uu.seUppsala University Publications
Change search
Refine search result
123456 1 - 50 of 278
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adoue, Veronique
    et al.
    Schiavi, Alicia
    Light, Nicholas
    Carlsson Almlöf, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ge, Bing
    Kwan, Tony
    Caron, Maxime
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Wang, Chuan
    Chen, Shu-Huang
    Goodall, Alison H
    Cambien, Francois
    Deloukas, Panos
    Ouwehand, Willem H
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pastinen, Tomi
    Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs2014In: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 10, no 10, p. 754-Article in journal (Refereed)
    Abstract [en]

    Most complex disease-associated genetic variants are located in non-coding regions and are therefore thought to be regulatory in nature. Association mapping of differential allelic expression (AE) is a powerful method to identify SNPs with direct cis-regulatory impact (cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found 40-60% of these cis-rSNPs to be shared across cell types. We uncover a new class of cis-rSNPs, which disrupt footprint-derived de novo motifs that are predominantly bound by repressive factors and are implicated in disease susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new approach for genome-wide functional validation of transcription factor-SNP interactions. By perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive analysis of cis-variation in four cell populations and provide new tools for the identification of functional variants associated to complex diseases.

  • 2.
    Ahlford, Annika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Kjeldsen, Bastian
    Reimers, Jakob
    Lundmark, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Romani, Massimo
    Wolff, Anders
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Brivio, Monica
    Dried reagents for multiplex genotyping by tag-array minisequencing to be used in microfluidic devices2010In: The Analyst, ISSN 0003-2654, E-ISSN 1364-5528, Vol. 135, no 9, p. 2377-2385Article in journal (Refereed)
    Abstract [en]

    We present an optimized procedure for freeze-drying and storing reagents for multiplex PCR followed by genotyping using a tag-array minisequencing assay with four color fluorescence detection which is suitable for microfluidic assay formats. A test panel was established for five cancer mutations in three codons (175, 248 and 273) of the tumor protein gene (TP53) and for 13 common single nucleotide polymorphisms (SNPs) in the TP53 gene. The activity of DNA polymerase was preserved for six months of storage after freeze-drying, and the half-life of activities of exonuclease I and shrimp alkaline phosphatase were estimated to 55 and 200 days, respectively. We conducted a systematic genotyping comparison using freeze-dried and liquid reagents. The accuracy of successful genotyping was 99.1% using freeze-dried reagents compared to liquid reagents. As a proof of concept, the genotyping protocol was carried out with freeze-dried reagents stored in reaction chambers fabricated by micromilling in a cyclic olefin copolymer substrate. The results reported in this study are a key step towards the development of an integrated microfluidic device for point-of-care DNA-based diagnostics.

  • 3.
    Almlöf, Jonas Carlsson
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ge, B.
    Maouche, S.
    Göring, H. H. H.
    Liljedahl, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Enström, Camilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Brocheton, J.
    Proust, C.
    Godefroy, T.
    Sambrook, J. G.
    Jolley, J.
    Crisp-Hihn, A.
    Foad, N.
    Lloyd-Jones, H.
    Stephens, J.
    Gwilliam, R.
    Rice, C. M.
    Hengstenberg, C.
    Samani, N. J.
    Erdmann, J.
    Schunkert, H.
    Pastinen, T.
    Deloukas, P.
    Goodall, A. H.
    Ouwehand, W. H.
    Cambien, F.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Powerful Identification of Cis-regulatory SNPs in Human Primary Monocytes Using Allele-Specific Gene Expression2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 12, p. e52260-Article in journal (Refereed)
    Abstract [en]

    A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.

  • 4.
    Almlöf, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ge, Bing
    Pastinen, Tomi
    Goodall, Alison H
    Cambien, François
    Deloukas, Panos
    Ouwehand, Willem H
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Single nucleotide polymorphisms with cis-regulatory effects on long non-coding transcripts in human primary monocytes2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 7, p. e102612-Article in journal (Refereed)
    Abstract [en]

    We applied genome-wide allele-specific expression analysis of monocytes from 188 samples. Monocytes were purified from white blood cells of healthy blood donors to detect cis-acting genetic variation that regulates the expression of long non-coding RNAs. We analysed 8929 regions harboring genes for potential long non-coding RNA that were retrieved from data from the ENCODE project. Of these regions, 60% were annotated as intergenic, which implies that they do not overlap with protein-coding genes. Focusing on the intergenic regions, and using stringent analysis of the allele-specific expression data, we detected robust cis-regulatory SNPs in 258 out of 489 informative intergenic regions included in the analysis. The cis-regulatory SNPs that were significantly associated with allele-specific expression of long non-coding RNAs were enriched to enhancer regions marked for active or bivalent, poised chromatin by histone modifications. Out of the lncRNA regions regulated by cis-acting regulatory SNPs, 20% (n = 52) were co-regulated with the closest protein coding gene. We compared the identified cis-regulatory SNPs with those in the catalog of SNPs identified by genome-wide association studies of human diseases and traits. This comparison identified 32 SNPs in loci from genome-wide association studies that displayed a strong association signal with allele-specific expression of non-coding RNAs in monocytes, with p-values ranging from 6.7×10-7 to 9.5×10-89. The identified cis-regulatory SNPs are associated with diseases of the immune system, like multiple sclerosis and rheumatoid arthritis.

  • 5.
    Ameur, Adam
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Dahlberg, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.
    Olason, Pall
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology. Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Vezzi, Francesco
    Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.;Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Karlsson, Robert
    Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden..
    Martin, Marcel
    Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden.;Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Viklund, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics. Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Kähäri, Andreas
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational Biology and Bioinformatics. Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Lundin, Par
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Che, Huiwen
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Thutkawkorapin, Jessada
    Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden..
    Eisfeldt, Jesper
    Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden..
    Lampa, Samuel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden.
    Dahlberg, Mats
    Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden.;Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Hagberg, Jonas
    Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden.;Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Jareborg, Niclas
    Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden.;Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Stockholm, Sweden..
    Liljedahl, Ulrika
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.
    Jonasson, Inger
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Johansson, Åsa
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Feuk, Lars
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Lundeberg, Joakim
    Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.;Royal Inst Technol, Div Gene Technol, Sch Biotechnol, Sci Life Lab, Stockholm, Sweden..
    Syvänen, Ann-Christine
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.
    Lundin, Sverker
    Royal Inst Technol, Div Gene Technol, Sch Biotechnol, Sci Life Lab, Stockholm, Sweden..
    Nilsson, Daniel
    Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden..
    Nystedt, Björn
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. Natl Bioinformat Infrastruct, Sci Life Lab, Stockholm, Sweden..
    Magnusson, Patrik K. E.
    Natl Genom Infrastruct, Sci Life Lab, Stockholm, Sweden.;Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden..
    Gyllensten, Ulf B.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    SweGen: a whole-genome data resource of genetic variability in a cross-section of the Swedish population2017In: European Journal of Human Genetics, ISSN 1018-4813, E-ISSN 1476-5438, Vol. 25, no 11, p. 1253-1260Article in journal (Refereed)
    Abstract [en]

    Here we describe the SweGen data set, a comprehensive map of genetic variation in the Swedish population. These data represent a basic resource for clinical genetics laboratories as well as for sequencing-based association studies by providing information on genetic variant frequencies in a cohort that is well matched to national patient cohorts. To select samples for this study, we first examined the genetic structure of the Swedish population using high-density SNP-array data from a nation-wide cohort of over 10 000 Swedish-born individuals included in the Swedish Twin Registry. A total of 1000 individuals, reflecting a cross-section of the population and capturing the main genetic structure, were selected for whole-genome sequencing. Analysis pipelines were developed for automated alignment, variant calling and quality control of the sequencing data. This resulted in a genome-wide collection of aggregated variant frequencies in the Swedish population that we have made available to the scientific community through the website https://swefreq.nbis.se. A total of 29.2 million single-nucleotide variants and 3.8 million indels were detected in the 1000 samples, with 9.9 million of these variants not present in current databases. Each sample contributed with an average of 7199 individual-specific variants. In addition, an average of 8645 larger structural variants (SVs) were detected per individual, and we demonstrate that the population frequencies of these SVs can be used for efficient filtering analyses. Finally, our results show that the genetic diversity within Sweden is substantial compared with the diversity among continental European populations, underscoring the relevance of establishing a local reference data set.

  • 6. Andres, Olga
    et al.
    Rönn, Ann-Charlotte
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Bonhomme, Maxime
    Keller-Mann, Thomas
    Crouau-Roy, Brigitte
    Doxiadis, Gaby
    Verschoor, Ernst J.
    Goossens, Benoit
    Domingo-Roura, Xavier
    Bruford, Michael W.
    Bosch, Montserrat
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    A microarray system for Y chromosomal and mitochondrial single nucleotide polymorphism analysis in chimpanzee populations2008In: Molecular Ecology Notes, ISSN 1471-8278, E-ISSN 1471-8286, Vol. 8, no 3, p. 529-539Article in journal (Refereed)
    Abstract [en]

    Chimpanzee populations are diminishing as a consequence of human activities, and as a result this species is now endangered. In the context of conservation programmes, genetic data can add vital information, for instance on the genetic diversity and structure of threatened populations. Single nucleotide polymorphisms (SNP) are biallelic markers that are widely used in human molecular studies and can be implemented in efficient microarray systems. This technology offers the potential of robust, multiplexed SNP genotyping at low reagent cost in other organisms than humans, but it is not commonly used yet in wild population studies. Here, we describe the characterization of new SNPs in Y-chromosomal intronic regions in chimpanzees and also identify SNPs from mitochondrial genes, with the aim of developing a microarray system that permits the simultaneous study of both paternal and maternal lineages. Our system consists of 42 SNPs for the Y chromosome and 45 SNPs for the mitochondrial genome. We demonstrate the applicability of this microarray in a captive population where genotypes accurately reflected its large pedigree. Two wild-living populations were also analysed and the results show that the microarray will be a useful tool alongside microsatellite markers, since it supplies complementary information about population structure and ecology. SNP genotyping using microarray technology, therefore, is a promising approach and may become an essential tool in conservation genetics to help in the management and study of captive and wild-living populations. Moreover, microarrays that combine SNPs from different genomic regions could replace microsatellite typing in the future.

  • 7. Arking, Dan E
    et al.
    Pulit, Sara L
    Crotti, Lia
    van der Harst, Pim
    Munroe, Patricia B
    Koopmann, Tamara T
    Sotoodehnia, Nona
    Rossin, Elizabeth J
    Morley, Michael
    Wang, Xinchen
    Johnson, Andrew D
    Lundby, Alicia
    Gudbjartsson, Daníel F
    Noseworthy, Peter A
    Eijgelsheim, Mark
    Bradford, Yuki
    Tarasov, Kirill V
    Dörr, Marcus
    Müller-Nurasyid, Martina
    Lahtinen, Annukka M
    Nolte, Ilja M
    Smith, Albert Vernon
    Bis, Joshua C
    Isaacs, Aaron
    Newhouse, Stephen J
    Evans, Daniel S
    Post, Wendy S
    Waggott, Daryl
    Lyytikäinen, Leo-Pekka
    Hicks, Andrew A
    Eisele, Lewin
    Ellinghaus, David
    Hayward, Caroline
    Navarro, Pau
    Ulivi, Sheila
    Tanaka, Toshiko
    Tester, David J
    Chatel, Stéphanie
    Gustafsson, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kumari, Meena
    Morris, Richard W
    Naluai, Asa T
    Padmanabhan, Sandosh
    Kluttig, Alexander
    Strohmer, Bernhard
    Panayiotou, Andrie G
    Torres, Maria
    Knoflach, Michael
    Hubacek, Jaroslav A
    Slowikowski, Kamil
    Raychaudhuri, Soumya
    Kumar, Runjun D
    Harris, Tamara B
    Launer, Lenore J
    Shuldiner, Alan R
    Alonso, Alvaro
    Bader, Joel S
    Ehret, Georg
    Huang, Hailiang
    Kao, W H Linda
    Strait, James B
    Macfarlane, Peter W
    Brown, Morris
    Caulfield, Mark J
    Samani, Nilesh J
    Kronenberg, Florian
    Willeit, Johann
    Smith, J Gustav
    Greiser, Karin H
    Meyer Zu Schwabedissen, Henriette
    Werdan, Karl
    Carella, Massimo
    Zelante, Leopoldo
    Heckbert, Susan R
    Psaty, Bruce M
    Rotter, Jerome I
    Kolcic, Ivana
    Polašek, Ozren
    Wright, Alan F
    Griffin, Maura
    Daly, Mark J
    Arnar, David O
    Hólm, Hilma
    Thorsteinsdottir, Unnur
    Denny, Joshua C
    Roden, Dan M
    Zuvich, Rebecca L
    Emilsson, Valur
    Plump, Andrew S
    Larson, Martin G
    O'Donnell, Christopher J
    Yin, Xiaoyan
    Bobbo, Marco
    D'Adamo, Adamo P
    Iorio, Annamaria
    Sinagra, Gianfranco
    Carracedo, Angel
    Cummings, Steven R
    Nalls, Michael A
    Jula, Antti
    Kontula, Kimmo K
    Marjamaa, Annukka
    Oikarinen, Lasse
    Perola, Markus
    Porthan, Kimmo
    Erbel, Raimund
    Hoffmann, Per
    Jöckel, Karl-Heinz
    Kälsch, Hagen
    Nöthen, Markus M
    den Hoed, Marcel
    Loos, Ruth J F
    Thelle, Dag S
    Gieger, Christian
    Meitinger, Thomas
    Perz, Siegfried
    Peters, Annette
    Prucha, Hanna
    Sinner, Moritz F
    Waldenberger, Melanie
    de Boer, Rudolf A
    Franke, Lude
    van der Vleuten, Pieter A
    Beckmann, Britt Maria
    Martens, Eimo
    Bardai, Abdennasser
    Hofman, Nynke
    Wilde, Arthur A M
    Behr, Elijah R
    Dalageorgou, Chrysoula
    Giudicessi, John R
    Medeiros-Domingo, Argelia
    Barc, Julien
    Kyndt, Florence
    Probst, Vincent
    Ghidoni, Alice
    Insolia, Roberto
    Hamilton, Robert M
    Scherer, Stephen W
    Brandimarto, Jeffrey
    Margulies, Kenneth
    Moravec, Christine E
    Greco M, Fabiola Del
    Fuchsberger, Christian
    O'Connell, Jeffrey R
    Lee, Wai K
    Watt, Graham C M
    Campbell, Harry
    Wild, Sarah H
    El Mokhtari, Nour E
    Frey, Norbert
    Asselbergs, Folkert W
    Mateo Leach, Irene
    Navis, Gerjan
    van den Berg, Maarten P
    van Veldhuisen, Dirk J
    Kellis, Manolis
    Krijthe, Bouwe P
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Franco, Oscar H
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hofman, Albert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Kors, Jan A
    Uitterlinden, André G
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Witteman, Jacqueline C M
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Kedenko, Lyudmyla
    Lamina, Claudia
    Oostra, Ben A
    Abecasis, Gonçalo R
    Lakatta, Edward G
    Mulas, Antonella
    Orrú, Marco
    Schlessinger, David
    Uda, Manuela
    Markus, Marcello R P
    Völker, Uwe
    Snieder, Harold
    Spector, Timothy D
    Ärnlöv, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Sundström, Johan
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kivimaki, Mika
    Kähönen, Mika
    Mononen, Nina
    Raitakari, Olli T
    Viikari, Jorma S
    Adamkova, Vera
    Kiechl, Stefan
    Brion, Maria
    Nicolaides, Andrew N
    Paulweber, Bernhard
    Haerting, Johannes
    Dominiczak, Anna F
    Nyberg, Fredrik
    Whincup, Peter H
    Hingorani, Aroon D
    Schott, Jean-Jacques
    Bezzina, Connie R
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ferrucci, Luigi
    Gasparini, Paolo
    Wilson, James F
    Rudan, Igor
    Franke, Andre
    Mühleisen, Thomas W
    Pramstaller, Peter P
    Lehtimäki, Terho J
    Paterson, Andrew D
    Parsa, Afshin
    Liu, Yongmei
    van Duijn, Cornelia M
    Siscovick, David S
    Gudnason, Vilmundur
    Jamshidi, Yalda
    Salomaa, Veikko
    Felix, Stephan B
    Sanna, Serena
    Ritchie, Marylyn D
    Stricker, Bruno H
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Stefansson, Kari
    Boyer, Laurie A
    Cappola, Thomas P
    Olsen, Jesper V
    Lage, Kasper
    Schwartz, Peter J
    Kääb, Stefan
    Chakravarti, Aravinda
    Ackerman, Michael J
    Pfeufer, Arne
    de Bakker, Paul I W
    Newton-Cheh, Christopher
    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.2014In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 46, no 8, p. 826-836Article in journal (Refereed)
    Abstract [en]

    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.

  • 8. Auro, K.
    et al.
    Kristiansson, K.
    Zethelius, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Berne, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Taskinen, M-R.
    Jauhiainen, M.
    Perola, M.
    Peltonen, Leena
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    USF1 gene variants contribute to metabolic traits in men in a longitudinal 32-year follow-up study2008In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 51, no 3, p. 464-472Article in journal (Refereed)
    Abstract [en]

    AIMS/HYPOTHESIS:

    Genetic variants of upstream transcription factor 1 (USF1) have previously been associated with dyslipidaemias in family studies. Our aim was to further address the role of USF1 in metabolic syndrome and cardiovascular traits at the population level in a large Swedish male cohort (n=2,322) with multiple measurements for risk factors during 32 years of follow-up.

    METHODS:

    Participants, born in 1920-1924, were examined at 50, 60, 70 and 77 years of age. The follow-up period for cardiovascular events was 1970-2002. We genotyped three haplotype tagging polymorphisms capturing the major allelic variants of USF1.

    RESULTS:

    SNP rs2774279 was associated with the metabolic syndrome. The minor allele of rs2774279 was less common among individuals with metabolic syndrome than among healthy controls [p=0.0029 when metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III; p=0.0073 when defined according to the International Diabetes Federation (IDF)]. The minor allele of rs2774279 was also associated with lower BMI, lower fasting glucose values and higher HDL-cholesterol concentrations in longitudinal analyses. With SNP rs2073658, a borderline association with metabolic syndrome was observed (p=0.036, IDF), the minor allele being the risk-increasing allele. The minor allele of rs2073658 also associated with higher total and LDL-cholesterol, apolipoprotein B-100 and lipoprotein(a) concentrations in longitudinal analyses. Importantly, these trends with respect to the allelic variants prevailed throughout the follow-up time of three decades.

    CONCLUSIONS/INTERPRETATION:

    Our results suggest that USF1 variants associate with the metabolic syndrome at population level and influence the cardiovascular risk factors throughout adulthood in a consistent, longitudinal manner.

  • 9. Bahl, Aileen
    et al.
    Pöllänen, Eija
    Ismail, Khadeeja
    Sipilä, Sarianna
    Mikkola, Tuija M
    Berglund, Eva C
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lindqvist, Carl Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rantanen, Taina
    Kaprio, Jaakko
    Kovanen, Vuokko
    Ollikainen, Miina
    Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass2015In: Twin Research and Human Genetics, ISSN 1832-4274, E-ISSN 1839-2628, Vol. 18, no 6, p. 647-661Article in journal (Refereed)
    Abstract [en]

    The loss of estrogen during menopause causes changes in the female body, with wide-ranging effects on health. Estrogen-containing hormone replacement therapy (HRT) leads to a relief of typical menopausal symptoms, benefits bone and muscle health, and is associated with tissue-specific gene expression profiles. As gene expression is controlled by epigenetic factors (including DNA methylation), many of which are environmentally sensitive, it is plausible that at least part of the HRT-associated gene expression is due to changes in DNA methylation profile. We investigated genome-wide DNA methylation and gene expression patterns of white blood cells (WBCs) and their associations with body composition, including muscle and bone measures of monozygotic (MZ) female twin pairs discordant for HRT. We identified 7,855 nominally significant differentially methylated regions (DMRs) associated with 4,044 genes. Of the genes with DMRs, five (ACBA1, CCL5, FASLG, PPP2R2B, and UHRF1) were also differentially expressed. All have been previously associated with HRT or estrogenic regulation, but not with HRT-associated DNA methylation. All five genes were associated with bone mineral content (BMC), and ABCA1, FASLG, and UHRF1 were also associated with body adiposity. Our study is the first to show that HRT associates with genome-wide DNA methylation alterations in WBCs. Moreover, we show that five differentially expressed genes with DMRs associate with clinical measures, including body fat percentage, lean body mass, bone mass, and blood lipids. Our results indicate that at least part of the known beneficial HRT effects on body composition and bone mass may be regulated by DNA methylation associated alterations in gene expression in circulating WBCs.

  • 10.
    Bazov, Igor
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Sarkisyan, Daniil
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Kononenko, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Watanabe, Hiroyuki
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Taqi, Malik Mumtaz
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Stålhandske, Lada
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Verbeek, Dineke S
    Mulder, Jan
    Rajkowska, Grazyna
    Sheedy, Donna
    Kril, Jillian
    Sun, Xueguang
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Yakovleva, Tatiana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Bakalkin, Georgy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain2018In: Cerebral Cortex, ISSN 1047-3211, E-ISSN 1460-2199, Vol. 28, no 9, p. 3129-3142Article in journal (Refereed)
    Abstract [en]

    Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.

  • 11. Bentham, James
    et al.
    Morris, David L
    Cunninghame Graham, Deborah S
    Pinder, Christopher L
    Tombleson, Philip
    Behrens, Timothy W
    Martín, Javier
    Fairfax, Benjamin P
    Knight, Julian C
    Chen, Lingyan
    Replogle, Joseph
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Graham, Robert R
    Wither, Joan E
    Rioux, John D
    Alarcón-Riquelme, Marta E
    Vyse, Timothy J
    Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus2015In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 47, no 12, p. 1457-1464Article in journal (Refereed)
    Abstract [en]

    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE.

  • 12.
    Berggren, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Alexsson, Andrei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Morris, David
    King’s College London School of Medicine, Guy’s Hospital, London.
    Tandre, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Weber, Gert
    Free University of Berlin.
    Vyse, Timothy
    King’s College London School of Medicine, Guy’s Hospital, London.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Eloranta, Maija-Leena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    IFN-α production by plasmacytoid dendritic cell associations with polymorphisms in gene loci related to autoimmune and inflammatory diseases2015In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 24, no 12, p. 3571-3581Article in journal (Refereed)
    Abstract [en]

    The type I interferon (IFN) system is persistently activated in systemic lupus erythematosus (SLE) and many other systemic autoimmune diseases. Studies have shown an association between SLE and several gene variants within the type I IFN system. We investigated whether single nucleotide polymorphisms (SNPs) associated with SLE and other autoimmune diseases affect the IFN-α production in healthy individuals. Plasmacytoid dendritic cells (pDCs), B and NK cells were isolated from peripheral blood of healthy individuals and stimulated with RNA-containing immune complexes (IC), herpes simplex virus (HSV) or the oligonucleotide ODN2216. IFN-α production by pDCs alone or in cocultures with B or NK cells was measured by an immunoassay. All donors were genotyped with the 200K ImmunoChip and a 5bp CGGGG length polymorphism in the IFN regulatory factor 5 gene (IRF5) was genotyped by PCR. We found associations between IFN-α production and 18-86 SNPs (p ≤ 0.001), depending on the combination of the stimulated cell types. However, only three of these associated SNPs were shared between the cell type combinations. Several SNPs showed novel associations to the type I IFN system among all the associated SNPs, while some loci have been described earlier for their association with SLE. Furthermore, we found that the SLE-risk variant of the IRF5 CGGGG-indel was associated with lower IFN-α production. We conclude that the genetic variants affecting the IFN-α production highlight the intricate regulation of the type I IFN system and the importance of understanding the mechanisms behind the dysregulated type I IFN system in SLE.

  • 13.
    Berglund, Eva C
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kiialainen, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Next generation sequencing technologies and applications for human Genetic History and Forensics2011In: Investigative Genetics, ISSN 2041-2223, E-ISSN 2041-2223, Vol. 2, no 1, p. 23-Article in journal (Refereed)
    Abstract [en]

    The rapid advances in the development of sequencing technologies in recent years enable an increasing number of applications in biology and medicine. Here we review key technical aspects of the preparation of DNA templates for sequencing, the biochemical reaction principles and assay formats underlying next generation sequencing systems, methods for imaging and base calling, quality control, and bioinformatic approaches for sequence alignment, variant calling and assembly. We also discuss some of the most important advances that the new sequencing technologies have brought to the fields of human population genetics, human genetic history and forensic genetics.

  • 14.
    Berglund, Eva C
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lindqvist, Carl Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hayat, Shahina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Overnäs, Elin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Henriksson, Niklas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Nordlund, Jessica
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Wahlberg, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Forestier, Erik
    Lönnerholm, Gudmar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Accurate detection of subclonal single nucleotide variants in whole genome amplified and pooled cancer samples using HaloPlex target enrichment2013In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 14, no 1, p. 856-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Target enrichment and resequencing is a widely used approach for identification of cancer genes and genetic variants associated with diseases. Although cost effective compared to whole genome sequencing, analysis of many samples constitutes a significant cost, which could be reduced by pooling samples before capture. Another limitation to the number of cancer samples that can be analyzed is often the amount of available tumor DNA. We evaluated the performance of whole genome amplified DNA and the power to detect subclonal somatic single nucleotide variants in non-indexed pools of cancer samples using the HaloPlex technology for target enrichment and next generation sequencing.

    RESULTS:

    We captured a set of 1528 putative somatic single nucleotide variants and germline SNPs, which were identified by whole genome sequencing, with the HaloPlex technology and sequenced to a depth of 792--1752. We found that the allele fractions of the analyzed variants are well preserved during whole genome amplification and that capture specificity or variant calling is not affected. We detected a large majority of the known single nucleotide variants present uniquely in one sample with allele fractions as low as 0.1 in non-indexed pools of up to ten samples. We also identified and experimentally validated six novel variants in the samples included in the pools.

    CONCLUSION:

    Our work demonstrates that whole genome amplified DNA can be used for target enrichment equally well as genomic DNA and that accurate variant detection is possible in non-indexed pools of cancer samples. These findings show that analysis of a large number of samples is feasible at low cost, even when only small amounts of DNA is available, and thereby significantly increases the chances of indentifying recurrent mutations in cancer samples.

  • 15. Blom, Titta S
    et al.
    Linder, Matts D
    Snow, Karen
    Pihko, Helena
    Hess, Michael W
    Jokitalo, Eija
    Veckman, Ville
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Ikonen, Elina
    Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease2003In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 12, no 3, p. 257-272Article in journal (Other academic)
    Abstract [en]

    Niemann–Pick type C (NPC) disease is a fatal recessively inherited lysosomal cholesterol-sphingolipidosis. Mutations in the NPC1 gene cause ∼95% of the cases, the rest being caused by NPC2 mutations. Here the molecular basis of a severe infantile form of the disease was dissected. The level of NPC1 protein in the patient fibroblasts was similar to that in control cells. However, the protein was partially mislocalized from late endocytic organelles diffusely to the cell periphery. In contrast, NPC2 was upregulated and accumulated in cholesterol storing late endocytic organelles. Two point mutations and a four-nucleotide deletion were identified in the NPC1 gene, leading to the amino acid substitutions C113R, P237S and deletion of 37 C-terminal amino acids (delC). Overexpression of individual NPC1 mutations revealed that delC produced an unstable protein, wild-type and NPC1-P237S colocalized with Rab7-positive late endosomes whereas NPC1-C113R localized to the ER, Rab7-negative endosomes and the cell surface. Expression of wild-type or NPC1-P237S cleared the lysosomal cholesterol accumulation in NPC1-deficient cells whereas C113R or delC did not. In the Finnish and Swedish population samples, alleles carrying C113R or delC were not identified, whereas ∼5% of the alleles carried P237S. Our studies identify P237S as a prevalent NPC1 polymorphism and delC and C113R as deleterious NPC1 mutations. Moreover, they show that delC leads to rapid degradation of NPC1 and C113R to endocytic missorting of the protein. These changes are accompanied by lysosomal accumulation of NPC2, suggesting that NPC1 governs the endocytic transport of NPC2.

  • 16. Boeger, Carsten A.
    et al.
    Chen, Ming-Huei
    Tin, Adrienne
    Olden, Matthias
    Koettgen, Anna
    de Boer, Ian H.
    Fuchsberger, Christian
    O'Seaghdha, Conall M.
    Pattaro, Cristian
    Teumer, Alexander
    Liu, Ching-Ti
    Glazer, Nicole L.
    Li, Man
    O'Conne, Jeffrey R.
    Tanaka, Toshiko
    Peralta, Carmen A.
    Kutalik, Zoltan
    Luan, Jian'an
    Zhao, Jing Hua
    Hwang, Shih-Jen
    Akylbekova, Ermeg
    Kramer, Holly
    van der Harst, Pim
    Smith, Albert V.
    Lohman, Kurt
    de Andrade, Mariza
    Hayward, Caroline
    Kollerits, Barbara
    Toenjes, Anke
    Aspelund, Thor
    Ingelsson, Erik
    Eiriksdottir, Gudny
    Launer, Lenore J.
    Harris, Tamara B.
    Shuldiner, Alan R.
    Mitchell, Braxton D.
    Arking, Dan E.
    Franceschini, Nora
    Boerwinkle, Eric
    Egan, Josephine
    Hernandez, Dena
    Reilly, Muredach
    Townsend, Raymond R.
    Lumley, Thomas
    Siscovick, David S.
    Psaty, Bruce M.
    Kestenbaum, Bryan
    Haritunians, Talin
    Bergmann, Sven
    Vollenweider, Peter
    Waeber, Gerard
    Mooser, Vincent
    Waterworth, Dawn
    Johnson, Andrew D.
    Florez, Jose C.
    Meigs, James B.
    Lu, Xiaoning
    Turner, Stephen T.
    Atkinson, Elizabeth J.
    Leak, Tennille S.
    Aasarod, Knut
    Skorpen, Frank
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Illig, Thomas
    Baumert, Jens
    Koenig, Wolfgang
    Kraemer, Bernhard K.
    Devuyst, Olivier
    Mychaleckyj, Josyf C.
    Minelli, Cosetta
    Bakker, Stephan J. L.
    Kedenko, Lyudmyla
    Paulweber, Bernhard
    Coassin, Stefan
    Endlich, Karlhans
    Kroemer, Heyo K.
    Biffar, Reiner
    Stracke, Sylvia
    Voelzke, Henry
    Stumvol, Michael
    Maegi, Reedik
    Campbell, Harry
    Vitart, Veronique
    Hastie, Nicholas D.
    Gudnason, Vilmundur
    Kardia, Sharon L. R.
    Liu, Yongmei
    Polasek, Ozren
    Curhan, Gary
    Kronenberg, Florian
    Prokopenko, Inga
    Rudan, Igor
    Ärnlöv, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Hallan, Stein
    Navis, Gerjan
    Parsa, Afshin
    Ferrucci, Luigi
    Coresh, Josef
    Shlipak, Michael G.
    Bul, Shelley B.
    Paterson, Andrew D.
    Wichmann, H. -Erich
    Wareham, Nicholas J.
    Loos, Ruth J. F.
    Rotter, Jerome I.
    Pramstaller, Peter P.
    Cupples, L. Adrienne
    Beckmann, Jacques S.
    Yang, Qiong
    Heid, Iris M.
    Rettig, Rainer
    Dreisbach, Albert W.
    Bochud, Murielle
    Fox, Caroline S.
    Kao, W. H. L.
    CUBN Is a Gene Locus for Albuminuria2011In: Journal of the American Society of Nephrology, ISSN 1046-6673, E-ISSN 1533-3450, Vol. 22, no 3, p. 555-570Article in journal (Refereed)
    Abstract [en]

    Identification of genetic risk factors for albuminuria may alter strategies for early prevention of CKD progression, particularly among patients with diabetes. Little is known about the influence of common genetic variants on albuminuria in both general and diabetic populations. We performed a meta-analysis of data from 63,153 individuals of European ancestry with genotype information from genome-wide association studies (CKDGen Consortium) and from a large candidate gene study (CARe Consortium) to identify susceptibility loci for the quantitative trait urinary albumin-to-creatinine ratio (UACR) and the clinical diagnosis microalbuminuria. We identified an association between a missense variant (I2984V) in the CUBN gene, which encodes cubilin, and both UACR (P = 1.1 x 10(-11)) and microalbuminuria (P = 0.001). We observed similar associations among 6981 African Americans in the CARe Consortium. The associations between this variant and both UACR and microalbuminuria were significant in individuals of European ancestry regardless of diabetes status. Finally, this variant associated with a 41% increased risk for the development of persistent microalbuminuria during 20 years of follow-up among 1304 participants with type 1 diabetes in the prospective DCCT/EDIC Study. In summary, we identified a missense CUBN variant that associates with levels of albuminuria in both the general population and in individuals with diabetes.

  • 17.
    Bolin, Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sandling, Johanna K
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Zickert, Agneta
    Jönsen, Andreas
    Sjöwall, Christopher
    Svenungsson, Elisabet
    Bengtsson, Anders A
    Eloranta, Maija-Leena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gunnarsson, Iva
    Nordmark, Gunnel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Association of STAT4 Polymorphism with Severe Renal Insufficiency in Lupus Nephritis2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 12, p. e84450-Article in journal (Refereed)
    Abstract [en]

    Lupus nephritis is a cause of significant morbidity in systemic lupus erythematosus (SLE) and its genetic background has not been completely clarified. The aim of this investigation was to analyze single nucleotide polymorphisms (SNPs) for association with lupus nephritis, its severe form proliferative nephritis and renal outcome, in two Swedish cohorts. Cohort I (n = 567 SLE cases, n = 512 controls) was previously genotyped for 5676 SNPs and cohort II (n = 145 SLE cases, n = 619 controls) was genotyped for SNPs in STAT4, IRF5, TNIP1 and BLK.

    Case-control and case-only association analyses for patients with lupus nephritis, proliferative nephritis and severe renal insufficiency were performed. In the case-control analysis of cohort I, four highly linked SNPs in STAT4 were associated with lupus nephritis with genome wide significance with p = 3.7×10−9, OR 2.20 for the best SNP rs11889341. Strong signals of association between IRF5 and an HLA-DR3 SNP marker were also detected in the lupus nephritis case versus healthy control analysis (p <0.0001). An additional six genes showed an association with lupus nephritis with p <0.001 (PMS2, TNIP1, CARD11, ITGAM, BLK and IRAK1). In the case-only meta-analysis of the two cohorts, the STAT4 SNP rs7582694 was associated with severe renal insufficiency with p = 1.6×10−3 and OR 2.22. We conclude that genetic variations in STAT4 predispose to lupus nephritis and a worse outcome with severe renal insufficiency.

  • 18. Bolstad, Anne Isine
    et al.
    Le Hellard, Stephanie
    Kristjansdottir, Gudlaug
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Vasaitis, Lilian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Kvarnström, Marika
    Sjöwall, Christopher
    Johnsen, Svein Joar Auglænd
    Eriksson, Per
    Omdal, Roald
    Brun, Johan G
    Wahren-Herlenius, Marie
    Theander, Elke
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Nordmark, Gunnel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Jonsson, Roland
    Association between genetic variants in the tumour necrosis factor/lymphotoxin α/lymphotoxin β locus and primary Sjogren's syndrome in Scandinavian samples2012In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 71, no 6, p. 981-988Article in journal (Refereed)
    Abstract [en]

    OBJECTIVES:

    Lymphotoxin β (LTB) has been found to be upregulated in salivary glands of patients with primary Sjögren's syndrome (pSS). An animal model of pSS also showed ablation of the lymphoid organisation and a marked improvement in salivary gland function on blocking the LTB receptor pathway. This study aimed to investigate whether single-nucleotide polymorphisms (SNP) in the lymphotoxin α (LTA)/LTB/tumour necrosis factor (TNF) gene clusters are associated with pSS.

    METHODS:

    527 pSS patients and 532 controls participated in the study, all of Caucasian origin from Sweden and Norway. 14 SNP markers were genotyped and after quality control filtering, 12 SNP were analysed for their association with pSS using single marker and haplotype tests, and corrected by permutation testing.

    RESULTS:

    Nine markers showed significant association with pSS at the p=0.05 level. Markers rs1800629 and rs909253 showed the strongest genotype association (p=1.64E-11 and p=4.42E-08, respectively, after correcting for sex and country of origin). When the analysis was conditioned for the effect of rs1800629, only the association with rs909253 remained nominally significant (p=0.027). In haplotype analyses the strongest effect was observed for the haplotype rs909253G_rs1800629A (p=9.14E-17). The associations were mainly due to anti-Ro/SSA and anti-La/SSB antibody-positive pSS.

    CONCLUSIONS:

    A strong association was found between several SNP in the LTA/LTB/TNFα locus and pSS, some of which led to amino acid changes. These data suggest a role for this locus in the development of pSS. Further studies are needed to examine if the genetic effect described here is independent of the known genetic association between HLA and pSS.

  • 19. Borge, Thomas
    et al.
    Lindroos, Katarina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Haavie, Jon
    Primmer, Craig
    Syvänen, Ann-Christine
    Saetre, Glenn-Peter
    Sex-linked speciation in Ficedula flycatchersManuscript (Other academic)
  • 20.
    Borge, Thomas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolutionary Biology, Evolutionary Biology.
    Lindroos, Katarina
    Nadvornik, Petr
    Syvänen, Ann-Christine
    Saetre, Glenn-Peter
    Rate of introgression in island versus clinal hybrid zones of Ficedula flycatchers are consistent with regional differences in hybrid fertilityManuscript (Other academic)
  • 21. Bruzelius, Maria
    et al.
    Strawbridge, Rona J
    Trégouët, David-Alexandre
    Wiggins, Kerri L
    Gertow, Karl
    Sabater-Lleal, Maria
    Ohrvik, John
    Bergendal, Annica
    Silveira, Angela
    Sundström, Anders
    Kieler, Helle
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Smith, Nicholas L
    Morange, Pierre-Emmanuel
    Odeberg, Jacob
    Hamsten, Anders
    Influence of coronary artery disease-associated genetic variants on risk of venous thromboembolism2014In: Thrombosis Research, ISSN 0049-3848, E-ISSN 1879-2472, Vol. 134, no 2, p. 426-432Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION:

    We investigated whether genetic variations robustly associated with coronary artery disease are also associated with risk of venous thromboembolism in a well-defined, female case-control study (n=2753) from Sweden.

    MATERIALS AND METHODS:

    39 single nucleotide polymorphisms in 32 loci associated with coronary artery disease in genome-wide association studies were identified in a literature search and genotyped in the ThromboEmbolism Hormone Study (TEHS). Association with venous thromboembolism was assessed by logistic regression.

    RESULTS:

    Only rs579459 in the ABO locus demonstrated a significant association with VTE. A tentative association between ANRIL and VTE in the discovery analysis failed to replicate in a meta-analysis of 4 independent cohorts (total n=7181).

    CONCLUSIONS:

    It appears that only the ABO locus is a shared risk factor for coronary artery disease and VTE.

  • 22.
    Carlsson Almlöf, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Alexsson, Andrei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Imgenberg-Kreuz, Juliana
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Sylwan, Lina
    Karolinska Inst, Dept Biosci & Nutr, Sci Life Lab SciLifeLab, Solna, Sweden..
    Bäcklin, Christofer
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Leonard, Dag
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Nordmark, Gunnel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tandre, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Eloranta, Maija-Leena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Padyukov, Leonid
    Karolinska Univ Hosp, Karolinska Inst, Dept Med, Rheumatol Unit, Stockholm, Sweden..
    Bengtsson, Christine
    Umea Univ, Dept Publ Hlth & Clin Med Rheumatol, Umea, Sweden..
    Jonsen, Andreas
    Lund Univ, Skane Univ Hosp, Dept Clin Sci, Rheumatol, Lund, Sweden..
    Dahlqvist, Solbritt Rantapaa
    Umea Univ, Dept Publ Hlth & Clin Med Rheumatol, Umea, Sweden..
    Sjowall, Christopher
    Linkoping Univ, Dept Clin & Expt Med, AIR Rheumatol, Linkoping, Sweden..
    Bengtsson, Anders A.
    Lund Univ, Skane Univ Hosp, Dept Clin Sci, Rheumatol, Lund, Sweden..
    Gunnarsson, Iva
    Karolinska Univ Hosp, Karolinska Inst, Dept Med, Rheumatol Unit, Stockholm, Sweden..
    Svenungsson, Elisabet
    Karolinska Univ Hosp, Karolinska Inst, Dept Med, Rheumatol Unit, Stockholm, Sweden..
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sandling, Johanna K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Novel risk genes for systemic lupus erythematosus predicted by random forest classification2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 6236Article in journal (Refereed)
    Abstract [en]

    Genome-wide association studies have identified risk loci for SLE, but a large proportion of the genetic contribution to SLE still remains unexplained. To detect novel risk genes, and to predict an individual's SLE risk we designed a random forest classifier using SNP genotype data generated on the "Immunochip" from 1,160 patients with SLE and 2,711 controls. Using gene importance scores defined by the random forest classifier, we identified 15 potential novel risk genes for SLE. Of them 12 are associated with other autoimmune diseases than SLE, whereas three genes (ZNF804A, CDK1, and MANF) have not previously been associated with autoimmunity. Random forest classification also allowed prediction of patients at risk for lupus nephritis with an area under the curve of 0.94. By allele-specific gene expression analysis we detected cis-regulatory SNPs that affect the expression levels of six of the top 40 genes designed by the random forest analysis, indicating a regulatory role for the identified risk variants. The 40 top genes from the prediction were overrepresented for differential expression in B and T cells according to RNA-sequencing of samples from five healthy donors, with more frequent over-expression in B cells compared to T cells.

  • 23. Chen, Doris
    et al.
    Ahlford, Annika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Schnorrer, Frank
    Kalchhauser, Irene
    Fellner, Michaela
    Viràgh, Erika
    Kiss, Istvàn
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Dickson, Barry J
    High-resolution, high-throughput SNP mapping in Drosophila melanogaster2008In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 5, no 4, p. 323-329Article in journal (Refereed)
    Abstract [en]

    Single nucleotide polymorphisms (SNPs) are useful markers for genetic mapping experiments in model organisms. Here we report the establishment of a high-density SNP map and high-throughput genotyping assays for Drosophila melanogaster. Our map comprises 27,367 SNPs in common laboratory Drosophila stocks. These SNPs were clustered within 2,238 amplifiable markers at an average density of 1 marker every 50.3 kb, or 6.3 genes. We have also constructed a set of 62 Drosophila stocks, each of which facilitates the generation of recombinants within a defined genetic interval of 1-2 Mb. For flexible, high-throughput SNP genotyping, we used fluorescent tag-array mini-sequencing (TAMS) assays. We designed and validated TAMS assays for 293 SNPs at an average resolution of 391.3 kb, and demonstrated the utility of these tools by rapidly mapping 14 mutations that disrupt embryonic muscle patterning. These resources enable high-resolution high-throughput genetic mapping in Drosophila.

  • 24. Chernogubova, Ekaterina
    et al.
    Strawbridge, Rona
    Mahdessian, Hovsep
    Malarstig, Anders
    Krapivner, Sergey
    Gigante, Bruna
    Hellenius, Mai-Lis
    de Faire, Ulf
    Franco-Cereceda, Anders
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Troutt, Jason S.
    Konrad, Robert J.
    Eriksson, Per
    Hamsten, Anders
    van 't Hooft, Ferdinand M.
    Common and Low-Frequency Genetic Variants in the PCSK9 Locus Influence Circulating PCSK9 Levels2012In: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 32, no 6, p. 1526-1534Article in journal (Refereed)
    Abstract [en]

    Objective- Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a circulating protein that influences plasma low-density lipoprotein concentration and susceptibility to coronary heart disease. Circulating PCSK9 levels show considerable interindividual differences, but the factors responsible for this variation are largely unknown.

    Methods and Results- We analyzed circulating PCSK9 levels in 4 cohorts of healthy, middle-aged Swedes (n=5722) and found that PCSK9 levels varied over approximate to 50-fold range, showed a positive relationship with plasma low-density lipoprotein-cholesterol concentration, and were associated with plasma triglyceride, fibrinogen, insulin, and glucose concentrations. A genome-wide association study conducted in 2 cohorts (n=1215) failed to uncover common genetic variants robustly associated with variation in circulating PCSK9 level. As expected, the minor allele of the PCSK9 R46L variant was in all cohorts associated with reduced PCSK9 levels and decreased plasma low-density lipoprotein-cholesterol concentrations, but no relationship was observed with the plasma triglyceride concentration. Further mapping of the PCSK9 locus revealed a common polymorphism (rs2479415, minor allele frequency 43.9%), located approximate to 6 kb upstream from PCSK9, which is independently associated with increased circulating PCSK9 levels.

    Conclusion- Common and low-frequency genetic variants in the PCSK9 locus influence the pronounced interindividual variation in circulating PCSK9 levels in healthy, middle-aged white (predominantly Swedish) subjects.

  • 25. Christensen, Lise Lotte
    et al.
    Madsen, Bo E.
    Wikman, Friedrik P.
    Wiuf, Carsten
    Koed, Karen
    Tjønneland, Anne
    Olsen, Anja
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Andersen, Claus L.
    Örntoft, Torben F.
    The association between genetic variants in hMLH1 and hMSH2 and the development of sporadic colorectal cancer in the Danish population2008In: BMC Medical Genetics, ISSN 1471-2350, E-ISSN 1471-2350, Vol. 9, p. 52-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Mutations in the mismatch repair genes hMLH1 and hMSH2 predispose to hereditary non-polyposis colorectal cancer (HNPCC). Genetic screening of more than 350 Danish patients with colorectal cancer (CRC) has led to the identification of several new genetic variants (e.g. missense, silent and non-coding) in hMLH1 and hMSH2. The aim of the present study was to investigate the frequency of these variants in hMLH1 and hMSH2 in Danish patients with sporadic colorectal cancer and in the healthy background population. The purpose was to reveal if any of the common variants lead to increased susceptibility to colorectal cancer.

    METHODS:

    Associations between genetic variants in hMLH1 and hMSH2 and sporadic colorectal cancer were evaluated using a case-cohort design. The genotyping was performed on DNA isolated from blood from the 380 cases with sporadic colorectal cancer and a sub-cohort of 770 individuals. The DNA samples were analyzed using Single Base Extension (SBE) Tag-arrays. A Bonferroni corrected Fisher exact test was used to test for association between the genotypes of each variant and colorectal cancer. Linkage disequilibrium (LD) was investigated using HaploView (v3.31).

    RESULTS:

    Heterozygous and homozygous changes were detected in 13 of 35 analyzed variants. Two variants showed a borderline association with colorectal cancer, whereas the remaining variants demonstrated no association. Furthermore, the genomic regions covering hMLH1 and hMSH2 displayed high linkage disequilibrium in the Danish population. Twenty-two variants were neither detected in the cases with sporadic colorectal cancer nor in the sub-cohort. Some of these rare variants have been classified either as pathogenic mutations or as neutral variants in other populations and some are unclassified Danish variants.

    CONCLUSION:

    None of the variants in hMLH1 and hMSH2 analyzed in the present study were highly associated with colorectal cancer in the Danish population. High linkage disequilibrium in the genomic regions covering hMLH1 and hMSH2, indicate that common genetic variants in the two genes in general are not involved in the development of sporadic colorectal cancer. Nevertheless, some of the rare unclassified variants in hMLH1 and hMSH2 might be involved in the development of colorectal cancer in the families where they were originally identified.

  • 26. Cunninghame Graham, Deborah S
    et al.
    Morris, David L
    Bhangale, Tushar R
    Criswell, Lindsey A
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Behrens, Timothy W
    Graham, Robert R
    Vyse, Timothy J
    Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus2011In: PLoS genetics, ISSN 1553-7404, Vol. 7, no 10, p. e1002341-Article in journal (Refereed)
    Abstract [en]

    Systemic lupus erythematosus (SLE) is a complex trait characterised by the production of a range of auto-antibodies and a diverse set of clinical phenotypes. Currently, ∼8% of the genetic contribution to SLE in Europeans is known, following publication of several moderate-sized genome-wide (GW) association studies, which identified loci with a strong effect (OR>1.3). In order to identify additional genes contributing to SLE susceptibility, we conducted a replication study in a UK dataset (870 cases, 5,551 controls) of 23 variants that showed moderate-risk for lupus in previous studies. Association analysis in the UK dataset and subsequent meta-analysis with the published data identified five SLE susceptibility genes reaching genome-wide levels of significance (P(comb)<5×10(-8)): NCF2 (P(comb) = 2.87×10(-11)), IKZF1 (P(comb) = 2.33×10(-9)), IRF8 (P(comb) = 1.24×10(-8)), IFIH1 (P(comb) = 1.63×10(-8)), and TYK2 (P(comb) = 3.88×10(-8)). Each of the five new loci identified here can be mapped into interferon signalling pathways, which are known to play a key role in the pathogenesis of SLE. These results increase the number of established susceptibility genes for lupus to ∼30 and validate the importance of using large datasets to confirm associations of loci which moderately increase the risk for disease.

  • 27.
    Dahlgren, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Axelsson, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Association of the estrogen receptor 1 (ESR1) gene with body height in adult males from two Swedish population cohorts2008In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 3, no 3, p. e1807-Article in journal (Refereed)
    Abstract [en]

    Human body height is a complex genetic trait with high heritability. We performed an association study of 17 candidate genes for height in the Uppsala Longitudinal Study of Adult Men (ULSAM) that consists of 1153 elderly men of age 70 born in the central region of Sweden. First we genotyped a panel of 137 single nucleotide polymorphism (SNPs) evenly distributed across the candidate genes in the ULSAM cohort. We identified 4 SNPs in the estrogen receptor gene (ESR1) on chromosome 6q25.1 with suggestive signals of association (p<0.05) with standing body height. This result was followed up by genotyping the same 25 SNPs in the ESR1 gene as in ULSAM in a second population cohort, the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort that consist of 507 males and 509 females of age 70 from the same geographical region as ULSAM. One SNP, rs2179922 located in intron 4 of ESR1 showed and association signal (p = 0.0056) in the male samples from the PIVUS cohort. Homozygote carriers of the G-allele of the SNP rs2179922 were on average 0.90 cm taller than individuals with the two other genotypes at this SNP in the ULSAM cohort and 2.3 cm taller in the PIVUS cohort. No association was observed for the females in the PIVUS cohort.

  • 28.
    Dahlgren, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Perola, Markus
    Liljedahl, Ulrika
    Kaprio, Jaakko
    Spector, Tim
    Peltonen, Leena
    Syvänen, Ann-Christine
    Finemapping of a QTL for body height on the human X chromosome in a Finnish twin cohort.Manuscript (Other academic)
  • 29.
    Dahlgren, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Zethelius, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Eriksson, Niklas
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Axelsson, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Berne, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Variants in the HHEX gene are associated with biochemical markers for beta-cell function in the ULSAM cohort2012Article in journal (Refereed)
  • 30.
    Dahlgren, Andreas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Zethelius, Björn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Jensevik, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm , UCR-Uppsala Clinical Research Center.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Berne, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Variants of the TCF7L2 gene are associated with beta cell dysfunction and confer an increased risk of type 2 diabetes mellitus in the ULSAM cohort of Swedish elderly men2007In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 50, no 9, p. 1852-1857Article in journal (Refereed)
    Abstract [en]

    Aims/hypothesis:

    In a population-based cohort of elderly men with well-defined phenotypes and biochemical markers related to type 2 diabetes mellitus, we analysed two single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, in the transcription factor 7-like 2 gene (TCF7L2), which are associated with an increased risk of type 2 diabetes mellitus.

    Materials and methods:

    The 1,142 subjects were from the population-based Uppsala Longitudinal Study of Adult Men cohort study (see http://www.pubcare.uu.se/ULSAM/ , last accessed in May 2007). Insulin sensitivity was assessed using a euglycaemic-hyperinsulinaemic clamp; fasting intact and 32-33 split proinsulin, immunoreactive insulin and specific insulin were measured in plasma samples. The SNPs rs7903146 and rs12255372 were genotyped using a fluorescent homogeneous single base extension assay. The SNP genotypes were analysed against diabetes prevalence at age 70 using logistic regression and against quantitative biochemical measures using linear regression analysis.

    Results:

    We replicated the association with type 2 diabetes mellitus for both SNPs in this cohort of elderly males. The highest significant odds ratio (2.15, 95% CI 1.20-3.85) was found for SNP rs7903146. The odds ratio for SNP rs12255372 was 1.69 (95% CI 1.20-2.39). Both TCF7L2 SNPs were found to be significantly associated with plasma proinsulin when adjusting for insulin sensitivity, both in the whole cohort and when the diabetic subjects were excluded. Analysis for fasting plasma insulin or insulin sensitivity did not give significant results.

    Conclusions/interpretation:

    The association between the risk alleles of the two SNPs studied and levels of proinsulin in plasma, identified when adjusting for insulin sensitivity using euglycaemic-hyperinsulinaemic clamp measurements in this study, is an important novel finding.

  • 31. Dahlén, P
    et al.
    Syvänen, Ann-Christine
    Hurskainen, P
    Kwiatkowski, M
    Sund, C
    Ylikoski, J
    Söderlund, H
    Lövgren, T
    Sensitive detection of genes by sandwich hybridization and time-resolved fluorometry1987In: Molecular and Cellular Probes, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 1, no 2, p. 159-168Article in journal (Refereed)
    Abstract [en]

    Europium has been used as a non-radioactive marker in immunoassays as this metal can be detected with high sensitivity by time-resolved fluorometry. In this work streptavidin labeled with europium was used to detect biotinylated probes in a sandwich nucleic-acid hybridization assay with microtitration strips as the solid phase. pBR 322 plasmids were detected with a sensitivity of 4 × 105 molecules. As the sample is added in solution in sandwich hybridization, fast and simple sample pre-treatment can be used without encountering background problems. The method was applied to test bacterial samples of uropathogenic Escherichia coli strains for the presence of the β-lactamase gene.

  • 32. Dastani, Zari
    et al.
    Hivert, Marie-France
    Timpson, Nicholas
    Perry, John R. B.
    Yuan, Xin
    Scott, Robert A.
    Henneman, Peter
    Heid, Iris M.
    Kizer, Jorge R.
    Lyytikainen, Leo-Pekka
    Fuchsberger, Christian
    Tanaka, Toshiko
    Morris, Andrew P.
    Small, Kerrin
    Isaacs, Aaron
    Beekman, Marian
    Coassin, Stefan
    Lohman, Kurt
    Qi, Lu
    Kanoni, Stavroula
    Pankow, James S.
    Uh, Hae-Won
    Wu, Ying
    Bidulescu, Aurelian
    Rasmussen-Torvik, Laura J.
    Greenwood, Celia M. T.
    Ladouceur, Martin
    Grimsby, Jonna
    Manning, Alisa K.
    Liu, Ching-Ti
    Kooner, Jaspal
    Mooser, Vincent E.
    Vollenweider, Peter
    Kapur, Karen A.
    Chambers, John
    Wareham, Nicholas J.
    Langenberg, Claudia
    Frants, Rune
    Willems-vanDijk, Ko
    Oostra, Ben A.
    Willems, Sara M.
    Lamina, Claudia
    Winkler, Thomas W.
    Psaty, Bruce M.
    Tracy, Russell P.
    Brody, Jennifer
    Chen, Ida
    Viikari, Jorma
    Kahonen, Mika
    Pramstaller, Peter P.
    Evans, David M.
    St Pourcain, Beate
    Sattar, Naveed
    Wood, Andrew R.
    Bandinelli, Stefania
    Carlson, Olga D.
    Egan, Josephine M.
    Bohringer, Stefan
    van Heemst, Diana
    Kedenko, Lyudmyla
    Kristiansson, Kati
    Nuotio, Marja-Liisa
    Loo, Britt-Marie
    Harris, Tamara
    Garcia, Melissa
    Kanaya, Alka
    Haun, Margot
    Klopp, Norman
    Wichmann, H. -Erich
    Deloukas, Panos
    Katsareli, Efi
    Couper, David J.
    Duncan, Bruce B.
    Kloppenburg, Margreet
    Adair, Linda S.
    Borja, Judith B.
    Wilson, James G.
    Musani, Solomon
    Guo, Xiuqing
    Johnson, Toby
    Semple, Robert
    Teslovich, Tanya M.
    Allison, Matthew A.
    Redline, Susan
    Buxbaum, Sarah G.
    Mohlke, Karen L.
    Meulenbelt, Ingrid
    Ballantyne, Christie M.
    Dedoussis, George V.
    Hu, Frank B.
    Liu, Yongmei
    Paulweber, Bernhard
    Spector, Timothy D.
    Slagboom, P. Eline
    Ferrucci, Luigi
    Jula, Antti
    Perola, Markus
    Raitakari, Olli
    Florez, Jose C.
    Salomaa, Veikko
    Eriksson, Johan G.
    Frayling, Timothy M.
    Hicks, Andrew A.
    Lehtimaki, Terho
    Smith, George Davey
    Siscovick, David S.
    Kronenberg, Florian
    van Duijn, Cornelia
    Loos, Ruth J. F.
    Waterworth, Dawn M.
    Meigs, James B.
    Dupuis, Josee
    Richards, J. Brent
    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals2012In: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 8, no 3, p. e1002607-Article in journal (Refereed)
    Abstract [en]

    Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P=4.5 x 10(-8)-1.2 x 10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3 x 10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p=4.3 x 10(-3), n = 22,044), increased triglycerides (p=2.6 x 10(-14), n = 93,440), increased waist-to-hip ratio (p=1.8 x 10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p=4.4 x 10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p=4.5x10(-13), n = 96,748) and decreased BMI (p= 1.4 x 10(-14), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.

  • 33. Davison, Lucy J
    et al.
    Wallace, Chris
    Cooper, Jason D
    Cope, Nathan F
    Wilson, Nicola K
    Smyth, Deborah J
    Howson, Joanna M M
    Saleh, Nada
    Al-Jeffery, Abdullah
    Angus, Karen L
    Stevens, Helen E
    Nutland, Sarah
    Duley, Simon
    Coulson, Richard M R
    Walker, Neil M
    Burren, Oliver S
    Rice, Catherine M
    Cambien, Francois
    Zeller, Tanja
    Munzel, Thomas
    Lackner, Karl
    Blankenberg, Stefan
    Fraser, Peter
    Gottgens, Berthold
    Todd, John A
    Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene2012In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 21, no 2, p. 322-333Article in journal (Refereed)
    Abstract [en]

    The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.

  • 34. Deloukas, Panos
    et al.
    Kanoni, Stavroula
    Willenborg, Christina
    Farrall, Martin
    Assimes, Themistocles L
    Thompson, John R
    Ingelsson, Erik
    Saleheen, Danish
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Erdmann, Jeanette
    Goldstein, Benjamin A
    Stirrups, Kathleen
    König, Inke R
    Cazier, Jean-Baptiste
    Johansson, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Hall, Alistair S
    Lee, Jong-Young
    Willer, Cristen J
    Chambers, John C
    Esko, Tõnu
    Folkersen, Lasse
    Goel, Anuj
    Grundberg, Elin
    Havulinna, Aki S
    Ho, Weang K
    Hopewell, Jemma C
    Eriksson, Niclas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Kleber, Marcus E
    Kristiansson, Kati
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Lyytikäinen, Leo-Pekka
    Rafelt, Suzanne
    Shungin, Dmitry
    Strawbridge, Rona J
    Thorleifsson, Gudmar
    Tikkanen, Emmi
    van Zuydam, Natalie
    Voight, Benjamin F
    Waite, Lindsay L
    Zhang, Weihua
    Ziegler, Andreas
    Absher, Devin
    Altshuler, David
    Balmforth, Anthony J
    Barroso, Inês
    Braund, Peter S
    Burgdorf, Christof
    Claudi-Boehm, Simone
    Cox, David
    Dimitriou, Maria
    Do, Ron
    Doney, Alex S F
    Mokhtari, Noureddine El
    Eriksson, Per
    Fischer, Krista
    Fontanillas, Pierre
    Franco-Cereceda, Anders
    Gigante, Bruna
    Groop, Leif
    Gustafsson, Stefan
    Hager, Jörg
    Hallmans, Göran
    Han, Bok-Ghee
    Hunt, Sarah E
    Kang, Hyun M
    Illig, Thomas
    Kessler, Thorsten
    Knowles, Joshua W
    Kolovou, Genovefa
    Kuusisto, Johanna
    Langenberg, Claudia
    Langford, Cordelia
    Leander, Karin
    Lokki, Marja-Liisa
    Lundmark, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    McCarthy, Mark I
    Meisinger, Christa
    Melander, Olle
    Mihailov, Evelin
    Maouche, Seraya
    Morris, Andrew D
    Müller-Nurasyid, Martina
    Nikus, Kjell
    Peden, John F
    Rayner, N William
    Rasheed, Asif
    Rosinger, Silke
    Rubin, Diana
    Rumpf, Moritz P
    Schäfer, Arne
    Sivananthan, Mohan
    Song, Ci
    Stewart, Alexandre F R
    Tan, Sian-Tsung
    Thorgeirsson, Gudmundur
    Schoot, C Ellen van der
    Wagner, Peter J
    Wells, George A
    Wild, Philipp S
    Yang, Tsun-Po
    Amouyel, Philippe
    Arveiler, Dominique
    Basart, Hanneke
    Boehnke, Michael
    Boerwinkle, Eric
    Brambilla, Paolo
    Cambien, Francois
    Cupples, Adrienne L
    de Faire, Ulf
    Dehghan, Abbas
    Diemert, Patrick
    Epstein, Stephen E
    Evans, Alun
    Ferrario, Marco M
    Ferrières, Jean
    Gauguier, Dominique
    Go, Alan S
    Goodall, Alison H
    Gudnason, Villi
    Hazen, Stanley L
    Holm, Hilma
    Iribarren, Carlos
    Jang, Yangsoo
    Kähönen, Mika
    Kee, Frank
    Kim, Hyo-Soo
    Klopp, Norman
    Koenig, Wolfgang
    Kratzer, Wolfgang
    Kuulasmaa, Kari
    Laakso, Markku
    Laaksonen, Reijo
    Lee, Ji-Young
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Ouwehand, Willem H
    Parish, Sarah
    Park, Jeong E
    Pedersen, Nancy L
    Peters, Annette
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Quertermous, Thomas
    Rader, Daniel J
    Salomaa, Veikko
    Schadt, Eric
    Shah, Svati H
    Sinisalo, Juha
    Stark, Klaus
    Stefansson, Kari
    Trégouët, David-Alexandre
    Virtamo, Jarmo
    Wallentin, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Wareham, Nicholas
    Zimmermann, Martina E
    Nieminen, Markku S
    Hengstenberg, Christian
    Sandhu, Manjinder S
    Pastinen, Tomi
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Hovingh, G Kees
    Dedoussis, George
    Franks, Paul W
    Lehtimäki, Terho
    Metspalu, Andres
    Zalloua, Pierre A
    Siegbahn, Agneta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Coagulation and inflammation science.
    Schreiber, Stefan
    Ripatti, Samuli
    Blankenberg, Stefan S
    Perola, Markus
    Clarke, Robert
    Boehm, Bernhard O
    O'Donnell, Christopher
    Reilly, Muredach P
    März, Winfried
    Collins, Rory
    Kathiresan, Sekar
    Hamsten, Anders
    Kooner, Jaspal S
    Thorsteinsdottir, Unnur
    Danesh, John
    Palmer, Colin N A
    Roberts, Robert
    Watkins, Hugh
    Schunkert, Heribert
    Samani, Nilesh J
    Large-scale association analysis identifies new risk loci for coronary artery disease2013In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 45, no 1, p. 25-33Article in journal (Refereed)
    Abstract [en]

    Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r2 < 0.2) strongly associated with CAD at a 5% false discovery rate (FDR). Together, these variants explain approximately 10.6% of CAD heritability. Of the 46 genome-wide significant lead SNPs, 12 show a significant association with a lipid trait, and 5 show a significant association with blood pressure, but none is significantly associated with diabetes. Network analysis with 233 candidate genes (loci at 10% FDR) generated 5 interaction networks comprising 85% of these putative genes involved in CAD. The four most significant pathways mapping to these networks are linked to lipid metabolism and inflammation, underscoring the causal role of these activities in the genetic etiology of CAD. Our study provides insights into the genetic basis of CAD and identifies key biological pathways.

  • 35.
    den Hoed, Marcel
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Strawbridge, Rona J
    Almgren, Peter
    Gustafsson, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Axelsson, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Engström, Gunnar
    de Faire, Ulf
    Hedblad, Bo
    Humphries, Steve E
    Lindgren, Cecilia M
    Morris, Andrew P
    Östling, Gerd
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Tremoli, Elena
    Hamsten, Anders
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Melander, Olle
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    GWAS-identified loci for coronary heart disease are associated with intima-media thickness and plaque presence at the carotid artery bulb2015In: Atherosclerosis, ISSN 0021-9150, E-ISSN 1879-1484, Vol. 239, no 2, p. 304-310Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Large-scale genome-wide association studies (GWAS) have so far identified 45 loci that are robustly associated with coronary heart disease (CHD) in data from adult men and women of European descent.

    OBJECTIVES: To examine whether the CHD-associated loci are associated with measures of atherosclerosis in data from up to 9582 individuals of European ancestry.

    METHODS: Forty-five SNPs representing the CHD-associated loci were genotyped in middle-aged to elderly individuals of European descent from four independent population-based studies (IMPROVE, MDC-CC, ULSAM and PIVUS). Intima-media thickness (IMT) was measured by external B-mode ultrasonography at the far wall of the bulb (sinus) and common carotid artery. Plaque presence was defined as a maximal IMT of the bulb >1.5 mm. We meta-analysed single-SNP associations across the four studies, and combined them in a genetic predisposition score. We subsequently examined the association of the genetic predisposition score with prevalent CHD and the three indices of atherosclerosis, adjusting for sex, age and Framingham risk factors.

    RESULTS: As anticipated, the genetic predisposition score was associated with prevalent CHD, with each additional risk allele increasing the odds of disease by 5.5% (p = 4.1 × 10(-6)). Moreover, each additional CHD-risk allele across the 45 loci was associated with a 0.24% increase in IMT (p = 4.0 × 10(-3)), and with a 2.8% increased odds of plaque presence (p = 7.4 × 10(-6)) at the far wall of the bulb. The genetic predisposition score was not associated with IMT of the common carotid artery (p = 0.47).

    CONCLUSIONS: Our results suggest that the association between the 45 previously identified loci and CHD at least partly acts through atherosclerosis.

  • 36.
    Dideberg, Vinciane
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Kristjansdottir, Gudlaug
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Milani, Lili
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Libioulle, C.
    Sigurdsson, Snaevar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Louis, E.
    Wiman, Ann-Christin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Vermeire, S.
    Rutgeerts, P.
    Belaiche, J.
    Franchimont, D.
    Van Gossum, A.
    Bours, V.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    An insertion-deletion polymorphism in the Interferon Regulatory Factor 5 (IRF5) gene confers risk of inflammatory bowel diseases2007In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 16, no 24, p. 3008-3016Article in journal (Refereed)
    Abstract [en]

    The interferon regulatory factor 5 (IRF5) gene encodes a transcriptionfactor that plays an important role in the innate as well asin the cell-mediated immune responses. The IRF5 gene has beenshown to be associated with systemic lupus erythematosus andrheumatoid arthritis. We studied whether the IRF5 gene is alsoassociated with inflammatory bowel diseases (IBD), Crohn disease(CD) and ulcerative colitis (UC). Twelve polymorphisms in theIRF5 gene were genotyped in a cohort of 1007 IBD patients (748CD and 241 UC) and 241 controls from Wallonia, Belgium. Thesame polymorphisms were genotyped in a confirmatory cohort of311 controls and 687 IBD patients (488 CD and 192 UC) from Leuven,Belgium. A strong signal of association (p = 1.9 x 10–5,OR: 1.81 (1.37-2.39)) with IBD was observed for a 5bp indel(CGGGG) polymorphism in the promoter region of the IRF5 gene.The association was detectable (p = 6.8 x 10–4) also inCD patients, and was particularly strong among the UC patients(p = 5.3 x 10–8, OR 2.42 (1.76 -3.34)). The associationof the CGGGG indel was confirmed in the second cohort (p = 3.2x 10–5, OR 1.59 (1.28 - 1.98)). The insertion of one CGGGGunit is predicted to create an additional binding site for thetranscription factor SP1. Using an electrophoretic mobilityshift assay we show allele-specific differences in protein bindingto this repetitive DNA-stretch, which suggest a potential functionrole for the CGGGG indel.

  • 37. Edvardsen, H.
    et al.
    Brunsvig, P F.
    Solvang, H.
    Tsalenko, A.
    Andersen, A.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Yakhini, Z.
    Børresen-Dale, A-L.
    Olsen, H.
    Aamdal, S.
    Kristensen, V. N.
    SNPs in genes coding for ROS metabolism and signalling in association with docetaxel clearance2010In: The Pharmacogenomics Journal, ISSN 1470-269X, E-ISSN 1473-1150, Vol. 10, no 6, p. 513-523Article in journal (Refereed)
    Abstract [en]

    The dose of docetaxel is currently calculated based on body surface area and does not reflect the pharmacokinetic, metabolic potential or genetic background of the patients. The influence of genetic variation on the clearance of docetaxel was analysed in a two-stage analysis. In step one, 583 single-nucleotide polymorphisms (SNPs) in 203 genes were genotyped on samples from 24 patients with locally advanced non-small cell lung cancer. We found that many of the genes harbour several SNPs associated with clearance of docetaxel. Most notably these were four SNPs in EGF, three SNPs in PRDX4 and XPC, and two SNPs in GSTA4, TGFBR2, TNFAIP2, BCL2, DPYD and EGFR. The multiple SNPs per gene suggested the existence of common haplotypes associated with clearance. These were confirmed with detailed haplotype analysis. On the basis of analysis of variance (ANOVA), quantitative mutual information score (QMIS) and Kruskal-Wallis (KW) analysis SNPs significantly associated with clearance of docetaxel were confirmed for GSTA4, PRDX4, TGFBR2 and XPC and additional putative markers were found in CYP2C8, EPHX1, IGF2, IL1R2, MAPK7, NDUFB4, TGFBR3, TPMT (2 SNPs), (P<0.05 or borderline significant for all three methods, 14 SNPs in total). In step two, these 14 SNPs were genotyped in additional 9 samples and the results combined with the genotyping results from the first step. For 7 of the 14 SNPs, the results are still significant/borderline significant by all three methods: ANOVA, QMIS and KW analysis strengthening our hypothesis that they are associated with the clearance of docetaxel..

  • 38. Edvardsen, Hege
    et al.
    Alaes, Grethe Irene Grenaker
    Tsalenko, Anya
    Mulcahy, Tanya
    Yuryev, Anton
    Lindersson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Lien, Sigbjörn
    Omholt, Stig
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Borresen-Dale, Anne-Lise
    Kristensen, Vessela N.
    Experimental validation of data mined single nucleotide polymorphisms from several databases and consecutive dbSNP builds2006In: Pharmacogenetics & Genomics, ISSN 1744-6872, E-ISSN 1744-6880, Vol. 16, no 3, p. 207-217Article in journal (Refereed)
    Abstract [en]

    Rapid development in the annotation of human genetic variation has increased the numbers of single nucleotide polymorphisms (SNPs) in candidate genes by several orders of magnitude. The selection of both useful target SNPs; for disease-gene association studies and SNPs associated with the treatment response is therefore an increasingly challenging task. We describe a workflow for selecting SNPs based on their putative function and frequency in candidate genes extracted from PubMed resources. The annotation of each SNP and its frequency in a Caucasian population was assessed in several databases. Approximately 4000 SNPs were identified from an initial 233 candidate genes. In a case study, we performed actual genotyping of 1030 of these SNPs in 213 genes and obtained 710 successfully genotyped SNPs. Using the flow-chart outlined here, only 87 SNPs were monomorphic (approximately 12%). This study reports the frequency of SNPs in a Caucasian population, selected in silico, using a candidate gene approach and validated by actually genotyping 193 individuals. The selected genotypes represent a valuable set of verified candidate SNPs for pharmacogenetic studies in Caucasian populations.

  • 39. Edvardsen, Hege
    et al.
    Landmark-Høyvik, Hege
    Reinertsen, Kristin V
    Zhao, Xi
    Grenaker-Alnæs, Grethe Irene
    Nebdal, Daniel
    Syvänen, Ann-Christine
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Rødningen, Olaug
    Alsner, Jan
    Overgaard, Jens
    Borresen-Dale, Anne-Lise
    Fosså, Sophie D
    Kristensen, Vessela N
    SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling.2013In: International journal of radiation oncology, biology, physics, ISSN 1879-355x, Vol. 86, no 4, p. 791-9Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs).

    METHODS AND MATERIALS: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independent BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients.

    RESULTS: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005).

    CONCLUSION: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance.

  • 40. Eriksson, Anna L.
    et al.
    Lorentzon, Mattias
    Vandenput, Liesbeth
    Labrie, Fernand
    Lindersson, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Orwoll, Eric S.
    Cummings, Steven R.
    Zmuda, Joseph M.
    Ljunggren, Östen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Karlsson, Magnus K.
    Mellström, Dan
    Ohlsson, Claes
    Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men2009In: Journal of Clinical Endocrinology and Metabolism, ISSN 0021-972X, E-ISSN 1945-7197, Vol. 94, no 3, p. 1033-1041Article in journal (Refereed)
    Abstract [en]

    Context:

    The risk of many conditions, including prostate cancer, breast cancer, and osteoporosis, is associated with serum levels of sex steroids.

    Objective:

    The aim of the study was to identify genetic variations in sex steroid-related genes that are associated with serum levels of estradiol (E2) and/or testosterone in men.

    Design:

    Genotyping of 604 single nucleotide polymorphisms in 50 sex steroid-related candidate genes was performed in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study (n = 1041 men; age, 18.9 ± 0.6 yr). Replications of significant associations were performed in the Osteoporotic Fractures in Men (MrOS) Sweden study (n = 2568 men; age, 75.5 ± 3.2 yr) and in the MrOS US study (n = 1922 men; age, 73.5 ± 5.8 yr). Serum E2, testosterone, and estrone (E1) levels were analyzed using gas chromatography/mass spectrometry.

    Results:

    The screening in the GOOD cohort identified the single nucleotide polymorphism rs2470152 in intron 1 of the CYP19 gene, which codes for aromatase, responsible for the final step of the biosynthesis of E2 and E1, to be most significantly associated with serum E2 levels (P = 2 × 10−6). This association was confirmed both in the MrOS Sweden study (P = 9 × 10−7) and in the MrOS US study (P = 1 × 10−4). When analyzed in all subjects (n = 5531), rs2470152 was clearly associated with both E2 (P = 2 × 10−14) and E1 (P = 8 × 10−19) levels. In addition, this polymorphism was modestly associated with lumbar spine BMD (P < 0.01) and prevalent self-reported fractures (P < 0.05).

    Conclusions:

    rs2470152 of the CYP19 gene is clearly associated with serum E2 and E1 levels in men.

  • 41.
    Eriksson, Karin G.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Zickert, Agneta
    Sandling, Johanna K.
    Jonsen, Andreas
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Behrens, Timothy W.
    Graham, Robert R.
    Ortmann, Ward
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Gunnarsson, Iva
    Nordmark, Gunnel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Association of STAT4, IRF5 and BLK polymorphisms with severity and outcome in lupus nephritis2012In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 71, p. A55-A55Article in journal (Other academic)
  • 42.
    Fall, Tove
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hägg, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Maegi, Reedik
    Ploner, Alexander
    Fischer, Krista
    Horikoshi, Momoko
    Sarin, Antti-Pekka
    Thorleifsson, Gudmar
    Ladenvall, Claes
    Kals, Mart
    Kuningas, Maris
    Draisma, Harmen H. M.
    Ried, Janina S.
    van Zuydam, Natalie R.
    Huikari, Ville
    Mangino, Massimo
    Sonestedt, Emily
    Benyamin, Beben
    Nelson, Christopher P.
    Rivera, Natalia V.
    Kristiansson, Kati
    Shen, Huei-yi
    Havulinna, Aki S.
    Dehghan, Abbas
    Donnelly, Louise A.
    Kaakinen, Marika
    Nuotio, Marja-Liisa
    Robertson, Neil
    de Bruijn, Renee F. A. G.
    Ikram, M. Arfan
    Amin, Najaf
    Balmforth, Anthony J.
    Braund, Peter S.
    Doney, Alexander S. F.
    Doering, Angela
    Elliott, Paul
    Esko, Tonu
    Franco, Oscar H.
    Gretarsdottir, Solveig
    Hartikainen, Anna-Liisa
    Heikkila, Kauko
    Herzig, Karl-Heinz
    Holm, Hilma
    Hottenga, Jouke Jan
    Hypponen, Elina
    Illig, Thomas
    Isaacs, Aaron
    Isomaa, Bo
    Karssen, Lennart C.
    Kettunen, Johannes
    Koenig, Wolfgang
    Kuulasmaa, Kari
    Laatikainen, Tiina
    Laitinen, Jaana
    Lindgren, Cecilia
    Lyssenko, Valeriya
    Laara, Esa
    Rayner, Nigel W.
    Mannisto, Satu
    Pouta, Anneli
    Rathmann, Wolfgang
    Rivadeneira, Fernando
    Ruokonen, Aimo
    Savolainen, Markku J.
    Sijbrands, Eric J. G.
    Small, Kerrin S.
    Smit, Jan H.
    Steinthorsdottir, Valgerdur
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Taanila, Anja
    Tobin, Martin D.
    Uitterlinden, Andre G.
    Willems, Sara M.
    Willemsen, Gonneke
    Witteman, Jacqueline
    Perola, Markus
    Evans, Alun
    Ferrieres, Jean
    Virtamo, Jarmo
    Kee, Frank
    Tregouet, David-Alexandre
    Arveiler, Dominique
    Amouyel, Philippe
    Ferrario, Marco M.
    Brambilla, Paolo
    Hall, Alistair S.
    Heath, AndrewC.
    Madden, Pamela A. F.
    Martin, Nicholas G.
    Montgomery, Grant W.
    Whitfield, John B.
    Jula, Antti
    Knekt, Paul
    Oostra, Ben
    van Duijn, Cornelia M.
    Penninx, Brenda W. J. H.
    Smith, George Davey
    Kaprio, Jaakko
    Samani, Nilesh J.
    Gieger, Christian
    Peters, Annette
    Wichmann, H. -Erich
    Boomsma, Dorret I.
    de Geus, Eco J. C.
    Tuomi, TiinaMaija
    Power, Chris
    Hammond, Christopher J.
    Spector, Tim D.
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Orho-Melander, Marju
    Palmer, Colin Neil Alexander
    Morris, Andrew D.
    Groop, Leif
    Jarvelin, Marjo-Riitta
    Salomaa, Veikko
    Vartiainen, Erkki
    Hofman, Albert
    Ripatti, Samuli
    Metspalu, Andres
    Thorsteinsdottir, Unnur
    Stefansson, Kari
    Pedersen, Nancy L.
    McCarthy, Mark I.
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Prokopenko, Inga
    The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis2013In: PLoS Medicine, ISSN 1549-1277, E-ISSN 1549-1676, Vol. 10, no 6, p. e1001474-Article in journal (Refereed)
    Abstract [en]

    Background: The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings: We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age-and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI-trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03-1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1-1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions: We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.

  • 43.
    Fall, Tove
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hägg, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ploner, Alexander
    Mägi, Reedik
    Fischer, Krista
    Draisma, Harmen H M
    Sarin, Antti-Pekka
    Benyamin, Beben
    Ladenvall, Claes
    Åkerlund, Mikael
    Kals, Mart
    Esko, Tõnu
    Nelson, Christopher P
    Kaakinen, Marika
    Huikari, Ville
    Mangino, Massimo
    Meirhaeghe, Aline
    Kristiansson, Kati
    Nuotio, Marja-Liisa
    Kobl, Michael
    Grallert, Harald
    Dehghan, Abbas
    Kuningas, Maris
    de Vries, Paul S
    de Bruijn, Renée F A G
    Willems, Sara M
    Heikkilä, Kauko
    Silventoinen, Karri
    Pietiläinen, Kirsi H
    Legry, Vanessa
    Giedraitis, Vilmantas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Goumidi, Louisa
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Strauch, Konstantin
    Koenig, Wolfgang
    Lichtner, Peter
    Herder, Christian
    Palotie, Aarno
    Menni, Cristina
    Uitterlinden, André G
    Kuulasmaa, Kari
    Havulinna, Aki S
    Moreno, Luis A
    Gonzalez-Gross, Marcela
    Evans, Alun
    Tregouet, David-Alexandre
    Yarnell, John W G
    Virtamo, Jarmo
    Ferrières, Jean
    Veronesi, Giovanni
    Perola, Markus
    Arveiler, Dominique
    Brambilla, Paolo
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Kaprio, Jaakko
    Hofman, Albert
    Stricker, Bruno H
    van Duijn, Cornelia M
    Ikram, M Arfan
    Franco, Oscar H
    Cottel, Dominique
    Dallongeville, Jean
    Hall, Alistair S
    Jula, Antti
    Tobin, Martin D
    Penninx, Brenda W
    Peters, Annette
    Gieger, Christian
    Samani, Nilesh J
    Montgomery, Grant W
    Whitfield, John B
    Martin, Nicholas G
    Groop, Leif
    Spector, Tim D
    Magnusson, Patrik K
    Amouyel, Philippe
    Boomsma, Dorret I
    Nilsson, Peter M
    Järvelin, Marjo-Riitta
    Lyssenko, Valeriya
    Metspalu, Andres
    Strachan, David P
    Salomaa, Veikko
    Ripatti, Samuli
    Pedersen, Nancy L
    Prokopenko, Inga
    McCarthy, Mark I
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Age- and sex-specific causal effects of adiposity on cardiovascular risk factors2015In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 64, no 5, p. 1841-1852Article in journal (Refereed)
    Abstract [en]

    Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.

  • 44. Feng, Di
    et al.
    Stone, Rivka C.
    Eloranta, Maija-Leena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Sangster-Guity, Niquiche
    Nordmark, Gunnel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Sigurdsson, Snaevar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Wang, Chuan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Alm, Gunnar
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Barnes, Betsy J.
    Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus2010In: Arthritis and Rheumatism, ISSN 0004-3591, E-ISSN 1529-0131, Vol. 62, no 2, p. 562-573Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: Genetic variants of the interferon (IFN) regulatory factor 5 gene (IRF5) are associated with susceptibility to systemic lupus erythematosus (SLE). The contribution of these variants to IRF-5 expression in primary blood cells of SLE patients has not been addressed, nor has the role of type I IFNs. The aim of this study was to determine the association between increased IRF-5 expression and the IRF5 risk haplotype in SLE patients. METHODS: IRF-5 transcript and protein levels in 44 Swedish patients with SLE and 16 healthy controls were measured by quantitative real-time polymerase chain reaction, minigene assay, and flow cytometry. Single-nucleotide polymorphisms rs2004640, rs10954213, and rs10488631 and the CGGGG insertion/deletion were genotyped in these patients. Genotypes of these polymorphisms defined both a common risk haplotype and a common protective haplotype. RESULTS: IRF-5 expression and alternative splicing were significantly up-regulated in SLE patients compared with healthy donors. Enhanced transcript and protein levels were associated with the risk haplotype of IRF5; rs10488631 displayed the only significant independent association that correlated with increased transcription from the noncoding first exon 1C. Minigene experiments demonstrated an important role for rs2004640 and the CGGGG insertion/deletion, along with type I IFNs, in regulating IRF5 expression. CONCLUSION: This study provides the first formal proof that IRF-5 expression and alternative splicing are significantly up-regulated in primary blood cells of patients with SLE. Furthermore, the risk haplotype is associated with enhanced IRF-5 transcript and protein expression in patients with SLE.

  • 45.
    Flannick, Jason
    et al.
    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA.;Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Fuchsberger, Christian
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Mahajan, Anubha
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Teslovich, Tanya M.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Agarwala, Vineeta
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;MIT, Harvard Div Hlth Sci & Technol, Cambridge, MA USA..
    Gaulton, Kyle J.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Caulkins, Lizz
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Koesterer, Ryan
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Ma, Clement
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Moutsianas, Loukas
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    McCarthy, Davis J.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Dept Stat, Oxford, England..
    Rivas, Manuel A.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Perry, John R. B.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Exeter, Univ Exeter Med Sch, Genet Complex Traits, Exeter, Devon, England.;Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England.;Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Sim, Xueling
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Blackwell, Thomas W.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Robertson, Neil R.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Rayner, N. William
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England..
    Cingolani, Pablo
    McGill Univ, Sch Comp Sci, Montreal, PQ, Canada.;McGill Univ, Genome Quebec Innovat Ctr, Montreal, PQ H3A 2T5, Canada..
    Locke, Adam E.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Tajes, Juan Fernandez
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Highland, Heather M.
    Univ Texas Grad Sch Biomed Sci, Ctr Human Genet, Univ Texas Hlth Sci Ctr, Houston, TX USA..
    Dupuis, Josee
    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA.;Boston Univ Sch Publ Hlth, Dept Biostatist, Boston, MA USA.;Nat Heart Lung & Blood Inst Framingham Heart Stud, Framingham, MA USA..
    Chines, Peter S.
    NIH, Natl Human Genome Res Inst, Med Genom & Metab Genet Branch, Bethesda, MD USA..
    Lindgren, Cecilia M.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Hartl, Christopher
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Jackson, Anne U.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Chen, Han
    Boston Univ Sch Publ Hlth, Dept Biostatist, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Biostatist, Boston, MA USA..
    Huyghe, Jeroen R.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    De Bunt, Martijn Van
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Pearson, Richard D.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Kumar, Ashish
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Basel, Swiss Trop & Publ Hlth Inst, Chron Dis Epidemiol, Basel, Switzerland..
    Muller-Nurasyid, Martina
    German Res Ctr Environm Hlth, Inst Genet Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany.;Univ Hosp Grosshadern, Ludwig Maximilians Univ, Dept Med I, Munich, Germany.;Ludwig Maximilians Univ Munchen, IBE, Chair Genet Epidemiol, Fac Med, Munich, Germany.;DZHK German Ctr Cardiovascular Res, Munich Heart Alliance, Munich, Germany..
    Grarup, Niels
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Stringham, Heather M.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Gamazon, Eric R.
    Univ Chicago, Med Genet Sect, Dept Med, Chicago, IL USA..
    Lee, Jaehoon
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Chen, Yuhui
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Scott, Robert A.
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Below, Jennifer E.
    Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Ctr Human Genet, Houston, TX USA..
    Chen, Peng
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Huang, Jinyan
    Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA..
    Go, Min Jin
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Stitzel, Michael L.
    Jackson Lab Genom Med, Farmington, CT USA..
    Pasko, Dorota
    Univ Exeter, Univ Exeter Med Sch, Genet Complex Traits, Exeter, Devon, England..
    Parker, Stephen C. J.
    Univ Michigan, Dept Computat Med Bioinformat, Ann Arbor, MI USA.;Univ Michigan, Dept Human Genet, Ann Arbor, MI USA..
    Varga, Tibor V.
    Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Genet & Mol Epidemiol Unit, Malmo, Sweden..
    Green, Todd
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Beer, Nicola L.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Day-Williams, Aaron G.
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England..
    Ferreira, Teresa
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England..
    Fingerlin, Tasha
    Univ Colorado, Colorado Sch Publ Hlth, Dept Epidemiol, Aurora, CO USA..
    Horikoshi, Momoko
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Hu, Cheng
    Shanghai Jiao Tong Univ, Shanghai Diabet Inst, Dept Endocrinol & Metab, Sixth Peoples Hosp, Shanghai, Peoples R China..
    Huh, Iksoo
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Ikram, Mohammad Kamran
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Eye Acad Clin Programme, Duke NUS Grad Med Sch, Singapore, Singapore..
    Kim, Bong-Jo
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Kim, Yongkang
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Kim, Young Jin
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Kwon, Min-Seok
    Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Lee, Juyoung
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Lee, Selyeong
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Lin, Keng-Han
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Maxwell, Taylor J.
    Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Ctr Human Genet, Houston, TX USA..
    Nagai, Yoshihiko
    McGill Univ, Genome Quebec Innovat Ctr, Montreal, PQ H3A 2T5, Canada.;McGill Univ, Dept Human Genet, Montreal, PQ, Canada.;Res Inst McGill Univ Hlth Ctr, Montreal, PQ, Canada..
    Wang, Xu
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Welch, Ryan P.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Yoon, Joon
    Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Zhang, Weihua
    Imperial Coll London, Dept Epidemiol & Biostat, London, England.;Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England..
    Barzilai, Nir
    Albert Einstein Coll Med, Dept Med, New York, NY USA.;Albert Einstein Coll Med, Dept Genet, New York, NY USA..
    Voight, Benjamin F.
    Univ Pennsylvania, Dept Syst Pharmacol & Translat Therapeut, Perelman Sch Med, Philadelphia, PA USA.;Univ Pennsylvania, Dept Genet, Perelman Sch Med, Philadelphia, PA USA..
    Han, Bok-Ghee
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Jenkinson, Christopher P.
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA.;South Texas Vet Hlth Care Syst, Res, San Antonio, TX USA..
    Kuulasmaa, Teemu
    Univ Eastern Finland, Inst Clin Med, Fac Hlth Sci, Internal Med, Kuopio, Finland..
    Kuusisto, Johanna
    Univ Eastern Finland, Inst Clin Med, Fac Hlth Sci, Internal Med, Kuopio, Finland.;Kuopio Univ Hosp, Kuopio, Finland..
    Manning, Alisa
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Ng, Maggie C. Y.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA..
    Palmer, Nicholette D.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Balkau, Beverley
    Inserm U1018, Ctr Res Epidemiol & Populat Hlth, Villejuif, France..
    Stancakova, Alena
    Univ Eastern Finland, Inst Clin Med, Fac Hlth Sci, Internal Med, Kuopio, Finland..
    Abboud, Hanna E.
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA..
    Boeing, Heiner
    German Inst Human Nutr Potsdam Rehbrucke, Nuthetal, Germany..
    Giedraitis, Vilmantas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Prabhakaran, Dorairaj
    Ctr Chron Dis Control, New Delhi, India..
    Gottesman, Omri
    Charles Bronfman Inst Personalized Med, Icahn Sch Med, Mt Sinai, New York, NY USA..
    Scott, James
    Natl Heart & Lung Inst, Cardiovascular Sci, Imperial Coll London, Hammersmith Campus, London, England..
    Carey, Jason
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Kwan, Phoenix
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Grant, George
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Smith, Joshua D.
    Univ Washington Sch Med, Dept Genome Sci, Seattle, WA USA..
    Neale, Benjamin M.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Analyt & Translat Genet Unit, Boston, MA USA..
    Purcell, Shaun
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Ctr Genom Med, Boston, MA USA.;Icahn Inst Genom & Multiscale Biol, Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY USA..
    Butterworth, Adam S.
    Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Howson, Joanna M. M.
    Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Lee, Heung Man
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China..
    Lu, Yingchang
    Charles Bronfman Inst Personalized Med, Icahn Sch Med, Mt Sinai, New York, NY USA..
    Kwak, Soo-Heon
    Seoul Natl Univ Coll Med, Dept Internal Med, Seoul, South Korea..
    Zhao, Wei
    Univ Pennsylvania, Dept Med, Philadelphia, PA USA..
    Danesh, John
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, NIHR Blood & Transplant Res Unit Donor Hlth & Gen, Cambridge, England..
    Lam, Vincent K. L.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China..
    Park, Kyong Soo
    Seoul Natl Univ, Dept Mol Med & Biopharmaceut Sci, Grad Sch Convergence Sci & Technol, Seoul, South Korea.;Seoul Natl Univ, Coll Med, Seoul, South Korea..
    Saleheen, Danish
    Univ Pennsylvania, Dept Biostatist & Epidemiol, Philadelphia, PA USA.;Ctr Non Communicable Dis, Karachi, Pakistan..
    So, Wing Yee
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China..
    Tam, Claudia H. T.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China..
    Afzal, Uzma
    Imperial Coll London, Dept Epidemiol & Biostat, London, England..
    Aguilar, David
    Baylor Coll Med, Cardiovascular Div, Houston, TX USA..
    Arya, Rector
    Univ Texas Hlth Sci Ctr, Dept Pediat, San Antonio, TX USA..
    Aung, Tin
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Eye Acad Clin Programme, Duke NUS Grad Med Sch, Singapore, Singapore..
    Chan, Edmund
    Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Med, Singapore, Singapore..
    Navarro, Carmen
    Murcia Reg Hlth Council, Dept Epidemiol, IMIB Arrixaca, Murcia, Spain.;CIBER Epidemiol Salud Publ CIBERESP, Madrid, Spain.;Univ Murcia, Sch Med, Unit Prevent Med & Publ Hlth, Murcia, Spain..
    Cheng, Ching-Yu
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Eye Acad Clin Programme, Duke NUS Grad Med Sch, Singapore, Singapore..
    Palli, Domenico
    Canc Res & Prevent Inst ISPO, Florence, Italy..
    Correa, Adolfo
    Univ Mississippi Med Ctr, Dept Med, Jackson, MS USA..
    Curran, Joanne E.
    Univ Texas Hlth Sci Ctr, San Antonio Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Rybin, Dennis
    Boston Univ Sch Publ Hlth, Dept Biostatist, Boston, MA USA..
    Farook, Vidya S.
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Fowler, Sharon P.
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA..
    Freedman, Barry I.
    Wake Forest Sch Med, Nephrol Sect, Dept Internal Med, Winston Salem, NC USA..
    Griswold, Michael
    Univ Mississippi, Med Ctr, Ctr Biostat & Bioinformat, Jackson, MS 39216 USA..
    Hale, Daniel Esten
    Univ Texas Hlth Sci Ctr, Dept Pediat, San Antonio, TX USA..
    Hicks, Pamela J.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Khor, Chiea-Chuen
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Dept Paediat, Yong Loo Lin Sch Med, Singapore, Singapore..
    Kumar, Satish
    Univ Texas Hlth Sci Ctr, San Antonio Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Lehne, Benjamin
    Imperial Coll London, Dept Epidemiol & Biostat, London, England..
    Thuillier, Dorothee
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France..
    Lim, Wei Yen
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Liu, Jianjun
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;ASTAR, Genome Inst Singapore, Divis Human Genet, Singapore, Singapore..
    Loh, Marie
    Imperial Coll London, Dept Epidemiol & Biostat, London, England.;Univ Oulu, Inst Hlth Sci, Oulu, Finland.;ASTAR, Translat Lab Genet Med TLGM, Singapore, Singapore..
    Musani, Solomon K.
    Univ Mississippi, Med Ctr, Jackson Heart Study, Jackson, MS 39216 USA..
    Puppala, Sobha
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Scott, William R.
    Imperial Coll London, Dept Epidemiol & Biostat, London, England..
    Yengo, Loic
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France..
    Tan, Sian-Tsung
    Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Natl Heart & Lung Inst, Cardiovascular Sci, Imperial Coll London, Hammersmith Campus, London, England..
    Taylor, Herman A.
    Univ Mississippi Med Ctr, Dept Med, Jackson, MS USA..
    Thameem, Farook
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA..
    Wilson, Gregory
    Jackson State Univ, Coll Publ Serv, Jackson, MS USA..
    Wong, Tien Yin
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Eye Acad Clin Programme, Duke NUS Grad Med Sch, Singapore, Singapore..
    Njolstad, Pal Rasmus
    Univ Bergen, Dept Clin Sci, KG Jebsen Ctr Diabet Res, Bergen, Norway.;Haukeland Hosp, Dept Pediat, Bergen, Norway..
    Levy, Jonathan C.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Mangino, Massimo
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England.;Guys & St Thomas Fdn Trust, NIHR Biomed Res Ctr, London, England..
    Bonnycastle, Lori L.
    NIH, Natl Human Genome Res Inst, Med Genom & Metab Genet Branch, Bethesda, MD USA..
    Schwarzmayr, Thomas
    Helmholtz Zentrum Munchen, Inst Human Genet, German Res Ctr Environm Hlth, Neuherberg, Germany..
    Fadista, Joao
    Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden..
    Surdulescu, Gabriela L.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Herder, Christian
    Heinrich Heine Univ, German Diabet Ctr, Leibniz Ctr Diabet Res, Inst Clin Diabetol, Dusseldorf, Germany.;German Ctr Diabet Res DZD, Munich, Germany..
    Groves, Christopher J.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Wieland, Thomas
    Helmholtz Zentrum Munchen, Inst Human Genet, German Res Ctr Environm Hlth, Neuherberg, Germany..
    Bork-Jensen, Jette
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Brandslund, Ivan
    Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark.;Vejle Hosp, Dept Clin Biochem, Vejle, Denmark..
    Christensen, Cramer
    Vejle Hosp, Dept Internal Med & Endocrinol, Vejle, Denmark..
    Koistinen, Heikki A.
    Natl Inst Hlth & Welf, Dept Hlth, Helsinki, Finland.;Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Helsinki Univ Cent Hosp, Abdominal Ctr Endocrinol, Helsinki, Finland.;Minerva Fdn, Helsinki, Finland.;Univ Helsinki, Dept Med, Helsinki, Finland.;Helsinki Univ Cent Hosp, Dept Med, Helsinki, Finland..
    Doney, Alex S. F.
    Med Res Inst, Ninewells Hosp & Med Sch, Divis Cardiovascular & Diabet Med, Dundee, Scotland..
    Kinnunen, Leena
    Natl Inst Hlth & Welf, Dept Hlth, Helsinki, Finland..
    Esko, Tonu
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Univ Tartu, Estonian Genome Ctr, Tartu, Estonia.;Harvard Med Sch, Dept Genet, Boston, MA USA.;Boston Childrens Hosp, Divis Endocrinol, Boston, MA USA..
    Farmer, Andrew J.
    Univ Oxford, Nuffield Dept Primary Care Hlth Sci, Oxford, England..
    Hakaste, Liisa
    Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Helsinki Univ Cent Hosp, Abdominal Ctr Endocrinol, Helsinki, Finland.;Folkhalsan Res Ctr, Helsinki, Finland.;Univ Helsinki, Res Programs Unit, Diabet & Obes, Helsinki, Finland..
    Hodgkiss, Dylan
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Kravic, Jasmina
    Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden..
    Lyssenko, Valeriya
    Univ Bergen, Dept Clin Sci, KG Jebsen Ctr Diabet Res, Bergen, Norway.;Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden..
    Hollensted, Mette
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Jorgensen, Marit E.
    Steno Diabet Ctr, Gentofte, Denmark..
    Jorgensen, Torben
    Capital Region Denmark, Res Ctr Prevent & Hlth, Glostrup, Denmark.;Univ Copenhagen, Inst Hlth Sci, Dept Publ Hlth, Copenhagen, Denmark.;Aalborg Univ, Fac Med, Aalborg, Denmark..
    Ladenvall, Claes
    Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden..
    Justesen, Johanne Marie
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Karajamaki, Annemari
    Vaasa Cent Hosp, Dept Primary Hlth Care, Vaasa, Finland.;Vaasa Hlth Care Ctr, Ctr Diabet, Vaasa, Finland..
    Kriebel, Jennifer
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany.;Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Germany..
    Rathmann, Wolfgang
    German Ctr Diabet Res DZD, Munich, Germany.;Heinrich Heine Univ, German Diabet Ctr, Leibniz Ctr Diabet Res, Inst Biometr & Epidemiol, Dusseldorf, Germany..
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Lauritzen, Torsten
    Aarhus Univ, Sect Gen Practice, Dept Publ Hlth, Aarhus, Denmark..
    Narisu, Narisu
    NIH, Natl Human Genome Res Inst, Med Genom & Metab Genet Branch, Bethesda, MD USA..
    Linneberg, Allan
    Capital Region Denmark, Res Ctr Prevent & Hlth, Glostrup, Denmark.;Dept Clin Expt Res, Rigshospitalet, Glostrup, Denmark.;Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark..
    Melander, Olle
    Lund Univ, Dept Clin Sci, Hypertens & Cardiovascular Dis, Malmo, Sweden..
    Milani, Lili
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Neville, Matt
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Orho-Melander, Marju
    Lund Univ, Dept Clin Sci, Diabet & Cardiovascular Dis, Genet Epidemiol, Malmo, Sweden..
    Qi, Lu
    Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Brigham & Womens Hosp & Harvard Med Sch, Channing Div Network Med, Dept Med, Boston, MA USA..
    Qi, Qibin
    Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, New York, NY USA..
    Roden, Michael
    Heinrich Heine Univ, German Diabet Ctr, Leibniz Ctr Diabet Res, Inst Clin Diabetol, Dusseldorf, Germany.;German Ctr Diabet Res DZD, Munich, Germany.;Heinrich Heine Univ, Fac Med, Divis Endocrinol & Diabetol, Dusseldorf, Germany..
    Rolandsson, Olov
    Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Swift, Amy
    NIH, Natl Human Genome Res Inst, Med Genom & Metab Genet Branch, Bethesda, MD USA..
    Rosengren, Anders H.
    Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden..
    Stirrups, Kathleen
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England..
    Wood, Andrew R.
    Univ Exeter, Univ Exeter Med Sch, Genet Complex Traits, Exeter, Devon, England..
    Mihailov, Evelin
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Blancher, Christine
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, Wellcome Trust Ctr Human Genet, Oxford, England..
    Carneiro, Mauricio O.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Maguire, Jared
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Poplin, Ryan
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Shakir, Khalid
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Fennell, Timothy
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    DePristo, Mark
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    De Angelis, Martin Hrabe
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Expt Genet, Neuherberg, Germany.;Tech Univ Munich, Ctr Life & Food Sci Weihenstephan, Freising Weihenstephan, Germany..
    Deloukas, Panos
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England.;Queen Mary Univ London, William Harvey Res Inst, London, England.;Queen Mary Univ London, London Sch Med & Dent, London, England.;King Abdulaziz Univ, Princess Jawhara Brahim Ctr Excellence Res Heredi, Jeddah, Saudi Arabia..
    Gjesing, Anette P.
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Jun, Goo
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA.;Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Ctr Human Genet, Houston, TX USA..
    Nilsson, Peter M.
    Lund Univ, Dept Clin Sci, Malmo, Sweden.;Lund Univ, Dept Med, Malmo, Sweden..
    Murphy, Jacquelyn
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Onofrio, Robert
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Thorand, Barbara
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany..
    Hansen, Torben
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark.;Univ Southern Denmark, Fac Hlth Sci, Odense, Denmark..
    Meisinger, Christa
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany..
    Hu, Frank B.
    Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA..
    Isomaa, Bo
    Folkhalsan Res Ctr, Helsinki, Finland.;Dept Social Serv & Hlth Care, Pietarsaari, Finland..
    Karpe, Fredrik
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Liang, Liming
    Harvard Sch Publ Hlth, Dept Biostatist, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA..
    Peters, Annette
    DZHK German Ctr Cardiovascular Res, Munich Heart Alliance, Munich, Germany.;German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany..
    Huth, Cornelia
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany..
    O'Rahilly, Stephen P.
    Univ Cambridge, Inst Metab Sci, Metabol Res Labs, Cambridge, England..
    Palmer, Colin N. A.
    Ninewells Hosp & Med Sch, Pat Macpherson Ctr Pharmacogenet & Pharmacogenet, Dundee, Scotland.;Ninewells Hosp & Med Sch, Med Res Inst, Dundee, Scotland..
    Pedersen, Oluf
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Rauramaa, Rainer
    Kuopio Res Inst Exercise Med, Foundat Res Hlth Exercise & Nutr, Kuopio, Finland..
    Tuomilehto, Jaakko
    Danube Univ Krems, Ctr Vasc Prevent, Krems, Austria.;King Abdulaziz Univ, Diabetes Res Grp, Jeddah, Saudi Arabia.;Dasman Diabet Inst, Kuwait, Kuwait.;Natl Inst Hlth & Welf, Helsinki, Finland..
    Salomaa, Veikko
    Natl Inst Hlth & Welf, Helsinki, Finland..
    Watanabe, Richard M.
    Univ Southern Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA USA.;Univ Southern Calif, Keck Sch Med, Dept Physiol Biophys, Los Angeles, CA USA.;Univ Southern Calif, Diabet & Obes Res Inst, Keck Sch Med, Los Angeles, CA USA..
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergman, Richard N.
    Cedars Sinai Diabet & Obes Res Inst, Los Angeles, CA USA..
    Bharadwaj, Dwaipayan
    CSIR Inst Genom Integrat Biol CSIR IGIB, Funct Genom Unit, New Delhi, India..
    Bottinger, Erwin P.
    Charles Bronfman Inst Personalized Med, Icahn Sch Med, Mt Sinai, New York, NY USA..
    Cho, Yoon Shin
    Hallym Univ, Dept Biomed Sci, Chunchon, South Korea..
    Chandak, Giriraj R.
    CSIR, Ctr Cellular & Mol Biol, Hyderabad, Andhra Pradesh, India..
    Chan, Juliana Cn
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Hong Kong Inst Diabet & Obes, Hong Kong, Peoples R China..
    Chia, Kee Seng
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Daly, Mark J.
    Massachusetts Gen Hosp, Dept Med, Analyt & Translat Genet Unit, Boston, MA USA..
    Ebrahim, Shah B.
    Ctr Chron Dis Control, New Delhi, India..
    Langenberg, Claudia
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Elliott, Paul
    Imperial Coll London, Dept Epidemiol & Biostat, London, England.;Imperial Coll London, MRC PHE Ctr Environm & Hlth, London, England..
    Jablonski, Kathleen A.
    George Washington Univ, Biostatist Ctr, Rockville, MD USA..
    Lehman, Donna M.
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA..
    Jia, Weiping
    Shanghai Jiao Tong Univ, Shanghai Diabet Inst, Dept Endocrinol & Metab, Sixth Peoples Hosp, Shanghai, Peoples R China..
    Ma, Ronald Cw
    Boston Univ Sch Publ Hlth, Dept Biostatist, Boston, MA USA.;Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Hong Kong Inst Diabet & Obes, Hong Kong, Peoples R China..
    Pollin, Toni I.
    Univ Maryland Sch Med, Div Endocrinol Diabet & Nutr, Dept Med, Baltimore, MD USA.;Univ Maryland Sch Med, Program Personalized Genom Med, Baltimore, MD USA..
    Sandhu, Manjinder
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Tandon, Nikhil
    All India Inst Med Sci, Dept Endocrinol & Metab, New Delhi, India..
    Froguel, Philippe
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France.;Imperial Coll London, Sch Publ Hlth, Dept Genom Common Dis, London, England..
    Barroso, Ines
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England.;Univ Cambridge, Inst Metab Sci, Metabol Res Labs, Cambridge, England..
    Teo, Yik Ying
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Natl Univ Singapore, Inst Life Sci, Singapore, Singapore.;Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore..
    Zeggini, Eleftheria
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambridgeshire, England..
    Loos, Ruth J. F.
    Charles Bronfman Inst Personalized Med, Icahn Sch Med, Mt Sinai, New York, NY USA..
    Small, Kerrin S.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Ried, Janina S.
    German Res Ctr Environm Hlth, Inst Genet Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany..
    DeFronzo, Ralph A.
    Univ Texas Hlth Sci Ctr, Dept Med, San Antonio, TX USA..
    Grallert, Harald
    German Ctr Diabet Res DZD, Munich, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany.;Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Germany..
    Glaser, Benjamin
    Hadassah Hebrew Univ Med Ctr, Endocrinol & Metab Serv, Jerusalem, Israel..
    Metspalu, Andres
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Wareham, Nicholas J.
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Walker, Mark
    Newcastle Univ, Inst Cellular Med, Sch Med, Newcastle Upon Tyne, Tyne & Wear, England..
    Banks, Eric
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Gieger, Christian
    German Res Ctr Environm Hlth, Inst Genet Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol II, Neuherberg, Germany.;Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Germany..
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.
    Im, Hae Kyung
    Univ Chicago, Med Genet Sect, Dept Med, Chicago, IL USA..
    Illig, Thomas
    Helmholtz Zentrum Munchen, Res Unit Mol Epidemiol, German Res Ctr Environm Hlth, Neuherberg, Germany.;Hannover Med Sch, Hannover Unified Biobank, Hannover, NH, Germany.;Hannover Med Sch, Dept Human Genet, Hannover, NH, Germany..
    Franks, Paul W.
    Lund Univ, Lund Univ Diabet Ctr, Dept Clin Sci, Genet & Mol Epidemiol Unit, Malmo, Sweden.;Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Buck, Gemma
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, Wellcome Trust Ctr Human Genet, Oxford, England..
    Trakalo, Joseph
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, Wellcome Trust Ctr Human Genet, Oxford, England..
    Buck, David
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, Wellcome Trust Ctr Human Genet, Oxford, England..
    Prokopenko, Inga
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Imperial Coll London, Sch Publ Hlth, Dept Genom Common Dis, London, England..
    Magi, Reedik
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Farjoun, Yossi
    Broad Inst, Data Sci & Data Engn, Cambridge, MA USA..
    Owen, Katharine R.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Gloyn, Anna L.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Strauch, Konstantin
    German Res Ctr Environm Hlth, Inst Genet Epidemiol, Helmholtz Zentrum Munchen, Neuherberg, Germany.;Ludwig Maximilians Univ Munchen, IBE, Chair Genet Epidemiol, Fac Med, Munich, Germany..
    Tuomi, Tiinamaija
    Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Helsinki Univ Cent Hosp, Abdominal Ctr Endocrinol, Helsinki, Finland.;Folkhalsan Res Ctr, Helsinki, Finland.;Univ Helsinki, Res Programs Unit, Diabet & Obes, Helsinki, Finland.;Univ Helsinki, Finnish Inst Mol Med, Helsinki, Finland..
    Kooner, Jaspal Singh
    Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Natl Heart & Lung Inst, Cardiovascular Sci, Imperial Coll London, Hammersmith Campus, London, England.;Imperial Coll London, Imperial Coll Healthcare NHS Trust, London, England..
    Lee, Jong-Young
    Korea Natl Inst Hlth, Ctr Genome Sci, Chungcheongbukdo, South Korea..
    Park, Taesung
    Seoul Natl Univ, Dept Stat, Seoul, South Korea.;Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Donnelly, Peter
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Dept Stat, Oxford, England..
    Morris, Andrew D.
    Ninewells Hosp & Med Sch, Ctr Mol Med, Clin Res Ctr, Dundee, Scotland.;Univ Edinburgh, Usher Inst Populat Hlth Sci & Informat, Edinburgh, Midlothian, Scotland..
    Hattersley, Andrew T.
    Univ Exeter, Univ Exeter Med Sch, Exeter, Devon, England..
    Bowden, Donald W.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Collins, Francis S.
    NIH, Natl Human Genome Res Inst, Med Genom & Metab Genet Branch, Bethesda, MD USA..
    Atzmon, Gil
    Albert Einstein Coll Med, Dept Med, New York, NY USA.;Albert Einstein Coll Med, Dept Genet, New York, NY USA.;Univ Haifa, Dept Nat Sci, Haifa, Israel..
    Chambers, John C.
    Imperial Coll London, Dept Epidemiol & Biostat, London, England.;Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Imperial Coll London, Imperial Coll Healthcare NHS Trust, London, England..
    Spector, Timothy D.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Laakso, Markku
    Univ Eastern Finland, Inst Clin Med, Fac Hlth Sci, Internal Med, Kuopio, Finland.;Kuopio Univ Hosp, Kuopio, Finland..
    Strom, Tim M.
    Helmholtz Zentrum Munchen, Inst Human Genet, German Res Ctr Environm Hlth, Neuherberg, Germany.;Tech Univ Munich, Inst Human Genet, Munich, Germany..
    Bell, Graeme I.
    Univ Chicago, Dept Med, Chicago, IL USA.;Univ Chicago, Dept Human Genet, Chicago, IL USA..
    Blangero, John
    Univ Texas Hlth Sci Ctr, San Antonio Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Duggirala, Ravindranath
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Tai, EShyong
    Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Med, Singapore, Singapore.;Duke NUS Med Sch Singapore, Cardiovascular Metab Disorders Program, Singapore, Singapore..
    McVean, Gilean
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England..
    Hanis, Craig L.
    Univ Texas Hlth Sci Ctr, Sch Publ Hlth, Ctr Human Genet, Houston, TX USA..
    Wilson, James G.
    Univ Mississippi Med Ctr, Dept Physiol & Biophys, Jackson, MS USA..
    Seielstad, Mark
    Univ Calif San Francisco, Dept Lab Med, Inst Human Genet, San Francisco, CA USA.;Blood Syst Res Inst, San Francisco, CA USA..
    Frayling, Timothy M.
    Univ Exeter, Univ Exeter Med Sch, Genet Complex Traits, Exeter, Devon, England..
    Meigs, James B.
    Harvard Med Sch, Massachusetts Gen Hosp, Div Gen Med, Boston, MA USA.;Harvard Med Sch, Dept Med, Boston, MA USA..
    Cox, Nancy J.
    Univ Chicago, Med Genet Sect, Dept Med, Chicago, IL USA..
    Sladek, Rob
    McGill Univ, Genome Quebec Innovat Ctr, Montreal, PQ H3A 2T5, Canada.;McGill Univ, Dept Human Genet, Montreal, PQ, Canada.;McGill Univ, Dept Med, Divis Endocrinol & Metab, Montreal, PQ, Canada..
    Lander, Eric S.
    MIT, Broad Inst, Cambridge, MA USA..
    Gabriel, Stacey
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Mohlke, Karen L.
    Univ N Carolina, Dept Genet, Chapel Hill, NC USA..
    Meitinger, Thomas
    Helmholtz Zentrum Munchen, Inst Human Genet, German Res Ctr Environm Hlth, Neuherberg, Germany.;Tech Univ Munich, Inst Human Genet, Munich, Germany..
    Groop, Leif
    Lund Univ, Dept Clin Sci Diabet & Endocrinol, Ctr Diabet, Malmo, Sweden.;Univ Helsinki, Finnish Inst Mol Med, Helsinki, Finland..
    Abecasis, Goncalo
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Scott, Laura J.
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    Morris, Andrew P.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Tartu, Estonian Genome Ctr, Tartu, Estonia.;Univ Liverpool, Dept Biostat, Liverpool, Merseyside, England..
    Kang, Hyun Min
    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA..
    Altshuler, David
    Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA USA.;Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Harvard Med Sch, Dept Genet, Boston, MA USA.;Harvard Med Sch, Dept Med, Boston, MA USA.;Massachusetts Gen Hosp, Dept Med, Diabet Res Ctr Diabet Unit, Boston, MA USA.;MIT, Dept Biol, Cambridge, MA 02139 USA..
    Burtt, Noel P.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Florez, Jose C.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Ctr Genom Med, Boston, MA USA.;Harvard Med Sch, Dept Med, Boston, MA USA.;Massachusetts Gen Hosp, Dept Med, Diabet Res Ctr Diabet Unit, Boston, MA USA..
    Boehnke, Michael
    Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI USA..
    McCarthy, Mark I.
    Univ Oxford, Nuffield Dept Med, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Data Descriptor: Sequence data and association statistics from 12,940 type 2 diabetes cases and controls2017In: Scientific Data, E-ISSN 2052-4463, Vol. 4, article id 170179Article in journal (Refereed)
    Abstract [en]

    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.

  • 46. Folkersen, Lasse
    et al.
    van't Hooft, Ferdinand
    Chernogubova, Ekaterina
    Agardh, Hanna E.
    Hansson, Göran K.
    Hedin, Ulf
    Liska, Jan
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Paulssson-Berne, Gabrielle
    Franco-Cereceda, Anders
    Hamsten, Anders
    Gabrielsen, Anders
    Eriksson, Per
    Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease2010In: Circulation: Cardiovascular Genetics, ISSN 1942-325X, E-ISSN 1942-3268, Vol. 3, no 4, p. 365-373Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    Population-based genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with cardiovascular disease or its risk factors. Genes in close proximity to these risk-SNPs are often thought to be pathogenetically important based on their location alone. However, the actual connections between SNPs and disease mechanisms remain largely unknown.

    METHODS AND RESULTS:

    To identify novel susceptibility genes, we investigated how 166 SNPs previously found to be associated with increased cardiovascular risk and/or predisposing metabolic traits relate to the expression of nearby genes. Gene expression in 577 samples of aorta, liver, mammary artery, and carotid atherosclerotic plaque was measured using expression arrays. For 47 SNPs, the expression levels of proximal genes (located within 200 kb) were affected (P<0.005). More than 20 of these genes had not previously been identified as candidate genes for cardiovascular or related metabolic traits. SNP-associated gene effects were tissue-specific and the tissue specificity was phenotype-dependent.

    CONCLUSIONS:

    This study demonstrates several instances of association between risk-SNPs and genes immediately adjacent to them. It also demonstrates instances in which the associated gene is not the immediately proximal and obvious candidate gene for disease. This shows the necessity of careful studies of genetic marker data as a first step toward application of genome-wide association studies findings in a clinical setting.

  • 47.
    Fredriksson, Mona
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Barbany, Gisela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Liljedahl, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Hermanson, Monica
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology, Medical Genetics.
    Kataja, Matti
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Assessing hematopoietic chimerism after stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles2004In: Leukemia, ISSN 0887-6924, E-ISSN 1476-5551, Vol. 18, no 2, p. 255-266Article in journal (Refereed)
    Abstract [en]

    Single-nucleotide polymorphisms (SNPs) have the potential to be particularly useful as markers for monitoring of chimerism after stem cell transplantation (SCT) because they can be analyzed by accurate and robust methods. We used a two-phased minisequencing strategy for monitoring chimerism after SCT. First, informative SNPs with alleles differing between donor and recipient were identified using a multiplex microarray-based minisequencing system screening 51 SNPs to ensure that multiple informative SNPs were detected in each donor-recipient pair. Secondly, the development of chimerism was followed up after SCT by sensitive, quantitative analysis of individual informative SNPs by applying the minisequencing method in a microtiter plate format. Using this panel of SNPs, we identified multiple informative SNPs in nine unrelated and in 16 related donor-recipient pairs. Samples from nine of the donor-recipient pairs taken at time points ranging from 1 month to 8 years after transplantation were available for analysis. In these samples, we monitored the allelic ratios of two or three informative SNPs in individual minisequencing reactions. The results agreed well with the data obtained by microsatellite analysis. Thus, we conclude that the two-phased minisequencing strategy is a useful approach in the following up of patients after SCT.

  • 48.
    Fredriksson, Mona
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Barbany, Gisela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Liljedahl, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Hermanson, Monika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Kataja, Matti
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles2004In: Leukemia, ISSN 0887-6924, E-ISSN 1476-5551, Vol. 18, no 2, p. 255-266Article in journal (Refereed)
    Abstract [en]

    Single-nucleotide polymorphisms (SNPs) have the potential to be particularly useful as markers for monitoring of chimerism after stem cell transplantation (SCT) because they can be analyzed by accurate and robust methods. We used a two-phased minisequencing strategy for monitoring chimerism after SCT. First, informative SNPs with alleles differing between donor and recipient were identified using a multiplex microarray-based minisequencing system screening 51 SNPs to ensure that multiple informative SNPs were detected in each donor–recipient pair. Secondly, the development of chimerism was followed up after SCT by sensitive, quantitative analysis of individual informative SNPs by applying the minisequencing method in a microtiter plate format. Using this panel of SNPs, we identified multiple informative SNPs in nine unrelated and in 16 related donor–recipient pairs. Samples from nine of the donor–recipient pairs taken at time points ranging from 1 month to 8 years after transplantation were available for analysis. In these samples, we monitored the allelic ratios of two or three informative SNPs in individual minisequencing reactions. The results agreed well with the data obtained by microsatellite analysis. Thus, we conclude that the two-phased minisequencing strategy is a useful approach in the following up of patients after SCT.

  • 49.
    Fredriksson, Mona
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Syvänen, Ann-Christine
    Detection of alternatively spliced transcripts in leukaemia cell lines by minisequencing on microarraysManuscript (Other academic)
  • 50.
    Fuchsberger, Christian
    et al.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA.;Med Univ Innsbruck, Dept Med Genet Mol & Clin Pharmacol, Div Genet Epidemiol, Innsbruck, Austria.;Univ Lubeck, European Acad Bolzano Bozen EURAC, Ctr Biomed, Bolzano, Italy..
    Flannick, Jason
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA..
    Teslovich, Tanya M.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Mahajan, Anubha
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Agarwala, Vineeta
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA..
    Gaulton, Kyle J.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Ma, Clement
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Fontanillas, Pierre
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Moutsianas, Loukas
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    McCarthy, Davis J.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Dept Stat, Oxford, England..
    Rivas, Manuel A.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Perry, John R. B.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Exeter, Sch Med, Genet Complex Traits, Exeter, Devon, England.;Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England.;Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Sim, Xueling
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Blackwell, Thomas W.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Robertson, Neil R.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Rayner, N. William
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England..
    Cingolani, Pablo
    McGill Univ, Sch Comp Sci, Montreal, PQ, Canada.;McGill Univ, Montreal, PQ, Canada.;Genome Quebec Innovat Ctr, Montreal, PQ, Canada..
    Locke, Adam E.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Tajes, Juan Fernandez
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Highland, Heather M.
    Univ Texas Hlth Sci Ctr Houston, Univ Texas Grad Sch Biomed Sci Houston, Human Genet Ctr, Houston, TX 77030 USA..
    Dupuis, Josee
    Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA.;NHLBI, Framingham Heart Study, Framingham, MA USA..
    Chines, Peter S.
    NHGRI, Med Genom & Metab Genet Branch, NIH, Bethesda, MD 20892 USA..
    Lindgren, Cecilia M.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Hartl, Christopher
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Jackson, Anne U.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Chen, Han
    Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Biostat, Boston, MA USA..
    Huyghe, Jeroen R.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    van de Bunt, Martijn
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Pearson, Richard D.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Kumar, Ashish
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Basel, Swiss Trop & Publ Hlth Inst, Chron Dis Epidemiol, Basel, Switzerland..
    Mueller-Nurasyid, Martina
    German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany.;Univ Munich, Univ Hosp Grosshadern, Dept Med 1, Munich, Germany.;Univ Munich, Chair Genet Epidemiol, Inst Med Informat Biometry & Epidemiol, Munich, Germany.;Munich Heart Alliance, DZHK German Ctr Cardiovasc Res, Munich, Germany..
    Grarup, Niels
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Stringham, Heather M.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Gamazon, Eric R.
    Univ Chicago, Dept Med, Med Genet Sect, 5841 S Maryland Ave, Chicago, IL 60637 USA..
    Lee, Jaehoon
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Chen, Yuhui
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Scott, Robert A.
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Below, Jennifer E.
    Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA..
    Chen, Peng
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Huang, Jinyan
    Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA..
    Go, Min Jin
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Stitzel, Michael L.
    Jackson Lab Genom Med, Farmington, CT USA..
    Pasko, Dorota
    Univ Exeter, Sch Med, Genet Complex Traits, Exeter, Devon, England..
    Parker, Stephen C. J.
    Univ Michigan, Dept Computat Med, Ann Arbor, MI USA.;Univ Michigan, Dept Bioinformat & Human Genet, Ann Arbor, MI USA..
    Varga, Tibor V.
    Lund Univ, Genet & Mol Epidemiol Unit, Lund Univ Diabet Ctr, Dept Clin Sci, Malmo, Sweden..
    Green, Todd
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Beer, Nicola L.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Day-Williams, Aaron G.
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England..
    Ferreira, Teresa
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Fingerlin, Tasha
    Univ Colorado, Colorado Sch Publ Hlth, Dept Epidemiol, Aurora, CO USA..
    Horikoshi, Momoko
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Hu, Cheng
    Shanghai Jiao Tong Univ, Peoples Hosp 6, Shanghai Diabet Inst, Dept Endocrinol & Metab, Shanghai, Peoples R China..
    Huh, Iksoo
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Ikram, Mohammad Kamran
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Hlth Syst, Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Duke NUS Grad Med Sch, Eye Acad Clin Programme, Singapore, Singapore..
    Kim, Bong-Jo
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Kim, Yongkang
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Kim, Young Jin
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Kwon, Min-Seok
    Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Lee, Juyoung
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Lee, Selyeong
    Seoul Natl Univ, Dept Stat, Seoul, South Korea..
    Lin, Keng-Han
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Maxwell, Taylor J.
    Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA..
    Nagai, Yoshihiko
    McGill Univ, Montreal, PQ, Canada.;Genome Quebec Innovat Ctr, Montreal, PQ, Canada.;McGill Univ, Dept Human Genet, Montreal, PQ, Canada.;McGill Univ Hlth Ctr, Res Inst, Montreal, PQ, Canada..
    Wang, Xu
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Welch, Ryan P.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Yoon, Joon
    Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Zhang, Weihua
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England.;Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England..
    Barzilai, Nir
    Albert Einstein Coll Med, Dept Med, New York, NY USA.;Albert Einstein Coll Med, Dept Genet, New York, NY USA..
    Voight, Benjamin F.
    Univ Penn, Perelman Sch Med, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA.;Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA..
    Han, Bok-Ghee
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Jenkinson, Christopher P.
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA.;South Texas Vet Hlth Care Syst, Res, San Antonio, TX USA..
    Kuulasmaa, Teemu
    Univ Eastern Finland, Internal Med, Inst Clin Med, Fac Hlth Sci, Kuopio, Finland..
    Kuusisto, Johanna
    Univ Eastern Finland, Internal Med, Inst Clin Med, Fac Hlth Sci, Kuopio, Finland.;Kuopio Univ Hosp, Kuopio, Finland..
    Manning, Alisa
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Ng, Maggie C. Y.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA..
    Palmer, Nicholette D.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Balkau, Beverley
    INSERM, Ctr Res Epidemiol & Populat Hlth, U1018, Villejuif, France..
    Stancakova, Alena
    Univ Eastern Finland, Internal Med, Inst Clin Med, Fac Hlth Sci, Kuopio, Finland..
    Abboud, Hanna E.
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA..
    Boeing, Heiner
    German Inst Human Nutr Potsdam Rehbrucke, Nuthetal, Germany..
    Giedraitis, Vilmantas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Prabhakaran, Dorairaj
    Ctr Chron Dis Control, New Delhi, India..
    Gottesman, Omri
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA..
    Scott, James
    Univ London Imperial Coll Sci Technol & Med, Cardiovasc Sci, Natl Heart & Lung Inst, Hammersmith Campus, London, England..
    Carey, Jason
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Kwan, Phoenix
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Grant, George
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Smith, Joshua D.
    Univ Washington, Sch Med, Dept Genome Sci, Seattle, WA USA..
    Neale, Benjamin M.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Analyt & Translat Genet Unit, Boston, MA 02114 USA.;Massachusetts Gen Hosp, Dept Med, Ctr Human Genet Res, Boston, MA 02114 USA..
    Purcell, Shaun
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Ctr Human Genet Res, Boston, MA 02114 USA.;Icahn Sch Med Mt Sinai, Icahn Inst Genom & Multiscale Biol, Dept Psychiat, New York, NY 10029 USA..
    Butterworth, Adam S.
    Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Howson, Joanna M. M.
    Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Lee, Heung Man
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China..
    Lu, Yingchang
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA..
    Kwak, Soo-Heon
    Seoul Natl Univ, Coll Med, Dept Internal Med, Seoul, South Korea..
    Zhao, Wei
    Univ Penn, Dept Med, Philadelphia, PA 19104 USA..
    Danesh, John
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, NIHR Blood & Transplant Res Unit Donor Hlth & Gen, Cambridge, England..
    Lam, Vincent K. L.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China..
    Park, Kyong Soo
    Seoul Natl Univ, Coll Med, Dept Internal Med, Seoul, South Korea.;Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Mol Med & Biopharmaceut Sci, Seoul, South Korea.;Seoul Natl Univ, Coll Med, Seoul, South Korea..
    Saleheen, Danish
    Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA.;Ctr Noncommunicable Dis, Karachi, Pakistan..
    So, Wing Yee
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China..
    Tam, Claudia H. T.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China..
    Afzal, Uzma
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England..
    Aguilar, David
    Baylor Coll Med, Div Cardiovasc, Houston, TX 77030 USA..
    Arya, Rector
    Univ Texas Hlth Sci Ctr San Antonio, Dept Pediat, San Antonio, TX 78229 USA..
    Aung, Tin
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Hlth Syst, Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Duke NUS Grad Med Sch, Eye Acad Clin Programme, Singapore, Singapore..
    Chan, Edmund
    Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Med, Singapore, Singapore..
    Navarro, Carmen
    IMIB Arrixaca, Murcia Reg Hlth Council, Dept Epidemiol, Murcia, Spain.;Univ Murcia, CIBERESP, Murcia, Spain.;Univ Murcia, Sch Med, Unit Prevent Med & Publ Hlth, E-30001 Murcia, Spain..
    Cheng, Ching-Yu
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Hlth Syst, Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Duke NUS Grad Med Sch, Eye Acad Clin Programme, Singapore, Singapore..
    Palli, Domenico
    Canc Res & Prevent Inst ISPO, Florence, Italy..
    Correa, Adolfo
    Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA..
    Curran, Joanne E.
    Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Rybin, Denis
    Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA USA..
    Farook, Vidya S.
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Fowler, Sharon P.
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA..
    Freedman, Barry I.
    Wake Forest Sch Med, Nephrol Sect, Dept Internal Med, Winston Salem, NC USA..
    Griswold, Michael
    Univ Mississippi, Med Ctr, Ctr Biostat & Bioinformat, Jackson, MS 39216 USA..
    Hale, Daniel Esten
    Univ Texas Hlth Sci Ctr San Antonio, Dept Pediat, San Antonio, TX 78229 USA..
    Hicks, Pamela J.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Khor, Chiea-Chuen
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Hlth Syst, Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Paediat, Singapore, Singapore.;ASTAR, Genome Inst Singapore, Div Human Genet, Singapore, Singapore..
    Kumar, Satish
    Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Lehne, Benjamin
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England..
    Thuillier, Dorothee
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France..
    Lim, Wei Yen
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Liu, Jianjun
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;ASTAR, Genome Inst Singapore, Div Human Genet, Singapore, Singapore..
    van der Schouw, Yvonne T.
    Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands..
    Loh, Marie
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England.;Univ Oulu, Inst Hlth Sci, Oulu, Finland.;ASTAR, TLGM, Singapore, Singapore..
    Musani, Solomon K.
    Univ Mississippi, Med Ctr, Jackson Heart Study, Jackson, MS 39216 USA..
    Puppala, Sobha
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Scott, William R.
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England..
    Yengo, Loic
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France..
    Tan, Sian-Tsung
    Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Univ London Imperial Coll Sci Technol & Med, Cardiovasc Sci, Natl Heart & Lung Inst, Hammersmith Campus, London, England..
    Taylor, Herman A., Jr.
    Univ Mississippi, Med Ctr, Dept Med, Jackson, MS 39216 USA..
    Thameem, Farook
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA..
    Wilson, Gregory, Sr.
    Jackson State Univ, Coll Publ Serv, Jackson, MS USA..
    Wong, Tien Yin
    Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore, Singapore.;Natl Univ Hlth Syst, Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore, Singapore.;Duke NUS Grad Med Sch, Eye Acad Clin Programme, Singapore, Singapore..
    Njolstad, Pal Rasmus
    Univ Bergen, Dept Clin Sci, KG Jebsen Ctr Diabet Res, Bergen, Norway.;Haukeland Hosp, Dept Pediat, Bergen, Norway..
    Levy, Jonathan C.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Mangino, Massimo
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Bonnycastle, Lori L.
    NHGRI, Med Genom & Metab Genet Branch, NIH, Bethesda, MD 20892 USA..
    Schwarzmayr, Thomas
    Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Human Genet, Neuherberg, Germany..
    Fadista, Joao
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden..
    Surdulescu, Gabriela L.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Herder, Christian
    Univ Dusseldorf, Leibniz Ctr Diabet Res, German Diabet Ctr, Inst Clin Diabetol, Dusseldorf, Germany.;German Ctr Diabet Res DZD, Neuherberg, Germany..
    Groves, Christopher J.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England..
    Wieland, Thomas
    Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Human Genet, Neuherberg, Germany..
    Bork-Jensen, Jette
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Brandslund, Ivan
    Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark.;Vejle Hosp, Dept Clin Biochem, Vejle, Denmark..
    Christensen, Cramer
    Vejle Hosp, Dept Internal Med & Endocrinol, Vejle, Denmark..
    Koistinen, Heikki A.
    Natl Inst Hlth & Welf, Dept Hlth, Helsinki, Finland.;Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Univ Helsinki, Cent Hosp, Helsinki, Finland.;Minerva Fdn, Helsinki, Finland.;Univ Helsinki, Dept Med, Helsinki, Finland..
    Doney, Alex S. F.
    Ninewells Hosp & Med Sch, Med Res Inst, Div Cardiovasc & Diabet Med, Dundee, Scotland..
    Kinnunen, Leena
    Natl Inst Hlth & Welf, Dept Hlth, Helsinki, Finland..
    Esko, Tonu
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Univ Tartu, Estonian Genome Ctr, Tartu, Estonia.;Harvard Med Sch, Dept Genet, Boston, MA USA.;Boston Childrens Hosp, Div Endocrinol, Boston, MA USA..
    Farmer, Andrew J.
    Univ Oxford, Nuffield Dept Primary Care Hlth Sci, Oxford, England..
    Hakaste, Liisa
    Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Univ Helsinki, Cent Hosp, Helsinki, Finland.;Folkhalsan Res Ctr, Helsinki, Finland.;Univ Helsinki, Res Programs Unit, Diabet & Obes, Helsinki, Finland..
    Hodgkiss, Dylan
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Kravic, Jasmina
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden..
    Lyssenko, Valeriya
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden..
    Hollensted, Mette
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Jorgensen, Marit E.
    Steno Diabet Ctr, Gentofte, Denmark..
    Jorgensen, Torben
    Capital Reg Denmark, Res Ctr Prevent & Hlth, Glostrup, Denmark.;Univ Copenhagen, Inst Hlth Sci, Dept Publ Hlth, Copenhagen, Denmark.;Aalborg Univ, Med, Aalborg, Denmark..
    Ladenvall, Claes
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden..
    Justesen, Johanne Marie
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Karajamaki, Annemari
    Vaasa Cent Hosp, Dept Primary Hlth Care, Vaasa, Finland.;Vaasa Hlth Care Ctr, Ctr Diabet, Vaasa, Finland..
    Kriebel, Jennifer
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Res Unit Mol Epidemiol, Neuherberg, Germany..
    Rathmann, Wolfgang
    Univ Dusseldorf, Leibniz Ctr Diabet Res, German Diabet Ctr, Inst Biometr & Epidemiol, Dusseldorf, Germany..
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Lauritzen, Torsten
    Aarhus Univ, Sect Gen Practice, Dept Publ Hlth, Aarhus, Denmark..
    Narisu, Narisu
    NHGRI, Med Genom & Metab Genet Branch, NIH, Bethesda, MD 20892 USA..
    Linneberg, Allan
    Capital Reg Denmark, Res Ctr Prevent & Hlth, Glostrup, Denmark.;Rigshosp, Dept Clin Expt Res, Glostrup, Denmark.;Univ Copenhagen, Fac Hlth & Med Sci, Dept Clin Med, Copenhagen, Denmark..
    Melander, Olle
    Lund Univ, Dept Clin Sci Hypertens & Cardiovasc, Malmo, Sweden..
    Milani, Lili
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Neville, Matt
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Orho-Melander, Marju
    Lund Univ, Dept Clin Sci Diabet & Cardiovasc Dis, Genet Epidemiol, Malmo, Sweden..
    Qi, Lu
    Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Brigham & Womens Hosp, Dept Med, Channing Div Network Med, 75 Francis St, Boston, MA 02115 USA.;Harvard Med Sch, Boston, MA USA..
    Qi, Qibin
    Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Albert Einstein Coll Med, Dept Epidemiol & Populat Hlth, New York, NY USA..
    Roden, Michael
    Univ Dusseldorf, Leibniz Ctr Diabet Res, German Diabet Ctr, Inst Clin Diabetol, Dusseldorf, Germany.;German Ctr Diabet Res DZD, Neuherberg, Germany.;Univ Dusseldorf, Fac Med, Dept Endocrinol & Diabetol, Dusseldorf, Germany..
    Rolandsson, Olov
    Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Swift, Amy
    NHGRI, Med Genom & Metab Genet Branch, NIH, Bethesda, MD 20892 USA..
    Rosengren, Anders H.
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden..
    Stirrups, Kathleen
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England..
    Wood, Andrew R.
    Univ Exeter, Sch Med, Genet Complex Traits, Exeter, Devon, England..
    Mihailov, Evelin
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Blancher, Christine
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, High Throughput Genom,Wellcome Trust Ctr Human Ge, Oxford, England..
    Carneiro, Mauricio O.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Maguire, Jared
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Poplin, Ryan
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Shakir, Khalid
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Fennell, Timothy
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    DePristo, Mark
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    de Angelis, Martin Hrabe
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Expt Genet, Neuherberg, Germany.;Tech Univ Munich, Ctr Life & Food Sci Weihenstephan, Freising Weihenstephan, Germany..
    Deloukas, Panos
    Queen Mary Univ London, William Harvey Res Inst, Barts & London Sch Med & Dent, London, England.;King Abdulaziz Univ, Princess Al Jawhara Al Brahim Ctr Excellence Res, Jeddah, Saudi Arabia..
    Gjesing, Anette P.
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Jun, Goo
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA.;Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA..
    Nilsson, Peter
    Lund Univ, Dept Clin Sci, Med, Malmo, Sweden..
    Murphy, Jacquelyn
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Onofrio, Robert
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Thorand, Barbara
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany..
    Hansen, Torben
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark.;Univ Southern Denmark, Fac Hlth Sci, Odense, Denmark..
    Meisinger, Christa
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany..
    Hu, Frank B.
    Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA..
    Isomaa, Bo
    Folkhalsan Res Ctr, Helsinki, Finland.;Dept Social Serv & Hlth Care, Pietarsaari, Finland..
    Karpe, Fredrik
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Liang, Liming
    Harvard Sch Publ Hlth, Dept Biostat, Boston, MA USA.;Harvard Sch Publ Hlth, Dept Epidemiol, Boston, MA USA..
    Peters, Annette
    Munich Heart Alliance, DZHK German Ctr Cardiovasc Res, Munich, Germany.;German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany..
    Huth, Cornelia
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany..
    O'Rahilly, Stephen P.
    Univ Cambridge, Inst Metab Sci, Metab Res Labs, Cambridge, England..
    Palmer, Colin N. A.
    Univ Dundee, Ninewells Hosp & Med Sch, Pat Macpherson Ctr Pharmacogenet & Pharmacogen, Dundee, Scotland..
    Pedersen, Oluf
    Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Rauramaa, Rainer
    Kuopio Res Inst Exercise Med, Fdn Res Hlth Exercise & Nutr, Kuopio, Finland..
    Tuomilehto, Jaakko
    Natl Inst Hlth & Welf, Dept Hlth, Helsinki, Finland.;Danube Univ Krems, Ctr Vasc Prevent, Krems, Austria.;King Abdulaziz Univ, Diabet Res Grp, Jeddah, Saudi Arabia.;Autonomous Univ Madrid, Univ Hosp LaPaz, Inst Invest Sanitaria Hosp Univ LaPaz IdiPAZ, Madrid, Spain.;Natl Inst Hlth & Welf, Helsinki, Finland..
    Salomaa, Veikko
    Natl Inst Hlth & Welf, Helsinki, Finland..
    Watanabe, Richard M.
    Univ Southern Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA USA.;Univ Southern Calif, Keck Sch Med, Dept Physiol & Biophys, Los Angeles, CA USA.;Univ Southern Calif, Keck Sch Med, Dabet & Obes Res Inst, Los Angeles, CA USA..
    Syvanen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergman, Richard N.
    Cedars Sinai Diabet & Obes Res Inst, Los Angeles, CA USA..
    Bharadwaj, Dwaipayan
    CSIR IGIB, Funct Genom Unit, New Delhi, India..
    Bottinger, Erwin P.
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA..
    Cho, Yoon Shin
    Hallym Univ, Dept Biomed Sci, Chunchon, South Korea..
    Chandak, Giriraj R.
    CSIR Ctr Cellular & Mol Biol, Hyderabad, Telangana, India..
    Chan, Juliana C. N.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Hong Kong Inst Diabet & Obes, Hong Kong, Hong Kong, Peoples R China..
    Chia, Kee Seng
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore..
    Daly, Mark J.
    Massachusetts Gen Hosp, Dept Med, Analyt & Translat Genet Unit, Boston, MA 02114 USA..
    Ebrahim, Shah B.
    Ctr Chron Dis Control, New Delhi, India..
    Langenberg, Claudia
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Elliott, Paul
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England.;Imperial Coll London, MRC PHE Ctr Environm & Hlth, London, England..
    Jablonski, Kathleen A.
    George Washington Univ, Biostat Ctr, Rockville, MD USA..
    Lehman, Donna M.
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA..
    Jia, Weiping
    Shanghai Jiao Tong Univ, Peoples Hosp 6, Shanghai Diabet Inst, Dept Endocrinol & Metab, Shanghai, Peoples R China..
    Ma, Ronald C. W.
    Chinese Univ Hong Kong, Dept Med & Therapeut, Hong Kong, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Li Ka Shing Inst Hlth Sci, Hong Kong, Hong Kong, Peoples R China.;Chinese Univ Hong Kong, Hong Kong Inst Diabet & Obes, Hong Kong, Hong Kong, Peoples R China..
    Pollin, Toni I.
    Univ Maryland, Sch Med, Dept Med, Div Endocrinol Diabet & Nutr, Baltimore, MD 21201 USA.;Univ Maryland, Sch Med, Program Personalized & Genom Med, Baltimore, MD 21201 USA..
    Sandhu, Manjinder
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England.;Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge, England..
    Tandon, Nikhil
    All India Inst Med Sci, Dept Endocrinol & Metab, New Delhi, India..
    Froguel, Philippe
    Univ Lille, Lille Pasteur Inst, CNRS UMR8199, Lille, France.;Imperial Coll London, Sch Publ Hlth, Dept Genom Common Dis, London, England..
    Barroso, Ines
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England.;Univ Cambridge, Inst Metab Sci, Metab Res Labs, Cambridge, England..
    Teo, Yik Ying
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Natl Univ Singapore, Inst Life Sci, Singapore, Singapore.;Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore..
    Zeggini, Eleftheria
    Wellcome Trust Sanger Inst, Dept Human Genet, Hinxton, Cambs, England..
    Loos, Ruth J. F.
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA..
    Small, Kerrin S.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Ried, Janina S.
    German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany..
    DeFronzo, Ralph A.
    Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA..
    Grallert, Harald
    German Ctr Diabet Res DZD, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Res Unit Mol Epidemiol, Neuherberg, Germany..
    Glaser, Benjamin
    Hadassah Hebrew Univ Med Ctr, Endocrinol & Metab Serv, Jerusalem, Israel..
    Metspalu, Andres
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Wareham, Nicholas J.
    Univ Cambridge, Inst Metab Sci, MRC Epidemiol Unit, Cambridge, England..
    Walker, Mark
    Newcastle Univ, Inst Cellular Med, Sch Med, Newcastle Upon Tyne, Tyne & Wear, England..
    Banks, Eric
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Gieger, Christian
    German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Epidemiol 2, Neuherberg, Germany.;Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Res Unit Mol Epidemiol, Neuherberg, Germany..
    Ingelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England..
    Im, Hae Kyung
    Univ Chicago, Dept Med, Med Genet Sect, 5841 S Maryland Ave, Chicago, IL 60637 USA..
    Illig, Thomas
    Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Res Unit Mol Epidemiol, Neuherberg, Germany.;Hannover Med Sch, Hannover Unified Biobank, Hannover, NH, Germany.;Hannover Med Sch, Inst Human Genet, Hannover, NH, Germany..
    Franks, Paul W.
    Lund Univ, Genet & Mol Epidemiol Unit, Lund Univ Diabet Ctr, Dept Clin Sci, Malmo, Sweden.;Harvard Sch Publ Hlth, Dept Nutr, Boston, MA USA.;Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Buck, Gemma
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, High Throughput Genom,Wellcome Trust Ctr Human Ge, Oxford, England..
    Trakalo, Joseph
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, High Throughput Genom,Wellcome Trust Ctr Human Ge, Oxford, England..
    Buck, David
    Univ Oxford, Nuffield Dept Med, Oxford Genom Ctr, High Throughput Genom,Wellcome Trust Ctr Human Ge, Oxford, England..
    Prokopenko, Inga
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Imperial Coll London, Sch Publ Hlth, Dept Genom Common Dis, London, England..
    Magi, Reedik
    Univ Tartu, Estonian Genome Ctr, Tartu, Estonia..
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Farjoun, Yossi
    Broad Inst, Data Sci & Data Engn, Cambridge, MA USA..
    Owen, Katharine R.
    Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Gloyn, Anna L.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    Strauch, Konstantin
    German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Genet Epidemiol, Neuherberg, Germany.;Univ Munich, Chair Genet Epidemiol, Inst Med Informat Biometry & Epidemiol, Munich, Germany..
    Tuomi, Tiinamaija
    Univ Helsinki, Abdominal Ctr Endocrinol, Helsinki, Finland.;Univ Helsinki, Cent Hosp, Helsinki, Finland.;Folkhalsan Res Ctr, Helsinki, Finland.;Univ Helsinki, Res Programs Unit, Diabet & Obes, Helsinki, Finland.;Univ Helsinki, FIMM, Helsinki, Finland..
    Kooner, Jaspal Singh
    Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Univ London Imperial Coll Sci Technol & Med, Cardiovasc Sci, Natl Heart & Lung Inst, Hammersmith Campus, London, England.;Imperial Coll London, Imperial Coll Healthcare NHS Trust, London, England..
    Lee, Jong-Young
    Korea Natl Inst Hlth, Ctr Genome Sci, Cheongju, Chungcheongbuk, South Korea..
    Park, Taesung
    Seoul Natl Univ, Dept Stat, Seoul, South Korea.;Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul, South Korea..
    Donnelly, Peter
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Dept Stat, Oxford, England..
    Morris, Andrew D.
    Ninewells Hosp & Med Sch, Ctr Mol Med, Clin Res Ctr, Dundee, Scotland.;Univ Edinburgh, Usher Inst Populat Hlth Sci & Informat, Edinburgh, Midlothian, Scotland..
    Hattersley, Andrew T.
    Univ Exeter, Sch Med, Exeter, Devon, England..
    Bowden, Donald W.
    Wake Forest Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA.;Wake Forest Sch Med, Ctr Diabet Res, Winston Salem, NC USA.;Wake Forest Sch Med, Dept Biochem, Winston Salem, NC USA..
    Collins, Francis S.
    NHGRI, Med Genom & Metab Genet Branch, NIH, Bethesda, MD 20892 USA..
    Atzmon, Gil
    Albert Einstein Coll Med, Dept Med, New York, NY USA.;Albert Einstein Coll Med, Dept Genet, New York, NY USA.;Univ Haifa, Dept Nat Sci, Haifa, Israel..
    Chambers, John C.
    Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England.;Ealing Hosp NHS Trust, Dept Cardiol, Southall, Middx, England.;Imperial Coll London, Imperial Coll Healthcare NHS Trust, London, England..
    Spector, Timothy D.
    Kings Coll London, Dept Twin Res & Genet Epidemiol, London, England..
    Laakso, Markku
    Univ Eastern Finland, Internal Med, Inst Clin Med, Fac Hlth Sci, Kuopio, Finland.;Kuopio Univ Hosp, Kuopio, Finland..
    Strom, Tim M.
    Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Human Genet, Neuherberg, Germany.;Tech Univ Munich, Inst Human Genet, Munich, Germany..
    Bell, Graeme I.
    Univ Chicago, Dept Med Genet, Chicago, IL 60637 USA.;Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA..
    Blangero, John
    Univ Texas Rio Grande Valley, Reg Acad Hlth Ctr, South Texas Diabet & Obes Inst, Brownsville, TX USA..
    Duggirala, Ravindranath
    Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA..
    Tai, E. Shyong
    Natl Univ Hlth Syst, Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore.;Natl Univ Singapore, Natl Univ Hlth Syst, Yong Loo Lin Sch Med, Dept Med, Singapore, Singapore.;Duke NUS Med Sch Singapore, Cardiovasc & Metab Disorders Program, Singapore, Singapore..
    McVean, Gilean
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England..
    Hanis, Craig L.
    Univ Texas Hlth Sci Ctr Houston, Sch Publ Hlth, Human Genet Ctr, Houston, TX 77030 USA..
    Wilson, James G.
    Univ Mississippi, Med Ctr, Dept Physiol & Biophys, Jackson, MS 39216 USA..
    Seielstad, Mark
    Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA.;Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA.;Blood Syst Res Inst, San Francisco, CA USA..
    Frayling, Timothy M.
    Univ Exeter, Sch Med, Genet Complex Traits, Exeter, Devon, England..
    Meigs, James B.
    Massachusetts Gen Hosp, Div Gen Med, Boston, MA 02114 USA.;Harvard Med Sch, Dept Med, Boston, MA USA..
    Cox, Nancy J.
    Univ Chicago, Dept Med, Med Genet Sect, 5841 S Maryland Ave, Chicago, IL 60637 USA..
    Sladek, Rob
    McGill Univ, Montreal, PQ, Canada.;Genome Quebec Innovat Ctr, Montreal, PQ, Canada.;McGill Univ, Dept Human Genet, Montreal, PQ, Canada.;McGill Univ, Dept Med, Div Endocrinol & Metab, Montreal, PQ, Canada..
    Lander, Eric S.
    Broad Inst MIT & Harvard, Cambridge, MA USA..
    Gabriel, Stacey
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Burtt, Noel P.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA..
    Mohlke, Karen L.
    Univ N Carolina, Dept Genet, Chapel Hill, NC USA..
    Meitinger, Thomas
    Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Human Genet, Neuherberg, Germany.;Tech Univ Munich, Inst Human Genet, Munich, Germany..
    Groop, Leif
    Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden.;Univ Helsinki, FIMM, Helsinki, Finland..
    Abecasis, Goncalo
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Florez, Jose C.
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Med, Ctr Human Genet Res, Boston, MA 02114 USA.;Harvard Med Sch, Dept Med, Boston, MA USA.;Massachusetts Gen Hosp, Dept Med, Diabet Unit, Diabet Res Ctr, Boston, MA 02114 USA..
    Scott, Laura J.
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Morris, Andrew P.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Tartu, Estonian Genome Ctr, Tartu, Estonia.;Univ Liverpool, Dept Biostat, Liverpool, Merseyside, England..
    Kang, Hyun Min
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Boehnke, Michael
    Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA..
    Altshuler, David
    Broad Inst, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA.;Harvard Med Sch, Dept Genet, Boston, MA USA.;Harvard Med Sch, Dept Med, Boston, MA USA.;Massachusetts Gen Hosp, Dept Med, Diabet Unit, Diabet Res Ctr, Boston, MA 02114 USA.;MIT, Dept Biol, Cambridge, MA USA..
    McCarthy, Mark I.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Nuffield Dept Med, Oxford, England.;Univ Oxford, Radcliffe Dept Med, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England.;Oxford Univ Hosp Trust, Oxford NIHR Biomed Res Ctr, Oxford, England..
    The genetic architecture of type 2 diabetes2016In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 536, no 7614, p. 41-47Article in journal (Refereed)
    Abstract [en]

    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.

123456 1 - 50 of 278
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf