney dose.

    METHODS: Five hundred patients with neuroendocrine tumors undergoing therapy with (177)Lu-DOTATATE were included. Scintigraphic planar whole body images and single photon emission computed tomography/computed tomography (SPECT/CT) over the abdomen were acquired at 1, 4 and 7 days after treatment. Kidney self-dose was calculated based on radioactivity distribution obtained from SPECT/CT. Cross-dose to kidneys was estimated using organ-based analysis of planar whole body images and cross-fire dose factors from Olinda/EXM 1.1.

    RESULTS: Cross-dose to kidneys in the majority of patients were less than 2% and almost all cross-doses were less than 10%. Cross-dose exceeded 10% only in rare cases of patients with high tumor burden and low absorbed doses to kidneys.

    CONCLUSIONS: The absorbed dose from (177)Lu-octreotate to solid organs due to cross-fire is generally low and can usually be neglected.

  • 27.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Eriksson, B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Biological effective doses in 300 patients undergoing therapy with Lu-177-octreotate2013In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 40, no Suppl. 2, p. S201-S201Article in journal (Other academic)
  • 28.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fractional contribution of extrapolations after 96 h in absorbed dose calculation to kidneys in 450 patients with neuroendocrine tumours receiving Lu-177-DOTATATE therapy2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S7-S8Article in journal (Other academic)
  • 29.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garske, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrin Oncology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrin Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Gender-related differences in absorbed dose to risk organs in patients receiving Lu-177-Octreotate therapy2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S158-S158Article in journal (Other academic)
  • 30.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Karlberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Johansson, Silvia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Freedman, Nanette
    Hadassah Hebrew Univ Med Ctr, Med Biophys & Nucl Med, Jerusalem, Israel.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Method dependence, observer variability and kidney volumes in radiation dosimetry of (177)Lu-DOTATATE therapy in patients with neuroendocrine tumours.2015In: EJNMMI physics, ISSN 2197-7364, Vol. 2, no 1, article id 24Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Radionuclide therapy can be individualized by performing dosimetry. To determine absorbed organ doses in (177)Lu-DOTATATE therapy, three methods based on activity concentrations are currently in use: the small volume of interest (sVOI) method, and two methods based on large VOIs either on anatomical CT (aVOI) or on thresholds on functional images (tVOI). The main aim of the present work was to validate the sVOI in comparison to the other two methods regarding agreement and time efficiency. Secondary aims were to investigate inter-observer variability for the sVOI and the change of functional organ volumes following therapy.

    METHODS: Thirty patients diagnosed with neuroendocrine tumours undergoing therapy with (177)Lu-DOTATATE were included. Each patient underwent three SPECT/CT scans at 1, 4 and 7 days after the treatment. Three independent observers calculated absorbed doses to the right and left kidney and the spleen using sVOI and one observer used aVOI. For tVOI, the absorbed doses were calculated based on automatically drawn isocontours around the organs at different thresholds (42, 50, 60 and 70 %). The inter-observer difference between the calculated absorbed doses for sVOI was calculated, and the differences between the three methods were computed. Ratios of organ volumes acquired at days 1, 4 and 7 versus the volume at day 1 were calculated for the tVOI method.

    RESULTS: The differences in results of the absorbed dose calculations using all the sVOI and tVOI were small (<5 %). Absorbed dose calculations using aVOI differed slightly more from these results but were still below 10 %. The differences between the three dose calculation methods varied between <5 and 10 %. The organ volumes derived from the tVOI were independent of time for the spleen while they decreased with time for the kidneys. The fastest analysis was performed with the sVOI method.

    CONCLUSIONS: All three dose calculation methods rendered comparable results with small inter-observer differences for sVOI. Unlike the spleen, the functional volume of the kidneys decreased over time during therapy, which suggests that the absorbed dose calculation for the kidneys on activity concentrations should be performed for each time point. The sVOI is the preferred method for calculating absorbed doses in solid organs.

  • 31.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Image quality measurements with 177Lu on a GE Discovery 670 CZT2017In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 58, no S1, article id 763Article in journal (Other academic)
  • 32.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Is there a gender difference of absorbed dose to the risk organs in patients receiving 177Lu-Octreotate therapy?2017In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 58, no S1, article id 248Article in journal (Other academic)
  • 33.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lindskog, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irma
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Wennborg, Anders
    Affibody AB, Solna, Sweden..
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden..
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule Ga-68-ABY-025 in Breast Cancer Patients2016In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 57, no 6, p. 867-871Article in journal (Refereed)
    Abstract [en]

    Ga-68-ABY-025 is a radiolabeled Affibody molecule for in vivo diagnosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer tumors with PET. The aim of the present work was to measure the biodistribution and estimate the radiation dosimetry of Ga-68-ABY-025 for 2 different peptide mass doses in a single group of patients using dynamic and serial whole-body PET/CT. Methods: Eight patients with metastatic breast cancer were included. Each patient underwent an abdominal 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 4 h after injection of a low peptide dose (LD) and a high peptide dose (HD), with approximately the same amount of radioactivity, in separate investigations 1 wk apart. As input to the absorbed dose calculations, volumes of interest were drawn on all clearly identifiable source organs: liver, kidneys, spleen, descending aorta, and upper large intestine. Absorbed doses were calculated using OLINDA/EXM, version 1.1. Results: Of the major organs, the highest radionuclide uptake at 1, 2, and 4 h after injection was observed in the kidneys and liver. The highest absorbed organ doses were seen in the kidneys, followed by the liver for both LD and HD Ga-68-ABY-025. Absorbed doses to liver and kidneys were slightly but significantly higher for LD. Total effective dose was 0.030 +/- 0.003 mSv/MBq for LD and 0.028 +/- 0.002 mSv/MBq for HD. Conclusion: The effective dose for a typical 200-MBq administration of Ga-68-ABY-025 is 6.0 mSv for LD and 5.6 mSv for HD. Therefore, from a radiation dosimetry point of view, HD is preferred for PET/CT evaluation of HER2-expressing breast cancer tumors. These effective doses are somewhat higher than earlier published values for other Ga-68-labeled tracers, such as 0.021 +/- 0.003 mSv/MBq for Ga-68-DOTATATE and Ga-68-DOTATOC, mainly because of higher uptake in liver and kidney.

  • 34.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ, Nucl Med & PET, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ, Nucl Med & PET, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ, Nucl Med & PET, Uppsala, Sweden.
    Ljungberg, M.
    Lund Univ, Dept Med Radiat Phys, Lund, Sweden.
    Image contrast of 177Lu-filled spheres as measured with a GE Discovery 670 CZT SPECT/CT system2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no Supplement 1, p. S728-S729Article in journal (Other academic)
  • 35.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Kairemo, Kalevi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology.
    Performance of coincidence imaging with long-lived positron emitters as an alternative to dedicated PET and SPECT2004In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 49, no 24, p. 5419-32Article in journal (Refereed)
    Abstract [en]

    An important application of quantitative imaging in nuclear medicine is the estimation of absorbed doses in radionuclide therapy. Depending on the radionuclide used for therapy, quantitative imaging of the kinetics of the therapeutic radiopharmaceutical could be done using planar imaging, SPECT or PET. Since many nuclear medicine departments have a gamma camera system that is also suitable for coincidence imaging, the performance of these systems with respect to quantitative imaging of PET isotopes that could be of use in radionuclide dosimetry is of interest. We investigated the performance of a gamma camera with coincidence imaging capabilities with 99mTc, 111In, 18F and 76Br and a dedicated PET system with 18F and 76Br, using a single standard set of phantom measurements. Here, 76Br was taken as a typical example of prompt gamma-emitting PET isotopes that are applicable in radionuclide therapy dosimetry such as 86Y and 124I. Image quality measurements show comparable image contrasts for 76Br coincidence imaging and 111In SPECT. Although the spatial resolution of coincidence imaging is better than single photon imaging, the contrast obtained with 76Br is not better than that with 99mTc or 111In because of the prompt gamma involved. Additional improvements are necessary to allow for quantitative coincidence imaging of long-lived, prompt gamma producing positron emitters.

  • 36.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Comparative Biodistribution and Radiation Dosimetry of Ga-68-DOTATOC and Ga-68-DOTATATE in Patients with Neuroendocrine Tumors2013In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 54, no 10, p. 1755-1759Article in journal (Refereed)
    Abstract [en]

    Ga-68-DOTATOC and Ga-68-DOTATATE are 2 radiolabeled somatostatin analogs for in vivo diagnosis of neuroendocrine tumors with PET. The aim of the present work was to measure their comparative biodistribution and radiation dosimetry. Methods: Ten patients diagnosed with neuroendocrine tumors were included. Each patient underwent a 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 3 h after injection of each tracer on consecutive days. Absorbed doses were calculated using OLINDA/EXM 1.1. Results: Data from 9 patients could be included in the analysis. Of the major organs, the highest uptake at 1, 2, and 3 h after injection was observed in the spleen, followed by kidneys and liver. For both tracers, the highest absorbed organ doses were seen in the spleen and urinary bladder wall, followed by kidney, adrenals, and liver. The absorbed doses to the liver and gallbladder wall were slightly but significantly higher for Ga-68-DOTATATE. The total effective dose was 0.021 +/- 0.003 mSv/MBq for both tracers. Conclusion: The effective dose for a typical 100-MBq administration of Ga-68-DOTATATE and Ga-68-DOTATOC is 2.1 mSv for both tracers. Therefore, from a radiation dosimetry point of view, there is no preference for either tracer for PET/CT evaluation of somatostatin receptor-expressing tumors.

  • 37.
    Sjögreen Gleisner, Katarina
    et al.
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, Lund, Sweden..
    Spezi, Emiliano
    Cardiff Univ, Sch Engn, Cardiff, S Glam, Wales..
    Solny, Pavel
    Charles Univ Prague, Motol Univ Hosp, Dept Nucl Med & Endocrinol, Fac Med 2, Prague, Czech Republic..
    Minguez Gabina, Pablo
    Gurutzeta Cruces Univ Hosp, Dept Med Phys & Radiat Protect, Baracaldo, Spain..
    Cicone, Francesco
    Sapienza Univ Rome, Dept Surg & Med Sci & Translat Med, St Andrea Hosp, Nucl Med, Rome, Italy..
    Stokke, Caroline
    Oslo Univ Hosp, Dept Diagnost Phys, Oslo, Norway..
    Chiesa, Carlo
    Fdn IRCCS Ist Nazl Tumori, Div Nucl Med, Milan, Italy..
    Paphiti, Maria
    Pammakaristos Hosp, Dept Med Phys, Athens, Greece..
    Brans, Boudewijn
    Univ Hosp, Dept Nucl Med, Ghent, Belgium.;Univ Hosp, PET Ctr, Ghent, Belgium..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Tipping, Jill
    Christie NHS Fdn Trust, Nucl Med, Manchester, Lancs, England..
    Konijnenberg, Mark
    Erasmus MC, Dept Nucl Med, Rotterdam, Netherlands..
    Flux, Glenn
    Royal Marsden Hosp, Dept Phys, Sutton, Surrey, England.;Inst Canc Res, Sutton, Surrey, England..
    Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey2017In: EJNMMI Physics, ISSN 2197-7364, E-ISSN 2191-219X, Vol. 4, article id 28Article in journal (Refereed)
    Abstract [en]

    Background: Currently, the implementation of dosimetry in molecular radiotherapy (MRT) is not well investigated, and in view of the Council Directive (2013/59/Euratom), there is a need to understand the current availability of dosimetry-based MRT in clinical practice and research studies. The aim of this study was to assess the current practice of MRT and dosimetry across European countries.

    Methods: An electronic questionnaire was distributed to European countries. This addressed 18 explicitly considered therapies, and for each therapy, a similar set of questions were included. Questions covered the number of patients and treatments during 2015, involvement of medical specialties and medical physicists, implementation of absorbed dose planning, post-therapy imaging and dosimetry, and the basis of therapy prescription.

    Results: Responses were obtained from 26 countries and 208 hospitals, administering in total 42,853 treatments. The most common therapies were I-131-NaI for benign thyroid diseases and thyroid ablation of adults. The involvement of a medical physicist (mean over all 18 therapies) was reported to be either minority or never by 32% of the responders. The percentage of responders that reported that dosimetry was included on an always/majority basis differed between the therapies and showed a median value of 36%. The highest percentages were obtained for Lu-177-PSMA therapy (100%), Y-90 microspheres of glass (84%) and resin (82%), I-131-mIBG for neuroblastoma (59%), and I-131-NaI for benign thyroid diseases (54%). The majority of therapies were prescribed based on fixed-activity protocols. The highest number of absorbed-dose based prescriptions were reported for Y-90 microsphere treatments in the liver (64% and 96% of responses for resin and glass, respectively), I-131-NaI treatment of benign thyroid diseases (38% of responses), and for I-131-mIBG treatment of neuroblastoma (18% of responses).

    Conclusions: There is a wide variation in MRT practice across Europe and for different therapies, including the extent of medical-physicist involvement and the implementation of dosimetry-guided treatments.

  • 38.
    Stokke, Caroline
    et al.
    Oslo Univ Hosp, Dept Diagnost Phys, Oslo, Norway..
    Gabina, Pablo Minguez
    Gurutzeta Cruces Univ Hosp, Dept Med Phys & Radiat Protect, Baracaldo, Spain..
    Solny, Pavel
    Czech Tech Univ, Dept Dosimetry & Applicat Ionizing Radiat, Prague, Czech Republic..
    Cicone, Francesco
    Sapienza Univ Rome, St Andrea Hosp, Dept Surg & Med Sci & Translat Med, Nucl Med, Rome, Italy..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Gleisner, Katarina Sjögreen
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, Lund, Sweden..
    Chiesa, Carlo
    Fdn IRCCS Ist Nazl Tumori, Nucl Med Div, Milan, Italy..
    Spezi, Emiliano
    Cardiff Univ, Sch Engn, Cardiff, S Glam, Wales..
    Paphiti, Maria
    Pammakaristos Hosp, Dept Med Phys, Athens, Greece..
    Konijnenberg, Mark
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands..
    Aldridge, Matt
    UCL Inst Nucl Med, Nucl Med Radiotherapy Phys, London, England.;UCL Hosp NHS Fdn Trust, London, England..
    Tipping, Jill
    Christie NHS Fdn Trust, Nucl Med, Manchester, Lancs, England..
    Wissmeyer, Michael
    Univ Hosp Geneva, Dept Nucl Med, Geneva, Switzerland..
    Brans, Boudewijn
    Univ Hosp, Dept Nucl Med, Ghent, Belgium.;Univ Hosp, PET Ctr, Ghent, Belgium..
    Bacher, Klaus
    Univ Ghent, Div Med Phys, Dept Basic Med Sci, Ghent, Belgium..
    Kobe, Carsten
    Univ Hosp Cologne, Dept Nucl Med, Cologne, Germany..
    Flux, Glenn
    Royal Marsden Hosp, Joint Dept Phys, Sutton, Surrey, England.;Inst Canc Res, Sutton, Surrey, England..
    Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force2017In: EJNMMI Physics, ISSN 2197-7364, E-ISSN 2191-219X, Vol. 4, article id 27Article in journal (Refereed)
    Abstract [en]

    The European directive on basic safety standards (Council directive 2013/59 Euratom) mandates dosimetry-based treatment planning for radiopharmaceutical therapies. The directive comes into operation February 2018, and the aim of a report produced by the Internal Dosimetry Task Force of the European Association of Nuclear Medicine is to address this aspect of the directive. A summary of the report is presented. A brief review of five of the most common therapy procedures is included in the current text, focused on the potential to perform patient-specific dosimetry. In the full report, 11 different therapeutic procedures are included, allowing additional considerations of effectiveness, references to specific literature on quantitative imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for each treatment. Individualized treatment planning with tracer diagnostics and verification of the absorbed doses delivered following therapy is found to be scientifically feasible for almost all procedures investigated, using quantitative imaging and/or external monitoring. Translation of this directive into clinical practice will have significant implications for resource requirements. Molecular radiotherapy is undergoing a significant expansion, and the groundwork for dosimetry-based treatment planning is already in place. The mandated individualization is likely to improve the effectiveness of the treatments, although must be adequately resourced.

  • 39.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Wennborg, Anders
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Åström, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the In-111-ABY-025 Affibody Molecule2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 5, p. 730-735Article in journal (Refereed)
    Abstract [en]

    The expression status of human epidermal growth factor receptor type 2 (HER2) predicts the response of HER2-targeted therapy in breast cancer. ABY-025 is a small reengineered Affibody molecule targeting a unique epitope of the HER2 receptor, not occupied by current therapeutic agents. This study evaluated the distribution, safety, dosimetry, and efficacy of In-111-ABY-025 for determining the HER2 status in metastatic breast cancer. Methods: Seven patients with metastatic breast cancer and HER2-positive (n = 5) or - negative (n 5 2) primary tumors received an intravenous injection of approximately 100 mu g (similar to 140 MBq) of In-111-ABY-025. Planar gamma-camera imaging was performed after 30 min, followed by SPECT/CT after 4, 24, and 48 h. Blood levels of radioactivity, antibodies, shed serum HER2, and toxicity markers were evaluated. Lesional HER2 status was verified by biopsies. The metastases were located by F-18-FDG PET/CT 5 d before In-111-ABY-025 imaging. Results: Injection of In-111-ABY-025 yielded a mean effective dose of 0.15 mSv/MBq and was safe, well tolerated, and without drug-related adverse events. Fast blood clearance allowed high-contrast HER2 images within 4-24 h. No anti-ABY025 antibodies were observed. When metastatic uptake at 24 h was normalized to uptake at 4 h, the ratio increased in HER2-positive metastases and decreased in negative ones (P, < 0.05), with no overlap and confirmation by biopsies. In 1 patient, with HER2- positive primary tumor, In-111-ABY-025 imaging correctly suggested a HER2negative status of the metastases. The highest normal-tissue uptake was in the kidneys, followed by the liver and spleen. Conclusion: In-111-ABY- 025 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic breast cancer, regardless of ongoing HER2-targeted antibody treatment.

  • 40.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Wennborg, Anders
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [(68)Ga]ABY-025 Affibody PET/CT2016In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 6, no 2, p. 262-271Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Positron Emission Tomography (PET) imaging of HER2 expression could potentially be used to select patients for HER2-targed therapy, predict response based on uptake and be used for monitoring. In this phase I/II study the HER2-binding Affibody molecule ABY-025 was labeled with (68)Ga-gallium ([(68)Ga]ABY-025) for PET to study effect of peptide mass, test-retest variability and correlation of quantified uptake in tumors to histopathology.

    EXPERIMENTAL DESIGN: Sixteen women with known metastatic breast cancer and on-going treatment were included and underwent FDG PET/CT to identify viable metastases. After iv injection of 212±46 MBq [(68)Ga]ABY-025 whole-body PET was performed at 1, 2 and 4 h. In the first 10 patients (6 with HER2-positive and 4 with HER2-negative primary tumors), [(68)Ga]ABY-025 PET/CT with two different doses of injected peptide was performed one week apart. In the last six patients (5 HER2-positive and 1 HER2-negative primary tumors), repeated [(68)Ga]ABY-025 PET were performed one week apart as a test-retest of uptake in individual lesions. Biopsies from 16 metastases in 12 patients were collected for verification of HER2 expression by immunohistochemistry and in-situ hybridization.

    RESULTS: Imaging 4h after injection with high peptide content discriminated HER2-positive metastases best (p<0.01). PET SUV correlated with biopsy HER2-scores (r=0.91, p<0.001). Uptake was five times higher in HER2-positive than in HER2-negative lesions with no overlap (p=0.005). The test-retest intra-class correlation was r=0.996. [(68)Ga]ABY-025 PET correctly identified conversion and mixed expression of HER2 and targeted treatment was changed in 3 of the 16 patients.

    CONCLUSION: [(68)Ga]ABY-025 PET accurately quantifies whole-body HER2-receptor status in metastatic breast cancer.

  • 41.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wennborg, Anders
    Feldwisch, Joachim
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jorgen
    Lindman, Henrik
    Accuracy of [Ga-68]ABY-025 PET/CT for determination of HER2-expression in metastatic breast cancer2015In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 56, no 3Article in journal (Other academic)
  • 42.
    Tolmachev, Vladimir
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Malmberg, Jennie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hofström, Camilla
    Abrahmsén, Lars
    Bergman, Thomas
    Sjöberg, Anna
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Gräslund, Torbjörn
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Imaging of Insulinlike Growth Factor Type 1 Receptor in Prostate Cancer Xenografts Using the Affibody Molecule 111In-DOTA-ZIGF1R:45512012In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 53, no 1, p. 90-97Article in journal (Refereed)
    Abstract [en]

    One of the pathways leading to androgen independence in prostate cancer involves upregulation of insulinlike growth factor type 1 receptor (IGF-1R). Radionuclide imaging of IGF-1R in tumors might be used for selection of patients who would most likely benefit from IGF-1R–targeted therapy. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of IGF-1R expression in prostate cancer xenografts using a small nonimmunoglobulin-derived binding protein called an Affibody molecule.

    Methods:

    The IGF-1R-binding ZIGF1R:4551 Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with 111In. The binding of radiolabeled ZIGF1R:4551 to IGF-1R–expressing cells was evaluated in vitro and in vivo.

    Results:

    DOTA-ZIGF1R:4551 can be stably labeled with 111In with preserved specific binding to IGF-1R–expressing cells in vitro. In mice, 111In-DOTA-ZIGF1R:4551 accumulated in IGF-1R–expressing organs (pancreas, stomach, lung, and salivary gland). Receptor saturation experiments demonstrated that targeting of DU-145 prostate cancer xenografts in NMRI nu/nu mice was IGF-1R–specific. The tumor uptake was 1.1 ± 0.3 percentage injected dose per gram, and the tumor-to-blood ratio was 3.2 ± 0.2 at 8 h after injection.

    Conclusion:

    This study demonstrates the feasibility of in vivo targeting of IGF-1R–expressing prostate cancer xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical tool for stratification of patients with prostate cancer for IGF-1R–targeting therapy.

  • 43.
    Tran, Thuy
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Sivaev, Igor
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Avdelningen för sjukhusfysik.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting Affibody ligand2007In: International Journal of Molecular Medicine, ISSN 1107-3756, E-ISSN 1791-244X, Vol. 19, no 3, p. 485-493Article in journal (Refereed)
    Abstract [en]

    The use of radionuclide molecular imaging enables the selection of patients for treatment using molecular medicine. Preclinical studies have demonstrated that a novel low-molecular-weight affinity ligand, Affibody molecule Z(HER2:342) can image the expression of HER2 with high sensitivity and specificity in tumour xenografts and has a potential for the selection of patients for treatment using Herceptin or other anti-HER2 medicine. In this study, we performed a comparative evaluation of two possible linkers for radioiodination of the Affibody molecule Z(HER2:342), 4-iodobenzoate (PIB) and [4-isothiocyanatobenzyl)-amino]-undecahydro-closo-dodecaborate (DABI). It was shown that the use of DABI makes it possible to obtain radioiodinated Z(HER2:342) with preserved capacity for selective binding to HER2-expressing cells. There was no difference between 125I-PIB-Z(HER2:342) and 125I-DABI-Z(HER2:342) in cellular retention of radioactivity after interrupted incubation with radiolabelled Affibody ligands. In vivo, the biodistribution of 125I-PIB-Z(HER2:342) was characterized by a high tumour uptake at 4 h pi (12.7+/-4.6% IA/g) and a quick clearance from blood and normal organs. The tumour uptake of 125I-DABI-Z(HER2:342) was appreciably lower (2.7+/-1.2% IA/g), and a high uptake of this conjugate in the liver was observed. A gamma-camera experiment (at 6 h pi) demonstrated that the use of 125I-PIB-Z(HER2:342) provided a much better contrast of imaging HER2-expressing xenografts than the use of 125I-DABI-Z(HER2:342). In conclusion, 125I-PIB-Z(HER2:342) is superior to 125I-DABI-Z(HER2:342) as an agent for imaging HER2 expression in vivo.

  • 44.
    Varasteh, Zohreh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lindeberg, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Malmberg, Jennie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Synthesis and Characterization of a High-Affinity NOTA-Conjugated Bombesin Antagonist for GRPR-Targeted Tumor Imaging2013In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 24, no 7, p. 1144-1153Article in journal (Refereed)
    Abstract [en]

    The gastrin-releasing peptide receptor (GRPR/BB2) is a molecular target for the visualization of prostate cancer. This work focused on the development of high-affinity, hydrophilic, antagonistic, bombesin-based imaging agents for PET and SPECT. The bombesin antagonist analog D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([D-Phe(6),Sta(13),Leu(14)]-bombesin[6-14]) was synthesized and conjugated to 1,4,7-triazacyclononane-N,N',N ''-triacetic acid (NOTA) via a diethylene glycol (PEG(2)) linker. The resulting conjugate, NOTA-PEG(2)-[D-Phe(6),Sta(13),Leu(14)]bombesin[6-14] (NOTA-P2-RM26), was labeled with Ga-68 (T-1/2 = 68 min, positron emitter) and In-111 (T-1/2 = 2.8 days, gamma emitter). The labeling stability, specificity, inhibition efficiency (IC50), and dissociation constant (K-D) of both labeled compounds as well as their cellular retention and internalization were investigated. The pharmacokinetics of the dual isotope) (In-111/Ga-68)-labeled peptide in both normal NMRI mice and PC-3 tumor-bearing Balb/c nu/nu mice was also studied. NOTA-P2-RM26 was labeled with In-111 and Ga-68 at a radiochemical yield of >98%. Both conjugates were shown to have high specificity and binding affinity for GRPR. The K-D value was determined to be 23 +/- 13 pM for the In-111-labeled compound in a saturation binding experiment. In addition, In-nat- and Ga-nat-NOTA-P2-RM26 showed low nanomolar binding inhibition concentrations (IC50 = 1.24 +/- 0.29 nM and 0.91 +/- 0.19 nM, respectively) in a competitive binding assay. The internalization rate of the radiolabeled conjugates was slow. The radiometal-labeled tracers demonstrated rapid blood clearance via the kidney and GRPR-specific uptake in the pancreas in normal mice. Tumor targeting and biodistribution studies in mice bearing PC-3 xenografts displayed high and specific uptake in tumors (8.1 +/- 0.4%ID/g for Ga-68 and 5.7 +/- 0.3%ID/g for In-111) and high tumor-to-background ratios (tumor/blood: 12 +/- 1 for Ga-68 and 10 +/- 1 for In-111) after only 1 h pi of 45 pmol of peptide. The xenografts were visualized by gamma and microPET cameras shortly after injection. In conclusion, the antagonistic bombesin analog NOTA-PEG(2)-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (NOTA-P2-RM26) is a promisindg candidate for prostate cancer imaging using PET and SPECT/CT.

  • 45.
    Varasteh, Zohreh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Åberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Lindberg, G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    GRPR antagonist NOTA-P2-RM26 labeled with fluorine-18: radiochemistry, in vitro and in vivo evaluation2013In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 40, no Suppl. 2, p. S247-S248Article in journal (Other academic)
  • 46.
    Varasteh, Zohreh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Åberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lindeberg, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    In Vitro and In Vivo Evaluation of a F-18-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as a PET Ligand for GRPR-Targeted Tumor Imaging2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 12, p. e81932-Article in journal (Refereed)
    Abstract [en]

    Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N',N ''-triacetic acid (NOTA) via a diethylene glycol (PEG(2)) spacer (NOTA-P2-RM26) labeled with Ga-68 and In-111. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a F-18-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with F-18 using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [F-nat]AlF-NOTA-P2-RM26 was compared to that of the Ga-nat-loaded peptide using I-125-Tyr(4)-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with F-18 within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/mu mol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [F-nat]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4 +/- 0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [F-18]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p. i. was 5.5 +/- 0.7 % ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87 +/- 42, 159 +/- 47, 38 +/- 16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p. i. The initial biological results suggest that [F-18]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo.

  • 47.
    Velikyan, Irina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Garske, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Comparison of radiation dosimetry of [Ga-68]Ga-DOTA-TOC and [Ga-68]Ga-DOTA-TATE in patients affected by neuroendocrine tumours2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no S1, p. S270-S270Article in journal (Other academic)
  • 48.
    Velikyan, Irina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Quantitative and Qualitative Intrapatient Comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: Net Uptake Rate for Accurate Quantification.2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no 2, p. 204-10Article in journal (Refereed)
    Abstract [en]

    UNLABELLED: Quantitative imaging and dosimetry are crucial for individualized treatment during peptide receptor radionuclide therapy (PRRT). (177)Lu-DOTATATE and (68)Ga-DOTATOC/(68)Ga-DOTATATE are used, respectively, for PRRT and PET examinations targeting somatostatin receptors (SSTRs) in patients affected by neuroendocrine tumors. The aim of the study was to quantitatively and qualitatively compare the performance of (68)Ga-DOTATOC and (68)Ga-DOTATATE in the context of subsequent PRRT with (177)Lu-DOTATATE under standardized conditions in the same patient as well as to investigate the sufficiency of standardized uptake value (SUV) for estimation of SSTR expression.

    METHODS: Ten patients with metastatic neuroendocrine tumors underwent one 45-min dynamic and 3 whole-body PET/CT examinations at 1, 2, and 3 h after injection with both tracers. The number of detected lesions, SUVs in lesions and normal tissue, total functional tumor volume, and SSTR volume (functional tumor volume multiplied by mean SUV) were investigated for each time point. Net uptake rate (Ki) was calculated according to the Patlak method for 3 tumors per patient.

    RESULTS: There were no significant differences in lesion count, lesion SUV, Ki, functional tumor volume, or SSTR volume between (68)Ga-DOTATOC and (68)Ga-DOTATATE at any time point. The detection rate was similar, although with differences for single lesions in occasional patients. For healthy organs, marginally higher uptake of (68)Ga-DOTATATE was observed in kidneys, bone marrow, and liver at 1 h. (68)Ga-DOTATOC uptake was higher in mediastinal blood pool at the 1-h time point (P = 0.018). The tumor-to-liver ratio was marginally higher for (68)Ga-DOTATOC at the 3-h time point (P = 0.037). Blood clearance was fast and similar for both tracers. SUV did not correlate with Ki linearly and achieved saturation for a Ki of greater than 0.2 mL/cm(3)/min, corresponding to an SUV of more than 25.

    CONCLUSION: (68)Ga-DOTATOC and (68)Ga-DOTATATE are suited equally well for staging and patient selection for PRRT with (177)Lu-DOTATATE. However, the slight difference in the healthy organ distribution and excretion may render (68)Ga-DOTATATE preferable. SUV did not correlate linearly with Ki and thus may not reflect the SSTR density accurately at its higher values, whereas Ki might be the outcome measure of choice for quantification of SSTR density and assessment of treatment outcome.

  • 49.
    Vorobyeva, Anzhelika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Konovalova, Elena
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Guler, Rezan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Chernov, Vladimir
    Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk, Russia.
    Bragina, Olga
    Russian Acad Sci, Tomsk Natl Res Med Ctr, Canc Res Inst, Nucl Med Dept, Tomsk, Russia.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Deyev, Sergey M.
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow, Russia.
    Optimal composition and position of histidine-containing tags improves biodistribution of Tc-99m-labeled DARP in G32019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 9405Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging of HER2 expression in disseminated cancer enables stratification of patients for HER2-targeted therapies. DARP in G3, a small (14 kDa) engineered scaffold protein, is a promising probe for imaging of HER2. We hypothesized that position (C- or N-terminus) and composition (hexahistidine or (HE)(3)) of histidine-containing tags would influence the biodistribution of [Tc-99m]Tc(CO)(3)-labeled DARP in G3. To test the hypothesis, G3 variants containing tags at N-terminus (H-6-G3 and (HE)(3)-G3) or at C-terminus (G3-H-6 and G3-(HE)(3)) were labeled with [Tc-99m]Tc(CO)(3). Labeling yield, label stability, specificity and affinity of the binding to HER2, biodistribution and tumor targeting properties of these variants were compared side-by-side. There was no substantial influence of position and composition of the tags on binding of [Tc-99m]Tc(CO)(3)-labeled variants to HER2. The specificity of HER2 targeting in vivo was confirmed. The tumor uptake in BALB/c nu/nu mice bearing SKOV3 xenografts was similar for all variants. On the opposite, there was a strong influence of the tags on uptake in normal tissues. The tumor-to-liver ratio for [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 was three-fold higher compared to the hexahistidine-tag containing variants. Overall, [Tc-99m]Tc(CO)(3)-(HE)(3)-G3 variant provided the highest tumor-to-lung, tumor-to-liver, tumor-to-bone and tumor-to-muscle ratios, which should improve sensitivity of HER2 imaging in these common metastatic sites.

  • 50.
    Wilking, H.
    et al.
    Uppsala Univ Hosp, Uppsala, Sweden.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Uppsala, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Uppsala, Sweden.
    Andersson, C.
    Uppsala Univ Hosp, Uppsala, Sweden;Uppsala Univ, Uppsala, Sweden.
    Öst, A.
    Uppsala Univ Hosp, Uppsala, Sweden.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala Univ Hosp, Uppsala, Sweden.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology. Uppsala Univ Hosp, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Uppsala, Sweden.
    In-vivo stability of 177Lu-DOTATATE during peptide receptor radionuclide therapy2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no Supplement 1, p. S592-S592Article in journal (Other academic)
1 - 50 of 50
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf