uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
12 1 - 50 of 99
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Allalou, Amin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    van de Rijke, Frans
    Jahangir Tafrechi, Roos
    Raap, Anton
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Image based measurements of single cell mtDNA mutation load MTD 20072007Inngår i: Medicinteknikdagarna 2007, 2007Konferansepaper (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    Cell cultures as well as cells in tissue always display a certain degree of variability,and measurements based on cell averages will miss important information contained in a heterogeneous population. These differences among cells in a population may be essential to quantify when looking at, e.g., protein expression and mutations in tumor cells which often show high degree of heterogeneity.

    Single nucleotide mutations in the mithochondrial DNA (mtDNA) can accumulate and later be present in large proportions of the mithocondria causing devastating diseases. To study mtDNA accumulation and segregation one needs to measure the amount of mtDNA mutations in each cell in multiple serial cell culture passages. The different degrees of mutation in a cell culture can be quantified by making measurements on individual cells as an alternative to looking at an average of a population. Fluorescence microscopy in combination with automated digital image analysis provides an efficient approach to this type of single cell analysis.

    Image analysis software for these types of applications are often complicated and not easy to use for persons lacking extensive knowledge in image analysis, e.g., laboratory personnel. This paper presents a user friendly implementation of an automated method for image based measurements of mtDNA mutations in individual cells detected with padlock probes and rolling-circle amplification (RCA). The mitochondria are present in the cell’s cytoplasm, and here each cytoplasm has to be delineated without the presence of a cytoplasmic stain. Three different methods for segmentation of cytoplasms are compared and it is shown that automated cytoplasmic delineation can be performed 30 times faster than manual delineation, with an accuracy as high as 87%. The final image based measurements of mitochondrial mutation load are also compared to, and show high agreement with, measurements made using biochemical techniques.

  • 2.
    Allalou, Amin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    van de Rijke, Frans M.
    Jahangir Tafrechi, Roos
    Raap, Anton K.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Image Based Measurements of Single Cell mtDNA Mutation Load2007Inngår i: Image Analysis, Proceedings / [ed] Ersboll BK, Pedersen KS, 2007, s. 631-640Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Cell cultures as well as cells in tissue always display a certain degree of variability, and measurements based on cell averages will miss important information contained in a heterogeneous population. This paper presents automated methods for image based measurements of mitochondiral DNA (mtDNA) mutations in individual cells. The mitochondria are present in the cell’s cytoplasm, and each cytoplasm has to be delineated. Three different methods for segmentation of cytoplasms are compared and it is shown that automated cytoplasmic delineation can be performed 30 times faster than manual delineation, with an accuracy as high as 87%. The final image based measurements of mitochondrial mutation load are also compared to, and show high agreement with, measurements made using biochemical techniques.

  • 3.
    Allalou, Amin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    BlobFinder, a tool for fluorescence microscopy image cytometry2009Inngår i: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 94, nr 1, s. 58-65Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Images can be acquired at high rates with modern fluorescence microscopy hardware, giving rise to a demand for high-speed analysis of image data. Digital image cytometry, i.e., automated measurements and extraction of quantitative data from images of cells, provides valuable information for many types of biomedical analysis. There exists a number of different image analysis software packages that can be programmed to perform a wide array of useful measurements. However, the multi-application capability often compromises the simplicity of the tool. Also, the gain in speed of analysis is often compromised by time spent learning complicated software. We provide a free software called BlobFinder that is intended for a limited type of application, making it easy to use, easy to learn and optimized for its particular task. BlobFinder can perform batch processing of image data and quantify as well as localize cells and point like source signals in fluorescence microscopy images, e.g., from FISH, in situ PLA and padlock probing, in a fast and easy way.

  • 4.
    Allalou, Amin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Signal Detection in 3D by Stable Wave Signal Verification2009Inngår i: Proceedings of SSBA 2009, 2009Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Detection and localization of point-source signals is an important task in many image analysis applications. These types of signals can commonly be seen in fluorescent microscopy when studying functions of biomolecules. Visual detection and localization of point-source signals in 3D is limited and time consuming, making automated methods an important task. The 3D Stable Wave Detector (3DSWD) is a new method that combines signal enhancement with a verifier/separator. The verifier/separator examines the intensity gradient around a signal, making the detection less sensitive to noise and better at separating spatially close signals. Conventional methods such as; TopHat, Difference of Gaussian, and Multiscale Product consist only of signal enhancement. In this paper we compare the 3DSWD to these conventional methods with and without the addition of a verifier/separator. We can see that the 3DSWD has the highest robustness to noise among all the methods and that the other methods are improved when a verifier/separator is added.

  • 5.
    Allalou, Amin
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    van de Rijke, Frans
    Jahangir Tafrechi, Roos
    Raap, Anton
    Segmentation of Cytoplasms of Cultured Cells2007Inngår i: In Proceedings SSBA 2007, Symposium on image analysis, Linköping, 2007Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Cell cultures as well as cells in tissue always display a certain degree of variability, and measurements based on cell averages will miss important information contained in a heterogeneous population. This paper presents automated methods for segmentation of cells and cytoplasms. The segmentation results are applied to image based measurements of mitochondiral DNA (mtDNA) mutations in individual cells. Three different methods for segmentation of cytoplasms are compared and it is shown that automated cytoplasmic delineation can be performed 30 times faster than manual delineation, with an accuracy as high as 87%, compared to an inter observer variability of 79% at manual delineation.

  • 6.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik. Uppsala university.
    Wieslander, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Forslid, Gustav
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Hirsch, Jan-Michael
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Käkkirurgi.
    Runow Stark, Christina
    Kecheril Sadanandan, Sajith
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Detection of Malignancy-Associated Changes Due to Precancerous and Oral Cancer Lesions: A Pilot Study Using Deep Learning2018Inngår i: CYTO2018 / [ed] Andrea Cossarizza, 2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Background: The incidence of oral cancer is increasing and it is effecting younger individuals. PAP smear-based screening, visual, and automated, have been used for decades, to successfully decrease the incidence of cervical cancer. Can similar methods be used for oral cancer screening? We have carried out a pilot study using neural networks for classifying cells, both from cervical cancer and oral cancer patients. The results which were reported from a technical point of view at the 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), were particularly interesting for the oral cancer cases, and we are currently collecting and analyzing samples from more patients. Methods: Samples were collected with a brush in the oral cavity and smeared on glass slides, stained, and prepared, according to standard PAP procedures. Images from the slides were digitized with a 0.35 micron pixel size, using focus stacks with 15 levels 0.4 micron apart. Between 245 and 2,123 cell nuclei were manually selected for analysis for each of 14 datasets, usually 2 datasets for each of the 6 cases, in total around 15,000 cells. A small region was cropped around each nucleus, and the best 2 adjacent focus layers in each direction were automatically found, thus creating images of 100x100x5 pixels. Nuclei were chosen with an aim to select well preserved free-lying cells, with no effort to specifically select diagnostic cells. We therefore had no ground truth on the cellular level, only on the patient level. Subsets of these images were used for training 2 sets of neural networks, created according to the ResNet and VGG architectures described in literature, to distinguish between cells from healthy persons, and those with precancerous lesions. The datasets were augmented through mirroring and 90 degrees rotations. The resulting networks were used to classify subsets of cells from different persons, than those in the training sets. This was repeated for a total of 5 folds. Results: The results were expressed as the percentage of cell nuclei that the neural networks indicated as positive. The percentage of positive cells from healthy persons was in the range 8% to 38%. The percentage of positive cells collected near the lesions was in the range 31% to 96%. The percentages from the healthy side of the oral cavity of patients with lesions ranged 37% to 89%. For each fold, it was possible to find a threshold for the number of positive cells that would correctly classify all patients as normal or positive, even for the samples taken from the healthy side of the oral cavity. The network based on the ResNet architecture showed slightly better performance than the VGG-based one. Conclusion: Our small pilot study indicates that malignancyassociated changes that can be detected by neural networks may exist among cells in the oral cavity of patients with precancerous lesions. We are currently collecting samples from more patients, and will present those results as well, with our poster at CYTO 2018.

  • 7.
    Bengtsson, Ewert
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Robust cell image segmentation methods2004Inngår i: Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, ISSN 1054-6618, Vol. 14, nr 2, s. 157-167Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biomedical cell image analysis is one of the main application fields of computerized image analysis. This paper outlines the field and the different analysis steps related to it. Relative advantages of different approaches to the crucial step of image segmentation are discussed. Cell image segmentation can be seen as a modeling problem where different approaches are more or less explicitly based on cell models. For example, thresholding methods can be seen as being based on a model stating that cells have an intensity that is different from the surroundings. More robust segmentation can be obtained if a combination of features, such as intensity, edge gradients, and cellular shape, is used. The seeded watershed transform is proposed as the most useful tool for incorporating such features into the cell model. These concepts are illustrated by three real-world problems.

  • 8.
    Bombrun, Maxime
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Gao, Hui
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Mejhert, Niklas
    Arner, Peter
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Quantitative high-content/high-throughput microscopy analysis of lipid droplets in subject-specific adipogenesis models2017Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 91, nr 11, s. 1068-1077Artikkel i tidsskrift (Fagfellevurdert)
  • 9.
    Bombrun, Maxime
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Allalou, Amin
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Partel, Gabriele
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Solorzano, Leslie
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Qian, Xiaoyan
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23, S-17165 Solna, Sweden.
    Nilsson, Mats
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23, S-17165 Solna, Sweden.
    Wählby, Carolina
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Decoding gene expression in 2D and 3D2017Inngår i: Image Analysis: Part II, Springer, 2017, s. 257-268Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Image-based sequencing of RNA molecules directly in tissue samples provides a unique way of relating spatially varying gene expression to tissue morphology. Despite the fact that tissue samples are typically cut in micrometer thin sections, modern molecular detection methods result in signals so densely packed that optical “slicing” by imaging at multiple focal planes becomes necessary to image all signals. Chromatic aberration, signal crosstalk and low signal to noise ratio further complicates the analysis of multiple sequences in parallel. Here a previous 2D analysis approach for image-based gene decoding was used to show how signal count as well as signal precision is increased when analyzing the data in 3D instead. We corrected the extracted signal measurements for signal crosstalk, and improved the results of both 2D and 3D analysis. We applied our methodologies on a tissue sample imaged in six fluorescent channels during five cycles and seven focal planes, resulting in 210 images. Our methods are able to detect more than 5000 signals representing 140 different expressed genes analyzed and decoded in parallel.

  • 10.
    Bombrun, Maxime
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    A web application to analyse and visualize digital images at multiple resolutions2017Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Computerised image processing and automated quantification of cell and tissue morphology are becoming important tools for complementing visual assessment when investigating disease and/or drug response. The distribution and organisation of cells in intact tissue samples provides a rich visual-cognitive combination of information at multiple resolutions. The lowest magnification describes specific architectural patterns in the global tissue organization. At the same time, new methods for in situ sequencing of RNA allows profiling of gene expression at cellular resolution. Analysis at multiple resolutions thus opens up for large-scale comparison of genotype and phenotype. Expressed genes are locally amplified by molecular probes and rolling circle amplification, and decoded by repeating the sequencing cycle for the four letters of the genetic code. Using image processing methodologies on these giga-pixel images (40000 x 48000 pixels), we have identified more than 40 genes in parallel in the same tissue sample. Here, we present an open-source tool which combines the quantification of cell and tissue morphology with the analysis of gene expression. Our framework builds on CellProfiler, a free and open-source software developed for image based screening, and our viewing platform allow experts to visualize both gene expression patterns and quantitative measurements of tissue morphology with different overlays, such as the commonly used H&E staining. Furthermore, the user can draw regions of interest and extract local statistics on gene expression and tissue morphology over large slide scanner images at different resolutions. The TissueMaps platform provides a flexible solution to support the future development of histopathology, both as a diagnostic tool and as a research field.

  • 11.
    Bombrun, Maxime
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    TissueMaps: A large multi-scale data analysis platform for digital image application built on open-source software2016Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Automated analysis of microscopy data and quantification of cell and tissue morphology has become an important tool for investigating disease and/or drug response. New methods of in situ sequencing of RNA allows profiling of gene expression at cellular resolution in intact tissue samples, and thus opens up for large-scale comparison of genotype and phenotype. Expressed genes are locally amplified by molecular probes and rolling circle amplification, and decoded by analysis of repeated imaging and sequencing cycles. Using image processing methodologies on these giga-pixel images (40000 x 48000 pixels), we have identified more than 40 genes in parallel in the same tissue sample. On the other hand, the distribution and organisation of cells in the tissue contain rich information at multiple resolutions. The lowest resolution describes the global tissue arrangement, while the cellular resolution allows us to quantify gene expression and morphology of individual cells.

    Here, we present an open-source tool which combine the analysis of gene expression with quantification of cell and tissue morphology. Our framework builds on CellProfiler, a free and open-source software developed for image based screening, and our viewing platform allow experts to visualize analysis results with different overlays, such as the commonly used H&E staining. Furthermore, the user can draw regions of interest and extract local statistics on gene expression and tissue morphology over large slide scanner images at different resolutions (Fig.1). The TissueMaps platform provides a flexible solution to support the future development of histopathology, both as a diagnostic tool and as a research field.

  • 12.
    Chang, Tsung-Yao
    et al.
    Massachusetts Institute of Technology, USA.
    Pardo-Martin, Carlos
    Massachusetts Institute of Technology, USA.
    Allalou, Amin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Yanik, Mehmet Fatih
    Massachusetts Institute of Technology, USA.
    Fully automated cellular-resolution vertebrate screening platform with parallel animal processing2012Inngår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, nr 4, s. 711-716Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The zebrafish larva is an optically-transparent vertebrate model with complex organs that is widelyused to study genetics, developmental biology, and to model various human diseases. In this article, wepresent a set of novel technologies that significantly increase the throughput and capabilities of ourpreviously described vertebrate automated screening technology (VAST). We developed a robustmulti-thread system that can simultaneously process multiple animals. System throughput is limitedonly by the image acquisition speed rather than by the fluidic or mechanical processes. We developedimage recognition algorithms that fully automate manipulation of animals, including orienting andpositioning regions of interest within the microscope’s field of view. We also identified the optimalcapillary materials for high-resolution, distortion-free, low-background imaging of zebrafish larvae.

  • 13.
    Clausson, Carl-Magnus
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Allalou, Amin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Centrum för bildanalys. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Weibrecht, Irene
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mahmoudi, Salah
    Farnebo, Marianne
    Landegren, Ulf
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Increasing the dynamic range of in situ PLA2011Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 8, nr 11, s. 892-893Artikkel i tidsskrift (Fagfellevurdert)
  • 14.
    Clausson, Carl-Magnus
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Arngården, Linda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Ishaq, Omer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Klaesson, Axel
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Kühnemund, Malte
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Grannas, Karin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Koos, Björn
    Qian, Xiaoyan
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Krzywkowski, Tomasz
    Brismar, Hjalmar
    Nilsson, Mats
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Compaction of rolling circle amplification products increases signal integrity and signal–to–noise ratio2015Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, s. 12317:1-10, artikkel-id 12317Artikkel i tidsskrift (Fagfellevurdert)
  • 15.
    Clausson, Carl-Magnus
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Arngården, Linda
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Ishaq, Omer
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nilsson, Mats
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Krzywkowski, Tomasz
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Compaction of rolling circle amplification products increases signal strength and integrityManuskript (preprint) (Annet vitenskapelig)
  • 16. Degerman, Johan
    et al.
    Althoff, Karin
    Thorlin, Thorleif
    Wählby, Carolina
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Karlsson, Patrick
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Gustavsson, Tomas
    Modeling stem cell migration by Hidden Markov2004Inngår i: Proceedings of the Swedish Symposium on Image Analysis, SSBA 2004, 2004, s. 122-125Konferansepaper (Annet vitenskapelig)
  • 17.
    Edfeldt, Gabriella
    et al.
    Karolinska Inst, Stockholm, Sweden.
    Lajoie, Julie
    Univ Manitoba, Winnipeg, MB, Canada.
    Röhl, Maria
    Karolinska Inst, Stockholm, Sweden.
    Omollo, Kenneth
    Univ Nairobi, Nairobi, Kenya.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Boily-Larouche, Genevieve
    Univ Manitoba, Winnipeg, MB, Canada.
    Kimani, Joshua
    Univ Nairobi, Nairobi, Kenya.
    Fowke, Keith
    Univ Manitoba, Winnipeg, MB, Canada; Univ Nairobi, Nairobi, Kenya.
    Broliden, Kristina
    Karolinska Inst, Stockholm, Sweden.
    Tjernlund, Annelie
    Karolinska Inst, Stockholm, Sweden.
    The Effect of DMPA Use on the Human Cervical Epithelium: Mechanisms Revealed by Image Analysis2018Inngår i: AIDS Research and Human Retroviruses, ISSN 0889-2229, E-ISSN 1931-8405, Vol. 34, nr S1, s. 310-310Artikkel i tidsskrift (Annet vitenskapelig)
  • 18. Edfeldt, Gabriella
    et al.
    Lajoie, Julie
    Röhl, Maria
    Tjernlund, Annelie
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Omollo, Kenneth Odiwuor
    Boily-Larouche, Genevieve
    Cheruiyot, Julianna
    Kimani, Makubo
    Kimani, Joshua
    Oyugi, Julius
    Fowke, Keith R.
    Broliden, Kristina
    Hormonal contraceptive use affects HIV susceptibility: mechanisms revealed by image analysis2017Inngår i: Scandinavian Journal of Immunology, ISSN 0300-9475, E-ISSN 1365-3083, Vol. 86, nr 4, s. 281-281Artikkel i tidsskrift (Annet vitenskapelig)
  • 19. Erlandsson, Fredrik
    et al.
    Wählby, Carolina
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    Universitetsförvaltningen. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Detection of large numbers of antigens using sequential immunofluorescence staining2001Inngår i: 7th European Society for Analytical Cellular Pathology Congress (ESACP 2001), Caen, France, 2001, s. 56-57Konferansepaper (Annet vitenskapelig)
  • 20.
    Erlandsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Ekholm-Reed, Susanna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Hellström, Ann-Cathrin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Abnormal expression pattern of cyclin E in tumour cells2003Inngår i: Int J Cancer, ISSN 0020-7136, Vol. 104, s. 369-375Artikkel i tidsskrift (Fagfellevurdert)
  • 21.
    Erlandsson, Fredrik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby (nee Linnman), Carolina
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Ekholm, Susanna
    Bengtsson, Ewert
    Fakultetsövergripande enheter, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zetterberg, Anders
    A detailed analysis of cyclin A accumulation at the G1/S border in normal and transformed cells.2000Inngår i: Experimental Cell Research, ISSN 0014-4827/00, Vol. 256, s. 86-95Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Automatic cell segmentation has various applications in cytometry, and while the

    nucleus is often very distinct and easy to identify, the cytoplasm provides a lot

    more challenge. A new combination of image analysis algorithms for

    segmentation of cells imaged by fluorescence microscopy is presented. The

    algorithm consists of an image pre-processing step, a general segmentation

    and merging step followed by a segmentation quality measurement. The quality

    measurement consists of a statistical analysis of a number of shape descriptive

    features. Objects that have features that differ to that of correctly segmented

    single cells can be further processed by a splitting step. By statistical analysis

    we therefore get a feedback system for separation of clustered cells. After the

    segmentation is completed, the quality of the final segmentation is evaluated. By

    training the algorithm on a representative set of training images, the algorithm

    is made fully automatic for subsequent images created under similar conditions.

    Automatic cytoplasm segmentation was tested on CHO-cells stained with

    calcein. The fully automatic method showed between 89% and 97% correct

    segmentation as compared to manual segmentation.

  • 22.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Azar, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Busch, Christer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Carlbom, Ingrid
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Blind Color Decomposition of Histological Images2013Inngår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 32, nr 6, s. 983-994Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral signatures of the stained tissue, spectral overlap and spatial aliasing in acquisition, and noise at image acquisition. We present a blind method for color decomposition of histological images. The method decouples intensity from color information and bases the decomposition only on the tissue absorption characteristics of each stain. By modeling the charge-coupled device sensor noise, we improve the method accuracy. We extend current linear decomposition methods to include stained tissues where one spectral signature cannot be separated from all combinations of the other tissues' spectral signatures. We demonstrate both qualitatively and quantitatively that our method results in more accurate decompositions than methods based on non-negative matrix factorization and independent component analysis. The result is one density map for each stained tissue type that classifies portions of pixels into the correct stained tissue allowing accurate identification of morphological features that may be linked to cancer.

  • 23.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Weibrecht, Irene
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Conze, Tim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Automated Classification of Multicolored Rolling Circle Products in Dual-Channel Wide-Field Fluorescence Microscopy2011Inngår i: Cytometry Part A, ISSN 1552-4922, Vol. 79A, nr 7, s. 518-527Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Specific single-molecule detection opens new possibilities in genomics and proteomics, and automated image analysis is needed for accurate quantification. This work presents image analysis methods for the detection and classification of single molecules and single-molecule interactions detected using padlock probes or proximity ligation. We use simple, widespread, and cost-efficient wide-field microscopy and increase detection multiplexity by labeling detection events with combinations of fluorescence dyes. The mathematical model presented herein can classify the resulting point-like signals in dual-channel images by spectral angles without discriminating between low and high intensity. We evaluate the methods on experiments with known signal classes and compare to classical classification algorithms based on intensity thresholding. We also demonstrate how the methods can be used as tools to evaluate biochemical protocols by measuring detection probe quality and accuracy. Finally, the method is used to evaluate single-molecule detection events in situ.

  • 24.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Algorithms for cross-talk suppression in fluorescence microscopy2008Inngår i: Medicinteknikdagarna 2008, 2008, s. 64-64Konferansepaper (Annet vitenskapelig)
    Abstract [en]

     

     

     

  • 25.
    Gavrilovic, Milan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Spectral Angle Histogram: a Novel Image Analysis Tool for Quantification of Colocalization and Cross-talk2009Inngår i: 9th International ELMI Meeting on Advanced Light Microscopy / [ed] Kurt Anderson, Gail McConnell, Glasgow, UK, 2009, s. 66-67Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    In fluorescence microscopy, when analyzing spectral components, it is common to record two (or more) greyscale images. Each greyscale image, referred to as a channel, corresponds to intensities in different wavelength intervals. If each pixel of a two-channel image is plotted in a space spanned by the two intensity channels a conventional scatter-plot is obtained. Single-coloured pixels are distributed along the axes, while colocalized pixels are distributed closer to the diagonal of the scatter-plot, and cross-talk (as well as noise) is observed as deviations of the single-coloured vectors from the axes. Detection of colocalized pixels is often based on a division of this 2D space into different regions by intensity thresholding. We have developed a method for reducing the scatter-plot to a 1D spectral angle histogram through a series of steps that compensate for the quantization noise which is always present in digital image data.

    Using the spectral angle histogram, we can quantify colocalization in a fully automated and robust manner. As compared to previous methods for quantification of colocalization, this approach is insensitive to cross-talk. In fact, it can also be employed to quantify and compensate for cross-talk, using either linear unmixing or fuzzy classification by spectral angle, ensuring complete suppression of cross-talk with minimal loss of information. Recently we started investigating how the method can deal with autofluorescence. Initial tests on real image data show that the method may be useful for improved background suppression and amplification of the true signals.

    The article “Quantification of colocalization and cross-talk based on spectral angles”, describing the method, is about to be published in the Journal of Microscopy. Authors have also filed a patent application “Pixel classification in image analysis” in 2008.

  • 26. Gibbs, Anna
    et al.
    Buggert, Marcus
    Edfeldt, Gabriella
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Introini, Andrea
    Cheuk, Stanley
    Martini, Elisa
    Eidsmo, Liv
    Ball, Terry B.
    Kimani, Joshua
    Kaul, Rupert
    Karlsson, Annika C.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Broliden, Kristina
    Tjernlund, Annelie
    Human Immunodeficiency Virus-Infected Women Have High Numbers of CD103-CD8+ T Cells Residing Close to the Basal Membrane of the Ectocervical Epithelium2018Inngår i: Journal of Infectious Diseases, ISSN 0022-1899, E-ISSN 1537-6613, Vol. 218, nr 3, s. 453-465Artikkel i tidsskrift (Fagfellevurdert)
  • 27. Gibbs, Anna
    et al.
    Buggert, Marcus
    Edfeldt, Gabriella
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Introini, Andrea
    Cheuk, Stanley
    Martini, Elisa
    Eidsmo, Liv
    Hirbod, Taha
    Ball, Terry B.
    Kimani, Joshua
    Kaul, Rupert
    Karlsson, Annika C.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Broliden, Kristina
    Tjernlund, Annelie
    Increased numbers of CD103-CD8+ TRM cells in the cervical mucosa of HIV-infected women2017Inngår i: Scandinavian Journal of Immunology, ISSN 0300-9475, E-ISSN 1365-3083, Vol. 86, nr 4, s. 288-289Artikkel i tidsskrift (Annet vitenskapelig)
  • 28. Gibbs, Anna
    et al.
    Buggert, Marcus
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Introini, Andrea
    Cheuk, Stanley
    Eidsmo, Liv
    Hirbod, Taha
    Ball, Terry B.
    Kimani, Joshua
    Kaul, Rupert
    Karlsson, Annika C.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Broliden, Kristina
    Tjernlund, Annelie
    Analysis of the distribution of CD103 on CD8 T cells in blood and genital mucosa of HIV-infected female sex workers2016Inngår i: AIDS Research and Human Retroviruses, ISSN 0889-2229, E-ISSN 1931-8405, Vol. 32, nr S1, s. 307-307Artikkel i tidsskrift (Fagfellevurdert)
  • 29.
    Gupta, Anindya
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Harrison, Philip J.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Wieslander, Håkan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Pielawski, Nicolas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Kartasalo, Kimmo
    Partel, Gabriele
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Solorzano, Leslie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Suveer, Amit
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Klemm, Anna H.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Spjuth, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Sintorn, Ida-Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Deep Learning in Image Cytometry: A Review2019Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 95, nr 6, s. 366-380Artikkel, forskningsoversikt (Fagfellevurdert)
  • 30.
    Holting, Per
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Easy-to-use object selection by color space projections and watershed segmentation2005Inngår i: Image Analysis and Processing: ICIAP 2005 13th International Conference, Cagliari, Italy, September 6-8, 2005. Proceedings, 2005, s. 269-276Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Digital cameras are gaining in popularity, and not only experts in image analysis, but also the average users, show a growing interest in image processing. Many different kinds of software for image processing offer tools for object selection, or segmentation, but most of them require expertise knowledge, or leave too little freedom in expressing the desired segmentation. This paper presents an easy to use tool for object segmentation in color images. The amount of user interaction is minimized, and no tuning parameters are needed. The method is based on the watershed segmentation algorithm, combined with seeding information given by the user, and color space projections for optimized object edge detection. The presented method can successfully segment objects in most types of color images.

  • 31. Holzwarth, Karolin
    et al.
    Köhler, Ralf
    Philipsen, Lars
    Tokoyoda, Koji
    Ladyhina, Valeriia
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Niesner, Raluca A.
    Hauser, Anja E.
    Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections2018Inngår i: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 93, nr 9, s. 876-888Artikkel i tidsskrift (Fagfellevurdert)
  • 32.
    Ishaq, Omer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Elf, Johan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    An Evaluation of the Faster STORM Method for Super-resolution Microscopy2014Inngår i: Proceedings of the 22nd International Conference on Pattern Recognition, 2014, s. 4435-4440Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Development of new stochastic super-resolution methods together with fluorescence microscopy imaging enables visualization of biological processes at increasing spatial and temporal resolution. Quantitative evaluation of such imaging experiments call for computational analysis methods that localize the signals with high precision and recall. Furthermore, it is desirable that the methods are fast and possible to parallelize so that the ever increasing amounts of collected data can be handled in an efficient way. We here in address signal detection in super-resolution microscopy by approaches based on compressed sensing. We describe how a previously published approach can be parallelized, reducing processing time at least four times. We also evaluate the effect of a greedy optimization approach on signal recovery at high noise and molecule density. Furthermore, our evaluation reveals how previously published compressed sensing algorithms have a performance that degrades to that of a random signal detector at high molecule density. Finally, we show the approximation of the imaging system's point spread function affects recall and precision of signal detection, illustrating the importance of parameter optimization. We evaluate the methods on synthetic data with varying signal to noise ratio and increasing molecular density, and visualize performance on realsuper-resolution microscopy data from a time-lapse sequence of livingcells.

  • 33.
    Ishaq, Omer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Negri, Joseph
    Bray, Mark-Anthony
    Pacureanu, Alexandra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Peterson, Randall T.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Automated quantification of Zebrafish tail deformation for high-throughput drug screening2013Inngår i: Proc. 10th International Symposium on Biomedical Imaging: From Nano to Macro, Piscataway, NJ: IEEE , 2013, s. 902-905Konferansepaper (Fagfellevurdert)
  • 34.
    Ishaq, Omer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Negri, Joseph
    Broad Institute of Harvard and MIT.
    Bray, Mark-Anthony
    Broad Institute of Harvard and MIT.
    Pacureanu, Alexandra
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    An image based high-throughput assay for chemical screening using zebrafish.2012Konferansepaper (Fagfellevurdert)
  • 35.
    Ishaq, Omer
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sadanandan, Sajith Kecheril
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Deep Fish: Deep Learning-Based Classification of Zebrafish Deformation for High-Throughput Screening2017Inngår i: Journal of Biomolecular Screening, ISSN 1087-0571, E-ISSN 1552-454X, Vol. 22, nr 1, s. 102-107Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Zebrafish (Danio rerio) is an important vertebrate model organism in biomedical research, especially suitable for morphological screening due to its transparent body during early development. Deep learning has emerged as a dominant paradigm for data analysis and found a number of applications in computer vision and image analysis. Here we demonstrate the potential of a deep learning approach for accurate high-throughput classification of whole-body zebrafish deformations in multifish microwell plates. Deep learning uses the raw image data as an input, without the need of expert knowledge for feature design or optimization of the segmentation parameters. We trained the deep learning classifier on as few as 84 images (before data augmentation) and achieved a classification accuracy of 92.8% on an unseen test data set that is comparable to the previous state of the art (95%) based on user-specified segmentation and deformation metrics. Ablation studies by digitally removing whole fish or parts of the fish from the images revealed that the classifier learned discriminative features from the image foreground, and we observed that the deformations of the head region, rather than the visually apparent bent tail, were more important for good classification performance.

  • 36.
    Issac Niwas, Swamidoss
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Kårsnäs, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Uhlmann, Virginie
    Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts MA, USA and Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
    Palanisamy, P.
    Dept. of Electronics and Communication Engineering (ECE), National Institute of Technology (NIT), Tiruchirappalli, India.
    Kampf, Caroline
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Simonsson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Strand, Robin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Automated classification of immunostaining patterns in breast tissue from the Human Protein Atlas2012Inngår i: Histopathology Image Analysis (HIMA): a MICCAI 2012 workshop, 2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Background:

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/ ). It contains a large number of histological images of sections from human tissue. Tissue micro arrays are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples.

    Methods and Material:

    The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features and WND-CHARM-inspired features. The extracted features are used into two different multivariate classifiers (SVM and LDA classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue.

    Results:

    Good results have been obtained by using the combinations of GLCM and wavelets and texture features, edge features, histograms, transforms, etc. (WND-CHARM). The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert.

    Conclusions:

    Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many applications, ranging from antibody quality control to tumour grading.

  • 37.
    Issac Niwas, Swamidoss
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Kårsnäs, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Uhlmann, Virginie
    Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts MA, USA and Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
    Ponnusamy, Palanisamy
    Dept. of Electronics and Communication Engineering (ECE), National Institute of Technology (NIT), Tiruchirappalli, India.
    Kampf, Caroline
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Molekylär och morfologisk patologi.
    Simonsson, Martin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Broad Institute of Harvard and Massachusetts Institute Technology (MIT), Cambridge, Massachusetts, MA, USA, .
    Strand, Robin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Automated classification of immunostaining patterns in breast tissue from the Human Protein Atlas2013Inngår i: Journal of Pathology Informatics, ISSN 2229-5089, E-ISSN 2153-3539, Vol. 4, nr 14Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background:

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples.

    Materials and Methods:

    The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue.

    Results:

    We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert.

    Conclusions:

    Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many applications, ranging from antibody quality control to tumor grading.

  • 38. Jahangir Tafrechi, Roshan S.
    et al.
    van de Rijke, Frans M.
    Allalou, Amin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Larsson, Chatarina
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Sloos, Willem C. R.
    van de Sande, Marchien
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Janssen, George M. C.
    Raap, Anton K.
    Single-cell A3243G mitochondrial DNA mutation load assays for segregation analysis2007Inngår i: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 55, nr 11, s. 1159-1166Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Segregation of mitochondrial DNA (mtDNA) is an important underlying pathogenic factor in mtDNA mutation accumulation in mitochondrial diseases and aging, but the molecular mechanisms of mtDNA segregation are elusive. Lack of high-throughput single-cell mutation load assays lies at the root of the paucity of studies in which, at the single-cell level, mitotic mtDNA segregation patterns have been analyzed. Here we describe development of a novel fluorescence-based, non-gel PCR restriction fragment length polymorphism method for single-cell A3243G mtDNA mutation load measurement. Results correlated very well with a quantitative in situ Padlock/rolling circle amplification–based genotyping method. In view of the throughput and accuracy of both methods for single-cell A3243G mtDNA mutation load determination, we conclude that they are well suited for segregation analysis.

  • 39.
    Jarvius, Malin
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Paulsson, Janna
    Weibrecht, Irene
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Leuchowius, Karl-Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Andersson, Ann-Catrin
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Gullberg, Mats
    Botling, Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Sjöblom, Tobias
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Markova, Boyka
    Östman, Arne
    Landegren, Ulf
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method2007Inngår i: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 6, nr 9, s. 1500-1509Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor β (PDGFRβ) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFRβ in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFRβ in porcine aortic endothelial cells transfected with the β-receptor, but not in cells transfected with the α-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFRβ. We furthermore visualized tyrosine phosphorylated PDGFRβ in tissue sections from fresh frozen human scar tissue undergoing wound healing. The method should be of great value to study signal transduction, screen for effects of pharmacological agents, and enhance the diagnostic potential in histopathology.

  • 40.
    Karlsson, Patrick
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Segmentation of point-like fluorescent markers2004Inngår i: Proceedings: Symposium on Image Analysis, 2004, s. 146-149Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    We present a method for accurate segmentation of point like signals, from fluorescent markers in digital microscopic images with subcellular resolution. The method is able to segment and separate clustered signals, which facilitates accurate dot counting. The method performance is evaluated using synthetic images, that are modeled after real digital microscopy images of cells. The results show that the method is able to detect point like fluorescent signals as correct as a manual operator.

  • 41.
    Ke, Rongqin
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Mignardi, Marco
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Pacureanu, Alexandra
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Svedlund, Jessica
    Botling, Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Wählby, Carolina
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Nilsson, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    In situ sequencing for RNA analysis in preserved tissue and cells2013Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 10, nr 9, s. 857-860Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tissue gene expression profiling is performed on homogenates or on populations of isolated single cells to resolve molecular states of different cell types. In both approaches, histological context is lost. We have developed an in situ sequencing method for parallel targeted analysis of short RNA fragments in morphologically preserved cells and tissue. We demonstrate in situ sequencing of point mutations and multiplexed gene expression profiling in human breast cancer tissue sections.

  • 42.
    Kecheril Sadanandan, Sajith
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Baltekin, Özden
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Magnusson, Klas E. G.
    Boucharin, Alexis
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Jaldén, Joakim
    Elf, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Segmentation and track-analysis in time-lapse imaging of bacteria2016Inngår i: IEEE Journal on Selected Topics in Signal Processing, ISSN 1932-4553, E-ISSN 1941-0484, Vol. 10, nr 1, s. 174-184Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, we have developed tools to analyze prokaryotic cells growing in monolayers in a microfluidic device. Individual bacterial cells are identified using a novel curvature based approach and tracked over time for several generations. The resulting tracks are thereafter assessed and filtered based on track quality for subsequent analysis of bacterial growth rates. The proposed method performs comparable to the state-of-the-art methods for segmenting phase contrast and fluorescent images, and we show a 10-fold increase in analysis speed.

  • 43.
    Kecheril Sadanandan, Sajith
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Karlsson, Johan
    AstraZeneca, Innovative Medicines, Gothenburg, Sweden.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Spheroid segmentation using multiscale deep adversarial networks2017Inngår i: IEEE International Conference on Computer Vision, IEEE, 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this work, we segment spheroids with different sizes, shapes, and illumination conditions from bright-field microscopy images. To segment the spheroids we create a novel multiscale deep adversarial network with different deep feature extraction layers at different scales. We show that linearly increasing the adversarial loss contribution results in a stable segmentation algorithm for our dataset. We qualitatively and quantitatively compare the performance of our deep adversarial network with two other networks without adversarial losses. We show that our deep adversarial network performs better than the other two networks at segmenting the spheroids from our 2D bright-field microscopy images.

  • 44.
    Kecheril Sadanandan, Sajith
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ranefall, Petter
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Le Guyader, Sylvie
    Center for Biosciences, Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Automated training of deep convolutional neural networks for cell segmentation2017Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikkel-id 7860Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Deep Convolutional Neural Networks (DCNN) have recently emerged as superior for many image segmentation tasks. The DCNN performance is however heavily dependent on the availability of large amounts of problem-specific training samples. Here we show that DCNNs trained on ground truth created automatically using fluorescently labeled cells, perform similar to manual annotations.

  • 45.
    Kecheril Sadanandan, Sajith
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Large-Scale Analysis of Live Cells2013Konferansepaper (Annet (populærvitenskap, debatt, mm))
  • 46. Khorshidi, Mohammad Ali
    et al.
    Rajeswari, Prem Kumar Periyannan
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Jönsson, Håkan N.
    Andersson Svahn, Helene
    Automated analysis of dynamic behavior of single cells in picoliter droplets2014Inngår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 14, s. 931-937Artikkel i tidsskrift (Fagfellevurdert)
  • 47. Kirienko, Natalia V.
    et al.
    Kirienko, Daniel R.
    Larkins-Ford, Jonah
    Wählby, Carolina
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ruvkun, Gary
    Ausubel, Frederick M.
    Pseudomonas aeruginosa Disrupts Caenorhabditis elegans Iron Homeostasis, Causing a Hypoxic Response and Death2013Inngår i: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 13, nr 4, s. 406-416Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis.

  • 48.
    Koos, Björn
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Kamali-Moghaddam, Masood
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    David, Leonor
    Sobrinho-Simoes, Manuel
    Dimberg, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nilsson, Mats
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Next-Generation Pathology: Surveillance of Tumor Microecology2015Inngår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 427, nr 11, s. 2013-2022Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    A tumor is a heterogeneous population of cells that provides an environment in which every cell resides in a microenvironmental niche. Microscopic evaluation of tissue sections, based on histology and immunohistochemistry, has been a cornerstone in pathology for decades. However, the dawn of novel technologies to investigate genetic aberrations is currently adopted in routine molecular pathology. We herein describe our view on how recent developments in molecular technologies, focusing on proximity ligation assay and padlock probes, can be applied to merge the two branches of pathology, allowing molecular profiling under histologic observation. We also discuss how the use of image analysis will be pivotal to obtain information at a cellular level and to interpret holistic images of tissue sections. By understanding the cellular communications in the microecology of tumors, we will be at a better position to predict disease progression and response to therapy.

  • 49.
    Lindblad, Joakim
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Zaltsman, Alla
    Image Analysis for Automatic Segmentation of Cytoplasms and Classification of Rac1 Activation2004Inngår i: Cytometry, ISSN 0196-4763, E-ISSN 1097-0320, Vol. 57A, nr 1, s. 22-23Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    BACKGROUND:

    Rac1 is a GTP-binding molecule involved in a wide range of cellular processes. Using digital image analysis, agonist-induced translocation of green fluorescent protein (GFP) Rac1 to the cellular membrane can be estimated quantitatively for individual cells.

    METHODS:

    A fully automatic image analysis method for cell segmentation, feature extraction, and classification of cells according to their activation, i.e., GFP-Rac1 translocation and ruffle formation at stimuli, is described. Based on training data produced by visual annotation of four image series, a statistical classifier was created.

    RESULTS:

    The results of the automatic classification were compared with results from visual inspection of the same time sequences. The automatic classification differed from the visual classification at about the same level as visual classifications performed by two different skilled professionals differed from each other. Classification of a second image set, consisting of seven image series with different concentrations of agonist, showed that the classifier could detect an increased proportion of activated cells at increased agonist concentration.

    CONCLUSIONS:

    Intracellular activities, such as ruffle formation, can be quantified by fully automatic image analysis, with an accuracy comparable to that achieved by visual inspection. This analysis can be done at a speed of hundreds of cells per second and without the subjectivity introduced by manual judgments.

  • 50.
    Lindblad, Joakim
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Wählby, Carolina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Vondrus, Mikael
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Björkesten, Lennart
    Statistical quality control for segmentation of fluorescence labelled cells2001Inngår i: 5th Korea-Germany Joint Workshop on Advanced Medical Image Processing, Seoul, Korea, 2001Konferansepaper (Annet vitenskapelig)
    Abstract
12 1 - 50 of 99
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf