uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Almén, Markus Sällman
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Jacobsson, Josefin A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Moschonis, George
    Benedict, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Chrousos, George P.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Genome wide analysis reveals association of a FTO gene variant with epigenetic changes2012In: Genomics, ISSN 0888-7543, E-ISSN 1089-8646, Vol. 99, no 3, p. 132-137Article in journal (Refereed)
    Abstract [en]

    Variants of the FTO gene show strong association with obesity, but the mechanisms behind this association remain unclear. We determined the genome wide DNA methylation profile in blood from 47 female preadolescents. We identified sites associated with the genes KARS, TERF2IP, DEXI, MSI1,STON1 and BCAS3 that had a significant differential methylation level in the carriers of the FTO risk allele (rs9939609). In addition, we identified 20 differentially methylated sites associated with obesity. Our findings suggest that the effect of the FTO obesity risk allele may be mediated through epigenetic changes. Further, these sites might prove to be valuable biomarkers for the understanding of obesity and its comorbidites.

  • 2.
    Almén, Markus Sällman
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Nilsson, Emil K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Jacobsson, Josefin A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Kalnina, Ineta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Klovins, Janis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity2014In: Gene, ISSN 0378-1119, E-ISSN 1879-0038, Vol. 548, no 1, p. 61-67Article in journal (Refereed)
    Abstract [en]

    The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases.

  • 3.
    Alsiö, Johan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Rask-Andersen, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Chavan, Rohit A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Levine, Allen S.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Exposure to a high-fat high-sugar diet causes strong up-regulation of proopiomelanocortin and differentially affects dopamine D1 and D2 receptor gene expression in the brainstem of rats2014In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 559, p. 18-23Article in journal (Refereed)
    Abstract [en]

    A strong link between obesity and dopamine (DA) has been established by studies associating body weight status to variants of genes related to DA signalling. Human and animal studies investigating this relationship have so far focused mainly on the role of DA within the mesolimbic pathway. The aim of this study was to investigate potential DA receptor dysregulation in the brainstem, where these receptors play a potential role in meal termination, during high-fat high-sugar diet (HFHS) exposure. Expression of other key genes, including proopiomelanocortin (POMC), was also analyzed. We randomized rats into three groups; ad libitum access to HFHS (n=24), restricted HFHS access (n=10), or controls (chow-fed, n=10). After 5 weeks, brainstem gene expression was investigated by qRT-PCR. We observed an increase in POMC expression in ad libitum HFHS-fed rats compared to chow-fed controls (p<0.05). Further, expression of DA D2 receptor mRNA was down-regulated in the brainstem of the HFHS ad libitum-fed rats (p<0.05), whereas expression of the DA D1 receptor was upregulated (p<0.05) in these animals compared to chow-fed rats. In control experiments, we observed no effect relative to chow-fed controls on DA-receptor or POMC gene expression in the hypothalamus of HFHS diet-exposed rats, or in the brainstem of acutely food deprived rats. The present findings suggest brainstem POMC to be responsive to palatable foods, and that DA dysregulation after access to energy-dense diets occurs not only in striatal regions, but also in the brainstem, which could be relevant for overeating and for the development and maintenance of obesity.

  • 4.
    Alsiö, Johan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Roman, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Jonsson, Petra
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Levine, Allen S.
    Minnesota Obesity Center, VA Medical Center, Minneapolis, MN, USA.
    Meyerson, Bengt J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Hulting, Anna-Lena
    Department of Endocrinology, Metabolism and Diabetology, Karolinska Institutet, Stockholm.
    Lindblom, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Inverse association of high-fat diet preference and anxiety-like behavior: a putative role for urocortin 22009In: Genes, Brain and Behavior, ISSN 1601-1848, E-ISSN 1601-183X, Vol. 8, no 2, p. 193-202Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to investigate whether the preference for a palatable high-fat diet (HFD) is associated with response to novelty and with anxiety-like behavior in rats and whether such fat preference correlates with gene expression of hypothalamic neuropeptides related to feeding. We subjected male rats to two tests of exploration of novel environments: the multivariate concentric square field (MCSF) and the elevated plus maze (EPM). The rats were then exposed to a 5-day test of preference for a palatable HFD versus reference diets. Messenger RNA (mRNA) levels of 21 neuropeptides were investigated by quantitative polymerase chain reaction. We found a strong positive correlation of HFD preference and open-arm activity in the EPM (% open-arm time, r(s) = 0.629, df = 26, P < 0.001). Thus, HFD preference was inversely associated with anxiety-like behavior. The same association was found for HFD preference and behavior in the MCSF (bridge entries, r(s) = 0.399, df = 23, P = 0.048). In addition, the HFD preference was positively correlated (r(s) = 0.433, df = 25, P = 0.021) with hypothalamic mRNA levels of urocortin 2 (Ucn 2). Moreover, behavior in the EPM was significantly correlated with expression levels of the receptor for Ucn 2, the corticotropin-releasing factor receptor 2, in the hypothalamus (r(s) = 0.382, df = 33, P = 0.022, pituitary (r(s) = 0.494, df = 31, P = 0.004) and amygdala (r(s) = 0.381, df = 30, P = 0.032). We conclude that preference for palatable HFD is inversely associated with anxiety and propose that Ucn 2 signaling may play a role in this association.

  • 5.
    Bagchi, Sonchita
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Baomar, Hajar Ali
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Al-Walai, Somar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Al-Sadi, Saifaddin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Histological Analysis of SLC38A6 (SNAT6) Expression in Mouse Brain Shows Selective Expression in Excitatory Neurons with High Expression in the Synapses2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 4, p. e95438-Article in journal (Refereed)
    Abstract [en]

    SLC38A6 is one of the newly found members of the solute carrier 38 family consisting of total 11 members, of which only 6 have been characterized so far. Being the only glutamine transporter family expressed in the brain, this family of proteins are most probably involved in the regulation of the glutamate-glutamine cycle, responsible for preventing excitotoxicity. We used immunohistochemistry to show that SLC38A6 is primarily expressed in excitatory neurons and is not expressed in the astrocytes. Using proximity ligation assay, we have quantified the interactions of this SLC38 family protein with other proteins with known localization in the cells, showing that this transporter is expressed at the synapses. Moreover, this study has enabled us to come up with a model suggesting sub-cellular localization of SLC38A6 at the synaptic membrane of the excitatory neurons.

  • 6.
    Bagchi, Sonchita
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Wallén-Mackenzie, Åsa
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Comparative Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    In Situ Proximity Ligation Assay (PLA)2015In: ELISA: Methods and Protocols / [ed] Hnasko, R, Springer-Verlag New York, 2015, Vol. 1318, p. 149-159Chapter in book (Refereed)
    Abstract [en]

    In situ proximity ligation assay (PLA) is a method to identify physical closeness of proteins, where a signal will only be produced if the two proteins are closer than 40 nm, in tissue section or cell cultures. Modifications of the PLA method can also be used to increase specificity or sensitivity of standard immunohistochemistry protocols.

  • 7.
    Bagchi, Sonchita
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hellsten, Sofie Victora
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hägglund, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Arapi, Vasiliki
    Perland, Emelie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Löfqvist, Erik
    Gridlund, Viktoria
    Karlsson, Edvin
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Characterization of a unique amino acid transporter, SNAT10, in the Golgi apparatus2016Article in journal (Refereed)
  • 8.
    Benedict, Christian
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Jacobsson, Josefin A
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Rönnemaa, Elina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Sällman Almén, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Brooks, Samantha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schultes, Bernd
    Interdisciplinary Obesity Center, Kantonsspital St. Gallen.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Kilander, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The fat mass and obesity gene is linked to reduced verbal fluency in overweight and obese elderly men2011In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 32, no 6, p. 1159.e1-1159.e5Article in journal (Refereed)
    Abstract [en]

    Humans carrying the prevalent rs9939609 A allele of the fat mass and obesity-associated (FTO) gene are more susceptible to developing obesity than noncarries. Recently, polymorphisms in the FTO gene of elderly subjects have also been linked to a reduced volume in the frontal lobe as well as increased risk for incident Alzheimer disease. However, so far there is no evidence directly linking the FTO gene to functional cognitive processes. Here we examined whether the FTO rs9939609 A allele is associated with verbal fluency performance in 355 elderly men at the age of 82 years who have no clinically apparent cognitive impairment. Retrieval of verbal memory is a good surrogate measure reflecting frontal lobe functioning. Here we found that obese and overweight but not normal weight FTO A allele carriers showed a lower performance on verbal fluency than non-carriers (homozygous for rs9939609 T allele). This effect was not observed for a measure of general cognitive performance (i.e., Mini-Mental State Examination score), thereby indicating that the FTO gene primarily affects frontal lobe-dependent cognitive processes in elderly men.

  • 9.
    Bromée, Torun
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Sjödin, Paula
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Boswell, Tim
    Larsson, Tomas A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Salaneck, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Zoorob, Rima
    Mohell, Nina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Larhammar, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Neuropeptide Y-family receptors Y6 and Y7 in chicken: Cloning, pharmacological characterization, tissue distribution and conserved synteny with human chromosome region2006In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 273, no 9, p. 2048-2063Article in journal (Refereed)
    Abstract [en]

    The peptides of the neuropeptide Y (NPY) family exert their functions, including regulation of appetite and circadian rhythm, by binding to G-protein coupled receptors. Mammals have five subtypes, named Y1, Y2, Y4, Y5 and Y6, and recently Y7 has been discovered in fish and amphibians. In chicken we have previously characterized the first four subtypes and here we describe Y6 and Y7. The genes for Y6 and Y7 are located 1 megabase apart on chromosome 13, which displays conserved synteny with human chromosome 5 that harbours the Y6 gene. The porcine PYY radioligand bound the chicken Y6 receptor with a Kd of 0.80 ± 0.36 nm. No functional coupling was demonstrated. The Y6 mRNA is expressed in hypothalamus, gastrointestinal tract and adipose tissue. Porcine PYY bound chicken Y7 with a Kd of 0.14 ± 0.01 nm (mean ± SEM), whereas chicken PYY surprisingly had a much lower affinity, with a Ki of 41 nm, perhaps as a result of its additional amino acid at the N terminus. Truncated peptide fragments had greatly reduced affinity for Y7, in agreement with its closest relative, Y2, in chicken and fish, but in contrast to Y2 in mammals. This suggests that in mammals Y2 has only recently acquired the ability to bind truncated PYY. Chicken Y7 has a much more restricted tissue distribution than other subtypes and was only detected in adrenal gland. Y7 seems to have been lost in mammals. The physiological roles of Y6 and Y7 remain to be identified, but our phylogenetic and chromosomal analyses support the ancient origin of these Y receptor genes by chromosome duplications in an early (pregnathostome) vertebrate ancestor.

  • 10.
    Brooks, Samantha J
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Nilsson, Emil K
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Jacobsson, Josefin A
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Stein, Dan J
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    BDNF polymorphisms are linked to poorer working memory performance, reduced cerebellar and hippocampal volumes and differences in prefrontal cortex in a Swedish elderly population2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 1, p. e82707-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Brain-derived neurotrophic factor (BDNF) links learning, memory and cognitive decline in elderly, but evidence linking BDNF allele variation, cognition and brain structural differences is lacking.

    METHODS: 367 elderly Swedish men (n = 181) and women (n = 186) from Prospective Investigation of the Vasculature in Uppsala seniors (PIVUS) were genotyped and the BDNF functional rs6265 SNP was further examined in subjects who completed the Trail Making Task (TMT), verbal fluency task, and had a magnetic resonance imaging (MRI) scan. Voxel-based morphometry (VBM) examined brain structure, cognition and links with BDNF.

    RESULTS: The functional BDNF SNP (rs6265,) predicted better working memory performance on the TMT with positive association of the Met rs6265, and was linked with greater cerebellar, precuneus, left superior frontal gyrus and bilateral hippocampal volume, and reduced brainstem and bilateral posterior cingulate volumes.

    CONCLUSIONS: The functional BDNF polymorphism influences brain volume in regions associated with memory and regulation of sensorimotor control, with the Met rs6265 allele potentially being more beneficial to these functions in the elderly.

  • 11.
    Brooks, Samantha J.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Savov, Vasil
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Allzen, E.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Benedict, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: A systematic meta-analysis of fMRI studies2012In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 59, no 3, p. 2962-2973Article, review/survey (Refereed)
    Abstract [en]

    Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing.

  • 12.
    Caruso, Vanni
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hägglund, Maria G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Badiali, Luca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Bagchi, Sonchita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Roshanbin, Sahar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Ahmad, Tauseef
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas2014In: Gene, ISSN 0378-1119, E-ISSN 1879-0038, Vol. 553, no 1, p. 1-6Article in journal (Refereed)
    Abstract [en]

    The Rhodopsin family is a class of integral membrane proteins belonging to G protein-coupled receptors (GPCRs). To date, several orphan GPCRs are still uncharacterized and in this study we present an anatomical characterization of the GPR162 protein and an attempt to describe its functional role. Our results show that GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in areas related to energy homeostasis and hedonic feeding such as hypothalamus, amygdala and ventral tegmental area, regions known to be involved in the regulation of palatable food consumption.

  • 13.
    Caruso, Vanni
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lagerström, Malin C.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Synaptic changes induced by melanocortin signalling2014In: Nature Reviews Neuroscience, ISSN 1471-003X, E-ISSN 1471-0048, Vol. 15, no 2, p. 98-110Article, review/survey (Refereed)
    Abstract [en]

    The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.

  • 14.
    Caruso, Vanni
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Le Greves, Madeleine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fard, Shahrzad Shirazi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Haitina, Tatjana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Alsiö, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The Orphan G Protein-Coupled Receptor Gene GPR178 Is Evolutionary Conserved and Altered in Response to Acute Changes in Food Intake2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 6, article id e0122061Article in journal (Refereed)
    Abstract [en]

    G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h) or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h) exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days) to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.

  • 15.
    Caruso, Vanni
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology. Univ Tasmania UTAS, Fac Pharm, Hobart, Tas 7001, Australia..
    Sreedharan, Smitha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Carlini, Valeria P.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology. Univ Nacl Cordoba, Fac Ciencias Quim Haya Torre & Medina Allende, Dept Farmacol, Ciudad Univ, RA-5016 Cordoba, Argentina..
    Jacobsson, Josefin A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Haitina, Tatjana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hammer, Joanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Stephansson, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Crona, Filip
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Sommer, Wolfgang H.
    Cent Inst Mental Hlth, Dept Psychopharmacol, Mannheim, Germany..
    Risérus, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism.
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Marcus, Claude
    Karolinska Inst, Dept Clin Sci Intervent & Technol, Natl Childhood Obes Ctr, Div Pediat, Stockholm, Sweden..
    Heilig, Markus
    NIAAA, Lab Clin & Translat Studies, NIH, Bethesda, MD USA..
    de Barioglio, Susana R.
    Univ Nacl Cordoba, Fac Ciencias Quim Haya Torre & Medina Allende, Dept Farmacol, Ciudad Univ, RA-5016 Cordoba, Argentina..
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts2016In: Gene, ISSN 0378-1119, E-ISSN 1879-0038, Vol. 581, no 2, p. 139-145Article in journal (Refereed)
    Abstract [en]

    G protein-coupled receptors (GPCRs) are a class of integral membrane proteins mediating intercellular interactions of fundamental physiological importance for survival including regulation of food intake, blood pressure, and hormonal sensing signaling, among other roles. Homeostatic alterations in the physiological status of GPCRs are often associated with underlying causes of disease, and to date, several orphan GPCRs are still uncharacterized. Findings from our previous study demonstrate that the Rhodopsin family protein GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in hypothalamus, amygdala, and ventral tegmental area, regions strictly interconnected and involved in the regulation of energy homeostasis and hedonic feeding. In this study, we provide a further anatomical characterization of GPR162 in mouse brain via in situ hybridization as well as detailed mRNA expression in a panel of rat tissues complementing a specie-specific mapping of the receptor. We also provide an attempt to demonstrate a functional implication of GPR162 in food intake-related behavior via antisense knockdown studies. Furthermore, we performed human genetic studies in which for the first time, variants of the GPR162 gene were associated with impairments in glucose homeostasis.

  • 16. Civelli, Olivier
    et al.
    Reinscheid, Rainer K
    Zhang, Yan
    Wang, Zhiwei
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    G Protein-Coupled Receptor Deorphanizations2013In: Annual Review of Pharmacology and Toxicology, ISSN 0362-1642, E-ISSN 1545-4304, Vol. 53, p. 127-146Article, review/survey (Refereed)
    Abstract [en]

    G protein-coupled receptors (GPCRs) are major regulators of intercellular interactions. They initiate these actions by being activated by a wide variety of natural ligands. Historically, ligands were discovered first, but the advent of molecular biology reversed this trend. Most GPCRs are identified on the basis of their DNA sequences and thus are initially unmatched to known natural ligands. They are termed orphan GPCRs. Discovering their ligands-i.e., "deorphanizing" the GPCRs-gave birth to the field of reverse pharmacology. This review discusses the present status of GPCR deorphanization, presents a few examples of successes and surprises, and highlights difficulties encountered in these efforts.

  • 17.
    Corell, Mikael
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Wicher, Grzegorz
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Radomska, Katarzyna J
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Dağlıkoca, E Duygu
    Godskesen, Randi Elberg
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Benedikz, Eirikur
    Magnaghi, Valerio
    Fex Svenningsen, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination2015In: Journal of Neuroscience Research, ISSN 0360-4012, E-ISSN 1097-4547, Vol. 93, no 2, p. 285-295Article in journal (Refereed)
    Abstract [en]

    The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.

  • 18. Drgonova, Jana
    et al.
    Jacobsson, Josefin A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Han, Joan C.
    Yanovski, Jack A.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Marcus, Claude
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Uhl, George R.
    Involvement of the Neutral Amino Acid Transporter SLC6A15 and Leucine in Obesity-Related Phenotypes2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 9, p. e68245-Article in journal (Refereed)
    Abstract [en]

    Brain pathways, including those in hypothalamus and nucleus of the solitary tract, influence food intake, nutrient preferences, metabolism and development of obesity in ways that often differ between males and females. Branched chain amino acids, including leucine, can suppress food intake, alter metabolism and change vulnerability to obesity. The SLC6A15 (v7-3) gene encodes a sodium-dependent transporter of leucine and other branched chain amino acids that is expressed by neurons in hypothalamus and nucleus of the solitary tract. We now report that SLC6A15 knockout attenuates leucine's abilities to reduce both: a) intake of normal chow and b) weight gain produced by access to a high fat diet in gender-selective fashions. We identify SNPs in the human SLC6A15 that are associated with body mass index and insulin resistance in males. These observations in mice and humans support a novel, gender-selective role for brain amino acid compartmentalization mediated by SLC6A15 in diet and obesity-associated phenotypes.

  • 19.
    Eriksson, Anders
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Williams, Michael J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Voisin, Sarah
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hansson, Ida
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Krishnan, Arunkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Philippot, Gaetan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Yamskova, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Herisson, Florence M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Dnyansagar, Rohit
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Moschonis, George
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Manios, Yannis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Chrousos, George P.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olszewski, Pawel K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Frediksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Implication of coronin 7 in body weight regulation in humans, mice and flies2015In: BMC neuroscience (Online), ISSN 1471-2202, E-ISSN 1471-2202, Vol. 16, article id 13Article in journal (Refereed)
    Abstract [en]

    Background: Obesity is a growing global concern with strong associations with cardiovascular disease, cancer and type-2 diabetes. Although various genome-wide association studies have identified more than 40 genes associated with obesity, these genes cannot fully explain the heritability of obesity, suggesting there may be other contributing factors, including epigenetic effects. Results: We performed genome wide DNA methylation profiling comparing normal-weight and obese 9-13 year old children to investigate possible epigenetic changes correlated with obesity. Of note, obese children had significantly lower methylation levels at a CpG site located near coronin 7 (CORO7), which encodes a tryptophan-aspartic acid dipeptide (WD)-repeat containing protein most likely involved in Golgi complex morphology and function. Anatomical profiling of coronin 7 (Coro7) mRNA expression in mice revealed that it is highly expressed in appetite and energy balance regulating regions, including the hypothalamus, striatum and locus coeruleus, the main noradrenergic brain site. Interestingly, we found that food deprivation in mice downregulates hypothalamic Coro7 mRNA levels, and injecting ethanol, an appetite stimulant, increased the number of Coro7 expressing cells in the locus coeruleus. Finally, by employing the genetically-tractable Drosophila melanogaster model we were able to demonstrate an evolutionarily conserved metabolic function for the CORO7 homologue pod1. Knocking down the pod1 in the Drosophila adult nervous system increased their resistance to starvation. Furthermore, feeding flies a high-calorie diet significantly increased pod1 expression. Conclusion: We conclude that coronin 7 is involved in the regulation of energy homeostasis and this role stems, to some degree, from the effect on feeding for calories and reward.

  • 20.
    Eriksson, Mikaela
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Hellsten, Sofie V
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Perland, Emelie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The Neuronal and Peripheral Expressed Membrane-Bound UNC93A Respond to Nutrient Availability in Mice2017In: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 10, article id 351Article in journal (Refereed)
    Abstract [en]

    Many transporters such as the solute carriers belonging to the Major facilitator superfamily Pfam clan are orphans in that their tissue and cellular localization as well as substrate profile and function are still unknown. Here we have characterized the putative solute carrier UNC93A. We aimed to investigate the expression profile on both protein and mRNA level of UNC93A in mouse since it has not been clarified. UNC93A staining was found in cortex, hippocampus and cerebellum. It was found to be expressed in many neurons, but not all, with staining located in close proximity to the plasma membrane. Furthermore, we aimed to extend the starvation data available for Unc93a in hypothalamic cell cultures from mouse. We investigated the Unc93a alterations with focus on amino acid deprivation in embryonic cortex cells from mice as well as 24 h starvation in adult male mice and compared it to recently studied putative and known solute carriers. Unc93a expression was found both in the brain and peripheral organs, in low to moderate levels in the adult mice and was affected by amino acid deprivation in embryonic cortex cultures and starvation in in vivo samples. In conclusion, the membrane-bound UNC93A is expressed in both the brain and peripheral tissues and responds to nutrient availability in mice.

  • 21.
    Haitina, Tatjana
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Klovins, Janis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Andersson, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Lagerström, Malin C.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Larhammar, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 2.
    Larson, Earl T
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience. Farmakologi 3.
    Cloning, tissue distribution, pharmacology and three-dimensional modelling of melanocortin receptors 4 and 5 in rainbow trout suggest close evolutionary relationship of these subtypes2004In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 380, no 2, p. 475-486Article in journal (Refereed)
    Abstract [en]

    The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.

  • 22.
    Haitina, Tatjana
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Olsson, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Stephansson, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Alsiö, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Roman, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ebendal, Ted
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat2008In: BMC neuroscience (Online), ISSN 1471-2202, E-ISSN 1471-2202, Vol. 9, p. 43-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND

    The Adhesion G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands. However, the majority of Adhesion GPCRs are still poorly studied orphans with unknown functions.

    RESULTS

    In this study we performed the extensive tissue localization analysis of the entire Adhesion GPCR family in rat and mouse. By applying the quantitative real-time PCR technique we have produced comparable expression profile for each of the members in the Adhesion family. The results are compared with literature data and data from the Allen Brain Atlas project. Our results suggest that the majority of the Adhesion GPCRs are either expressed in the CNS or ubiquitously. In addition the Adhesion GPCRs from the same phylogenetic group have either predominant CNS or peripheral expression, although each of their expression profile is unique.

    CONCLUSION

    Our findings indicate that many of Adhesion GPCRs are expressed, and most probably, have function in CNS. The related Adhesion GPCRs are well conserved in their structure and interestingly have considerable overlap in their expression profiles, suggesting similarities among the physiological roles for members within many of the phylogenetically related clusters.

  • 23. Hamann, Joerg
    et al.
    Aust, Gabriela
    Arac, Demet
    Engel, Felix B.
    Formstone, Caroline
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hall, Randy A.
    Harty, Breanne L.
    Kirchhoff, Christiane
    Knapp, Barbara
    Krishnan, Arunkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Liebscher, Ines
    Lin, Hsi-Hsien
    Martinelli, David C.
    Monk, Kelly R.
    Peeters, Miriam C.
    Piao, Xianhua
    Proemel, Simone
    Schoeneberg, Torsten
    Schwartz, Thue W.
    Singer, Kathleen
    Stacey, Martin
    Ushkaryov, Yuri A.
    Vallon, Mario
    Wolfrum, Uwe
    Wright, Mathew W.
    Xu, Lei
    Langenhan, Tobias
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors2015In: Pharmacological Reviews, ISSN 0031-6997, E-ISSN 1521-0081, Vol. 67, no 2, p. 338-367Article, review/survey (Refereed)
    Abstract [en]

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

  • 24.
    Hellsten, Sofie V.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Eriksson, Mikaela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Arapi, Vasiliki
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Perland, Emelie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fredriksson, Rorbert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 2, article id e0172917Article in journal (Refereed)
    Abstract [en]

    SLC38A9 is characterized as a lysosomal component of the amino acid sensing RagulatorRAG GTPase complex, controlling the mechanistic target of rapamycin complex 1 (mTORC1). Here, immunohistochemistry was used to map SLC38A9 in mouse brain and staining was detected throughout the brain, in cortex, hypothalamus, thalamus, hippocampus, brainstem and cerebellum. More specifically, immunostaining was found in areas known to be involved in amino acid sensing and signaling pathways e.g. piriform cortex and hypothalamus. SLC38A9 immunoreactivity co-localized with both GABAergic and glutamatergic neurons, but not with astrocytes. SLC38A9 play a key role in the mTORC1 pathway, and therefore we performed in vivo starvation and high-fat diet studies, to measure gene expression alterations in specific brain tissues and in larger brain regions. Following starvation, Slc38a9 was upregulated in brainstem and cortex, and in anterior parts of the brain (Bregma 3.2 to -2.1mm). After high-fat diet, Slc38a9 was specifically upregulated in hypothalamus, while overall downregulation was noticed throughout the brain (Bregma 3.2 to -8.6mm).

  • 25.
    Hellsten, Sofie V.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Hägglund, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Eriksson, Mikaela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The neuronal and astrocytic protein SLC38A10 transports glutamine, glutamate, and aspartate, suggesting a role in neurotransmission2017In: FEBS Open Bio, E-ISSN 2211-5463, Vol. 7, no 6, p. 730-746Article in journal (Refereed)
    Abstract [en]

    In brain cells, glutamine transporters are vital to monitor and control the levels of glutamate and GABA. There are 11 members of the SLC38 family of amino acid transporters of which eight have been functionally characterized. Here, we report the first histological and functional characterization of the previously orphan member, SLC38A10. We used pairwise global sequence alignments to determine the sequence identity between the SLC38 family members. SLC38A10 was found to share 20-25% transmembrane sequence identity with several family members, and was predicted to have 11 transmembrane helices. SLC38A10 immunostaining was abundant in mouse brain using a custom-made anti-SLC38A10 antibody and colocalization of SLC38A10 immunoreactivity with markers for neurons and astrocytes was detected. Using Xenopus laevis oocytes overexpressing SLC38A10, we show that SLC38A10 mediates bidirectional transport of L-glutamine, L-alanine, L-glutamate, and D-aspartate, and efflux of L-serine. This profile mostly resembles system A members of the SLC38 family. In conclusion, the bidirectional transport of glutamine, glutamate, and aspartate by SLC38A10, and the immunostaining detected in neurons and astrocytes, suggest that SLC38A10 plays a role in pathways involved in neurotransmission.

  • 26.
    Hellsten, Sofie V.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ahmad, Tauseef
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    The gene expression of numerous SLC transporters is altered in the immortalized hypothalamic cell line N25/2 following amino acid starvation2017In: FEBS Open Bio, E-ISSN 2211-5463, Vol. 7, no 2, p. 249-264Article in journal (Refereed)
    Abstract [en]

    Amino acids are known to play a key role in gene expression regulation,and in mammalian cells, amino acid signaling is mainly mediated via twopathways, the mammalian target of rapamycin complex 1 (mTORC1) pathwayand the amino acid responsive (AAR) pathway. It is vital for cells tohave a system to sense amino acid levels, in order to control protein andamino acid synthesis and catabolism. Amino acid transporters are crucialin these pathways, due to both their sensing and transport functions. Inthis large-scale study, an immortalized mouse hypothalamic cell line (N25/2)was used to study the gene expression changes following 1, 2, 3, 5 or 16 hof amino acid starvation. We focused on genes encoding solute carriers(SLCs) and putative SLCs, more specifically on amino acid transporters.The microarray contained 28 270 genes and 86.2% of the genes wereexpressed in the cell line. At 5 h of starvation, 1001 genes were upregulatedand 848 genes were downregulated, and among these, 47 genes from theSLC superfamily or atypical SLCs were found. Of these, 15 were genesencoding amino acid transporters and 32 were genes encoding other SLCsor atypical SLCs. Increased expression was detected for genes encodingamino acid transporters from system A, ASC, L, N, T, xc-, and y+. UsingGO annotations, genes involved in amino acid transport and amino acidtransmembrane transporter activity were found to be most upregulated at3 h and 5 h of starvation.

  • 27.
    Hellsten, Sofie V
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Tripathi, Rekha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Ceder, Mikaela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells2018In: FRONTIERS IN MOLECULAR BIOSCIENCES, ISSN 2296-889X, Vol. 5, article id 45Article in journal (Refereed)
    Abstract [en]

    Amino acid sensing and signaling is vital for cells, and both gene expression and protein levels of amino acid transporters are regulated in response to amino acid availability. Here, the aim was to study the regulation of all members of the SLC38 amino acid transporter family, Slc38a1-11 , in mouse brain cells following amino acid starvation. We reanalyzed microarray data for the immortalized hypothalamic cell line N25/2 subjected to complete amino acid starvation for 1, 2, 3, 5, or 16 h, focusing specifically on the SLC38 family. All 11 Slc38 genes were expressed in the cell line, and Slc38a1, Slc38a2, and Slc38a 7 were significantly upregulated at 5 h and most strongly at 16 h. Here, protein level changes were measured for SLC38A7 and the orphan family member SLC38A11 which has not been studied under different amino acid starvation condition at protein level. At 5 h, no significant alteration on protein level for either SLC38A7 or SLC38A11 could be detected. In addition, primary embryonic cortex cells were deprived of nine amino acids, the most common amino acids transported by the SLC38 family members, for 3 h, 7 h or 12 h, and the gene expression was measured using qPCR. Slc38a1, Slc38a2, Slc38a5, Slc38a6, Slc38a9, and Slc38a10 were upregulated, while Slc38a3 and Slc38a7 were downregulated. Slc38a8 was upregulated at 5 h and downregulated at 12 h. In conclusion, several members from the SLC38 family are regulated depending on amino acid levels and are likely to be involved in amino acid sensing and signaling in brain.

  • 28.
    Hellsten, Sofie Victora
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Eriksson, Mikaela
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Perland, Emelie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    SLC38A9 is expressed in inhibitory and excitatory neurons and the gene expression changes in mouse brain after starvation and high-fat dietManuscript (preprint) (Other academic)
  • 29.
    Hellsten, Sofie Victora
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Perland, Emelie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Ahmad, Tauseef
    Yamskova, Olga
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Amino acid deprivation of neuronal cells changes expression levels of numerous transporters from the SLC family, including several members of the SLC38 family2016Article in journal (Refereed)
  • 30.
    Herisson, F. M.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology. Univ Waikato, Dept Biol Sci, Fac Sci & Engn, Private Bag 3105, Hamilton, New Zealand..
    Waas, J. R.
    Univ Waikato, Dept Biol Sci, Fac Sci & Engn, Private Bag 3105, Hamilton, New Zealand..
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Levine, A. S.
    Univ Minnesota, Dept Food Sci & Nutr, 1334 Eckles Ave, St Paul, MN USA..
    Olszewski, P. K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology. Univ Waikato, Dept Biol Sci, Fac Sci & Engn, Private Bag 3105, Hamilton, New Zealand.;Univ Minnesota, Dept Food Sci & Nutr, 1334 Eckles Ave, St Paul, MN USA..
    Oxytocin Acting in the Nucleus Accumbens Core Decreases Food Intake2016In: Journal of neuroendocrinology (Print), ISSN 0953-8194, E-ISSN 1365-2826, Vol. 28, no 4Article in journal (Refereed)
    Abstract [en]

    Central oxytocin (OT) promotes feeding termination in response to homeostatic challenges, such as excessive stomach distension, salt loading and toxicity. OT has also been proposed to affect feeding reward by decreasing the consumption of palatable carbohydrates and sweet tastants. Because the OT receptor (OTR) is expressed in the nucleus accumbens core (AcbC) and shell (AcbSh), a site regulating diverse aspects of eating behaviour, we investigated whether OT acts there to affect appetite in rats. First, we examined whether direct AcbC and AcbSh OT injections affect hunger- and palatability-driven consumption. We found that only AcbC OT infusions decrease deprivation-induced chow intake and reduce the consumption of palatable sucrose and saccharin solutions in nondeprived animals. These effects were abolished by pretreatment with an OTR antagonist, L-368,899, injected in the same site. AcbC OT at an anorexigenic dose did not induce a conditioned taste aversion, which indicates that AcbC OT-driven anorexia is not caused by sickness/malaise. The appetite-specific effect of AcbC OT is supported by the real-time polymerase chain reaction analysis of OTR mRNA in the AcbC, which revealed that food deprivation elevates OTR mRNA expression, whereas saccharin solution intake decreases OTR transcript levels. We also used c-Fos immunohistochemistry as a marker of neuronal activation and found that AcbC OT injection increases activation of the AcbC itself, as well as of two feeding-related sites: the hypothalamic paraventricular and supraoptic nuclei. Finally, considering the fact that OT plays a significant role in social behaviour, we examined whether offering animals a meal in a social setting would modify their hypophagic response to AcbC OT injections. We found that a social context abolishes the anorexigenic effects of AcbC OT. We conclude that OT acting via the AcbC decreases food intake driven by hunger and reward in rats offered a meal in a nonsocial setting.

  • 31.
    Hoeber, Jan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Regenerative neurobiology.
    König, Niclas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Regenerative neurobiology.
    Trolle, Carl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Regenerative neurobiology.
    Lekholm, Emilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Zhou, Chunfang
    Nanologica AB , Södertälje, Sweden.
    Pankratova, Stanislava
    Univ Copenhagen, Inst Neurosci & Pharmacol, Copenhagen, Denmark.
    Åkesson, Elisabet
    Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Aldskogius, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Regenerative neurobiology.
    Kozlova, Elena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Regenerative neurobiology.
    A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord2017In: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 26, no 14, p. 1065-1077Article in journal (Refereed)
    Abstract [en]

    Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (MesoMIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along "bridges" formed by migrating stem cells. Coimplantation of MesoMIM prevented stem cell migration, "bridges" were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular "bridges" in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient alternative way to induce sensory axon regeneration, and (3) a combinatorial approach of individually beneficial components is not necessarily additive, but can be counterproductive for axonal growth.

  • 32.
    Hägglund, Maria G. A.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hellsten, Sofie V.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Bagchi, Sonchita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Ljungdahl, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Nilsson, Victor C. O.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Winnergren, Sonja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Stephansson, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Rumaks, Juris
    Svirskis, Simons
    Klusa, Vija
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Characterization of the transporterB0AT3 (Slc6a17) in the rodent central nervous system2013In: BMC neuroscience (Online), ISSN 1471-2202, E-ISSN 1471-2202, Vol. 14, p. 54-Article in journal (Refereed)
    Abstract [en]

    Background: The vesicular B(0)AT3 transporter (SLC6A17), one of the members of the SLC6 family, is a transporter for neutral amino acids and is exclusively expressed in brain. Here we provide a comprehensive expression profile of B(0)AT3 in mouse brain using in situ hybridization and immunohistochemistry. Results: We confirmed previous expression data from rat brain and used a novel custom made antibody to obtain detailed co-labelling with several cell type specific markers. B(0)AT3 was highly expressed in both inhibitory and excitatory neurons. The B(0)AT3 expression was highly overlapping with those of vesicular glutamate transporter 2 (VGLUT2) and vesicular glutamate transporter 1 (VGLUT1). We also show here that Slc6a17mRNA is up-regulated in animals subjected to short term food deprivation as well as animals treated with the serotonin reuptake inhibitor fluoxetine and the dopamine/noradrenaline reuptake inhibitor bupropion. Conclusions: This suggests that the B(0)AT3 transporter have a role in regulation of monoaminergic as well as glutamatergic synapses.

  • 33.
    Hägglund, Maria G A
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hellsten, Sofie V
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Bagchi, Sonchita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Philippot, Gaëtan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Löfqvist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Nilsson, Victor C O
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Almkvist, Ingrid
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Karlsson, Edvin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Sreedharan, Smitha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Tafreshiha, Atieh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS2015In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 427, no 6, p. 1495-1512Article in journal (Refereed)
    Abstract [en]

    Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present a first functional characterization of SLC38A8, one of the previous orphan transporters from the family and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 have preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine, and L-aspartate using a Na(+)-dependent transport mechanism and that the functional characteristics of SNAT8 has highest similarity to the known System A transporters. We also provide a comprehensive CNS expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay show highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 have a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate(GABA) cycle in the brain.

  • 34.
    Hägglund, Maria G A
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Roshanbin, Sahar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Löfqvist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hellsten, Sofie V
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Nilsson, Victor C O
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Todkar, Aniruddha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Zhu, Yinan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Stephansson, Olga
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Drgonova, Jana
    Uhl, George R
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    B(0)AT2 (SLC6A15) is localized to neurons and astrocytes, and is involved in mediating the effect of leucine in the brain2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 3, p. e58651-Article in journal (Refereed)
    Abstract [en]

    The B(0)AT2 protein is a product of the SLC6A15 gene belonging to the SLC6 subfamily and has been shown to be a transporter of essential branched-chain amino acids. We aimed to further characterize the B(0)AT2 transporter in CNS, and to use Slc6a15 knock out (KO) mice to investigate whether B(0)AT2 is important for mediating the anorexigenic effect of leucine. We used the Slc6a15 KO mice to investigate the role of B(0)AT2 in brain in response to leucine and in particular the effect on food intake. Slc6a15 KO mice show lower reduction of food intake as well as lower neuronal activation in the ventromedial hypothalamic nucleus (VMH) in response to leucine injections compared to wild type mice. We also used RT-PCR on rat tissues, in situ hybridization and immunohistochemistry on mouse CNS tissues to document in detail the distribution of SLC6A15 on gene and protein levels. We showed that B(0)AT2 immunoreactivity is mainly neuronal, including localization in many GABAergic neurons and spinal cord motor neurons. B(0)AT2 immunoreactivity was also found in astrocytes close to ventricles, and co-localized with cytokeratin and diazepam binding inhibitor (DBI) in epithelial cells of the choroid plexus. The data suggest that B(0)AT2 play a role in leucine homeostasis in the brain.

  • 35.
    Hägglund, Maria
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Hellsten, Sofie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Bagchi, Sonchita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Philippot, Gaëtan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Löfqvist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Nilsson, Victor
    Almkvist, Ingrid
    Karlsson, Edvin
    Sreedharan, Smitha
    Tafreshiha, Atieh
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Transport of L-glutamine, L-alanine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS.: SNAT8 is a neuronal glutamine transporter.In: Article in journal (Refereed)
  • 36.
    Jacobsson, Josefin A.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schioth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Rorbert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The impact of intronic single nucleotide polymorphisms and ethnic diversity for studies on the obesity gene FTO2012In: Obesity Reviews, ISSN 1467-7881, E-ISSN 1467-789X, Vol. 13, no 12, p. 1096-1109Article, review/survey (Refereed)
    Abstract [en]

    In 2007, the first common genetic variants were identified, which undoubtedly affect our susceptibility to obesity. These variants are located in the fat mass and obesity-associated gene FTO. Since then, over 50 loci for common obesity have been identified. As the research on these loci is still at an early stage, there is a great need to review, for clarification purposes, the current research on FTO, as this is likely to influence future studies. Based on the current knowledge, FTO seems to be directly involved in the regulation of energy intake, but there is an urgent need for the identification of regulatory polymorphisms. Thus, herein, we discuss current knowledge and highlight putative functional regions in FTO based on published data and computer-based analysis.

  • 37.
    Jacobsson, Josefin A.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Sällman Almén, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Benedict, Christian
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Hedberg, Lilia A.
    Michaëlsson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Brooks, Samantha
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Kullberg, Joel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Axelsson, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Detailed Analysis of Variants in FTO in Association with Body Composition in a Cohort of 70-Year-Olds Suggests a Weakened Effect among Elderly2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 5, p. e20158-Article in journal (Refereed)
    Abstract [en]

    Background

     The rs9939609 single-nucleotide polymorphism (SNP) in the fat mass and obesity (FTO) gene has previously been associated with higher BMI levels in children and young adults. In contrast, this association was not found in elderly men. BMI is a measure of overweight in relation to the individuals' height, but offers no insight into the regional body fat composition or distribution.

    Objective

    To examine whether the FTO gene is associated with overweight and body composition-related phenotypes rather than BMI, we measured waist circumference, total fat mass, trunk fat mass, leg fat mass, visceral and subcutaneous adipose tissue, and daily energy intake in 985 humans (493 women) at the age of 70 years. In total, 733 SNPs located in the FTO gene were genotyped in order to examine whether rs9939609 alone or the other SNPs, or their combinations, are linked to obesity-related measures in elderly humans.

    Design

    Cross-sectional analysis of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort.

    Results

     Neither a single SNP, such as rs9939609, nor a SNP combination was significantly linked to overweight, body composition-related measures, or daily energy intake in elderly humans. Of note, these observations hold both among men and women.

    Conclusions

    Due to the diversity of measurements included in the study, our findings strengthen the view that the effect of FTO on body composition appears to be less profound in later life compared to younger ages and that this is seemingly independent of gender.

  • 38.
    Jacobsson, Josefin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Rask-Andersen, Mathias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Risérus, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism.
    Moschonis, G
    Koumpitski, A
    Chrousos, G P
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Marcus, C
    Gyllensten, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Genetic variants near the MGAT1 gene are associated with body weight, BMI and fatty acid metabolism among adults and children2012In: International Journal of Obesity, ISSN 0307-0565, E-ISSN 1476-5497, Vol. 36, no 1, p. 119-129Article in journal (Refereed)
    Abstract [en]

    Objective: Recently a genome-wide association analysis from five European populations identified a polymorphism located downstream of the mannosyl-(α-1,3)-glycoprotein-β-1,2-N-acetylglucosaminyltransferase (MGAT1) gene that was associated with body-weight. In the present study, associations between MGAT1 variants combined with obesity and insulin measurements were investigated in three cohorts. Levels of fatty acids and estimated measures of Δ desaturases were also investigated among adult men.

    Design: Six polymorphisms downstream of MGAT1 were genotyped in a cross-sectional cohort of 1152 Swedish men. Three polymorphisms were further analyzed in a case-control study of 1076 Swedish children and in a cross-sectional study of 2249 Greek children.

    Results: Three polymorphisms, rs12186500 (odds ratio (OR): 1.892, 95% confidence interval (CI): 1.237-2.895, P=0.003), rs1021001 (OR: 2.102, 95% CI: 1.280-3.455, P=0.003) and rs4285184 (OR: 1.587, 95% CI: 1.024-2.459, P=0.038) were associated with a higher prevalence of obesity among the adult men and a trend for obesity was observed for rs4285184 among the Swedish (OR: 1.205, 95% CI: 0.987-1.471, P=0.067) and Greek children (OR: 1.192, 95%CI: 0.978-1.454, P=0.081). Association with body weight was observed for rs12186500 (P=0.017) and rs4285184 (P=0.024) among the men. The rs1021001 and rs4285184 were also associated with body mass index (BMI) in the two Swedish cohorts and similar trends were observed among the Greek children. The combined effect size for rs1021001 and rs4285184 on BMI z-score from a meta-analysis was 0.233 (95% CI:0.093-0.373, P=0.001) and 0.147 (95% CI:0.057-0.236, P=0.001), respectively. We further observed associations between the genetic variants and fatty acids (P<0.039) and estimated measures of Δ desaturases (P<0.040), as well as interactions for rs12186500 (P<0.019) with an effect on BMI. No association was found with homeostatic model assessment-insulin resistance in any cohort but increased insulin levels, insulin response and decreased insulin sensitivity were observed among the children (P<0.038).

    Conclusion: Genetic variants downstream MGAT1 seem to influence susceptibility to obesity. Moreover, these genetic variants affect the levels of serum unsaturated fatty acids and Δ desaturase indices, variables previously shown to correlate with obesity.

  • 39. Jacobsson, Lina
    et al.
    Park, Hee-Bok
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Wahlberg, Per
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Fredriksson, Robert
    Department of Neuroscience. Farmakologi 3.
    Perez-Enciso, Miguel
    Siegel, Paul B
    Andersson, Leif
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens.2005In: Genet Res, ISSN 0016-6723, Vol. 86, no 2, p. 115-25Article in journal (Refereed)
  • 40. Jensen, Per
    et al.
    Keeling, L.
    Schutz, K.
    Andersson, L.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Mormede, P.
    Brändström, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Forkman, B.
    Kerje, Susanne
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Ohlsson, C.
    Larsson, Sune
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Mallmin, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
    Kindmark, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Feather pecking in chickens is genetically related to behavioural and developmental traits2005In: Physiology and Behavior, ISSN 0031-9384, E-ISSN 1873-507X, Vol. 86, no 1-2, p. 52-60Article in journal (Refereed)
    Abstract [en]

    Feather pecking (FP) is a detrimental behaviour in chickens, which is performed by only some individuals in a flock. FP was studied in 54 red junglefowl (ancestor of domestic chickens), 36 White Leghorn laying hens, and 762 birds from an F(2)-intercross between these two lines. From all F(2)-birds, growth and feed consumption were measured. Age at sexual maturity and egg production in females, and corticosterone levels in males were also measured. From 333 F(2)-birds of both sexes, and 20 parental birds, body composition with respect to bone mineral content, muscle and fat was obtained by post-mortem examinations using Dual X-Ray Absorptiometry (DXA). In femurs of the same birds, the bone density and structure were analysed using DXA and Peripheral Quantitative Computerized Tomography (pQCT), and a biomechanical analysis of bone strength was performed. Furthermore, plumage condition was determined in all birds as a measure of being exposed to feather pecking. Using 105 DNA-markers in all F(2)-birds, a genome-wide scan for Quantitative Trait Loci (QTL), associated with the behaviour in the F(2)-generation was performed. FP was at least as frequent in the red junglefowl as in the White Leghorn strain studied here, and significantly more common among females both in the parental strains and in the F(2)-generation. In the F(2)-birds, FP was phenotypically linked to early sexual maturation, fast growth, weak bones, and, in males, also high fat accumulation, indicating that feather peckers have a different resource allocation pattern. Behaviourally, F(2) feather peckers were more active in an open field test, in a novel food/novel object test, and in a restraint test, indicating that feather pecking might be genetically linked to a proactive coping strategy. Only one suggestive QTL with a low explanatory value was found on chromosome 3, showing that many genes, each with a small effect, are probably involved in the causation of feather pecking. There were significant effects of sire and dam on the risk of being a victim of feather pecking, and victims grew faster pre- and post-hatching, had lower corticosterone levels and were less active in a restraint test. Hence, a wide array of behavioural and developmental traits were genetically linked to FP.

  • 41.
    Kerje, Susanne
    et al.
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Sharma, Preety
    Gunnarsson, Ulrika
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kim, Hyun
    Bagchi, Sonchita
    Fredriksson, Robert
    Department of Neuroscience.
    Schütz, Karin
    Jensen, Per
    von Heijne, Gunnar
    Okimoto, Ron
    Andersson, Leif
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene.2004In: Genetics, ISSN 0016-6731, Vol. 168, no 3, p. 1507-18Article in journal (Refereed)
  • 42.
    Krishnan, Arunkumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Almén, Markus Sällman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Insights into the Origin of Nematode Chemosensory GPCRs: Putative Orthologs of the Srw Family Are Found across Several Phyla of Protostomes2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 3, p. e93048-Article in journal (Refereed)
    Abstract [en]

    Nematode chemosensory GPCRs in Caenorhabditis elegans (NemChRs) are classified into 19 gene families, and are initially thought to have split from the ancestral Rhodopsin family of GPCRs. However, earlier studies have shown that among all 19 NemChR gene families, only the srw family has a clear sequence relationship to the ancestral Rhodopsin GPCR family. Yet, the phylogenetic relationships between the srw family of NemChRs and the Rhodopsin subfamilies are not fully understood. Also, a widespread search was not previously performed to check for the presence of putative srw family-like sequences or the other 18 NemChR families in several new protostome species outside the nematode lineage. In this study, we have investigated for the presence of 19 NemChR families across 26 eukaryotic species, covering basal eukaryotic branches and provide the first evidence that the srw family of NemChRs is indeed present across several phyla of protostomes. We could identify 29 putative orthologs of the srw family in insects (15 genes), molluscs (11 genes) and Schistosoma mansoni (3 genes). Furthermore, using HMM-HMM profile based comparisons and phylogenetic analysis we show that among all Rhodopsin subfamilies, the peptide and SOG (somatostatin/opioid/galanin) subfamilies are phylogenetically the closest relatives to the srw family of NemChRs. Taken together, we demonstrate that the srw family split from the large Rhodopsin family, possibly from the peptide and/or SOG subfamilies, well before the split of the nematode lineage, somewhere close to the divergence of the common ancestor of protostomes. Our analysis also suggests that the srsx family of NemChRs shares a clear sequence homology with the Rhodopsin subfamilies, as well as with few of the vertebrate olfactory receptors. Overall, this study provides further insights into the evolutionary events that shaped the GPCR chemosensory system in protostome species.

  • 43.
    Krishnan, Arunkumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Almén, Markus Sällman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire2013In: Gene, ISSN 0378-1119, E-ISSN 1879-0038, Vol. 526, no 2, p. 122-133Article in journal (Refereed)
    Abstract [en]

    Saccoglossus kowalevskii (the acorn worm) is a hemichordate belonging to the superphylum of deuterostome bilateral animals. Hemichordates are sister group to echinoderms, and closely related to chordates. S. kowalevskii has chordate like morphological traits and serves as an important model organism, helping developmental biologists to understand the evolution of the central nervous system (CNS). Despite being such an important model organism, the signalling system repertoire of the largest family of integral transmembrane receptor proteins, G protein-coupled receptors (GPCRs) is largely unknown in S. kowalevskii. Here, we identified 260 unique GPCRs and classified as many as 257 of them into five main mammalian GPCR families; Glutamate (23), Rhodopsin (212), Adhesion (18), Frizzled (3) and Secretin (1). Despite having a diffuse nervous system, the acorn worm contains well conserved orthologues for human Adhesion and Glutamate family members, with a similar N-terminal domain architecture. This is particularly true for genes involved in CNS development and regulation in vertebrates. The average sequence identity between the GPCR orthologues in human and S. kowalevskii is around 47%, and this is same as observed in couple of the closest vertebrate relatives, Ciona intestinalis (41%) and Branchiostoma floridae (similar to 47%). The Rhodopsin family has fewer members than vertebrates and lacks clear homologues for 6 of the 13 subgroups, including olfactory, chemokine, prostaglandin, purine, melanocyte concentrating hormone receptors and MAS-related receptors. However, the peptide and somatostatin binding receptors have expanded locally in the acorn worm. Overall, this study is the first large scale analysis of a major signalling gene superfamily in the hemichordate lineage. The establishment of orthologue relationships with genes involved in neurotransmission and development of the CNS in vertebrates provides a foundation for understanding the evolution of signal transduction and allows for further investigation of the hemichordate neurobiology.

  • 44.
    Krishnan, Arunkumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Dnyansagar, Rohit
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Almén, Markus Sällman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Williams, Michael J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Manoj, Narayanan
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals2014In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 14Article in journal (Refereed)
    Abstract [en]

    Background: G protein-coupled receptors (GPCRs) play a central role in eukaryotic signal transduction. However, the GPCR component of this signalling system, at the early origins of metazoans is not fully understood. Here we aim to identify and classify GPCRs in Amphimedon queenslandica (sponge), a member of an earliest diverging metazoan lineage (Porifera). Furthermore, phylogenetic comparisons of sponge GPCRs with eumetazoan and bilaterian GPCRs will be essential to our understanding of the GPCR system at the roots of metazoan evolution. Results: We present a curated list of 220 GPCRs in the sponge genome after excluding incomplete sequences and false positives from our initial dataset of 282 predicted GPCR sequences obtained using Pfam search. Phylogenetic analysis reveals that the sponge genome contains members belonging to four of the five major GRAFS families including Glutamate (33), Rhodopsin (126), Adhesion (40) and Frizzled (3). Interestingly, the sponge Rhodopsin family sequences lack orthologous relationships with those found in eumetazoan and bilaterian lineages, since they clustered separately to form sponge specific groups in the phylogenetic analysis. This suggests that sponge Rhodopsins diverged considerably from that found in other basal metazoans. A few sponge Adhesions clustered basal to Adhesion subfamilies commonly found in most vertebrates, suggesting some Adhesion subfamilies may have diverged prior to the emergence of Bilateria. Furthermore, at least eight of the sponge Adhesion members have a hormone binding motif (HRM domain) in their N-termini, although hormones have yet to be identified in sponges. We also phylogenetically clarified that sponge has homologs of metabotropic glutamate (mGluRs) and GABA receptors. Conclusion: Our phylogenetic comparisons of sponge GPCRs with other metazoan genomes suggest that sponge contains a significantly diversified set of GPCRs. This is evident at the family/subfamily level comparisons for most GPCR families, in particular for the Rhodopsin family of GPCRs. In summary, this study provides a framework to perform future experimental and comparative studies to further verify and understand the roles of GPCRs that predates the divergence of bilaterian and eumetazoan lineages.

  • 45.
    Krishnan, Arunkumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Mustafa, Arshi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Almén, Markus Sällman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Williams, Michael J
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families2015In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 91, p. 27-40Article in journal (Refereed)
    Abstract [en]

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further understand the differential roles of GPCR/G protein mediated intracellular signaling system across various metazoan lineages.

  • 46.
    Krishnan, Arunkumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Sällaman Almén, Markus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 1, p. e29817-Article in journal (Refereed)
    Abstract [en]

    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily.

  • 47.
    Lagerström, Malin C.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Hellström, Anders R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Gloriam, David E.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Larsson, Thomas P.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    The G protein-coupled receptor subset of the chicken genome2006In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 2, no 6, p. e54-Article in journal (Refereed)
    Abstract [en]

    G protein-coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human-chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chicken's ability and mode of detecting both bitter and sweet taste may differ from the human's. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download.

  • 48.
    Lagerström, Malin C.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Klovins, Janis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Fridmanis, Davids
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Haitina, Tatjana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Ling, Maria K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Berglund, Magnus M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 32003In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 278, no 51, p. 51521-51526Article in journal (Refereed)
    Abstract [en]

    We created a molecular model of the human melanocortin 4 receptor (MC4R) and introduced a series of His residues into the receptor protein to form metal ion binding sites. We were able to insert micromolar affinity binding sites for zinc between transmembrane region (TM) 2 and TM3 where the metal ion alone was able to activate this peptide binding G-protein-coupled receptor. The exact conformation of the metal ion interactions allowed us to predict the orientation of the helices, and remodeling of the receptor protein indicated that Glu100 and Ile104 in TM2 and Asp122 and Ile125 in TM3 are directed toward a putative area of activation of the receptor. The molecular model suggests that a rotation of TM3 may be important for activation of the MC4R. Previous models of G-protein-coupled receptors have suggested that unlocking of a stabilizing interaction between the DRY motif, in the cytosolic part of TM3, and TM6 is important for the activation process. We suggest that this unlocking process may be facilitated through creation of a new interaction between TM3 and TM2 in the MC4R.

  • 49.
    Larsson, Tomas A
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Larson, Earl T
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Conlon, J Michael
    Larhammar, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Characterization of NPY receptor subtypes Y2 and Y7 in rainbow trout Oncorhynchus mykiss2006In: Peptides, ISSN 0196-9781, E-ISSN 1873-5169, Vol. 27, no 6, p. 1320-1327Article in journal (Refereed)
    Abstract [en]

    We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.

  • 50.
    Larsson, Tomas A.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Tay, Boon-Hui
    Sundström, Görel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fredriksson, Robert
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Brenner, Sydney
    Larhammar, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology.
    Venkatesh, Byrappa
    Neuropeptide Y-family peptides and receptors in the elephant shark, Callorhinchus milii confirm gene duplications before the gnathostome radiation2009In: Genomics, ISSN 0888-7543, E-ISSN 1089-8646, Vol. 93, no 3, p. 254-260Article in journal (Refereed)
    Abstract [en]

    We describe here the repertoire of neuropeptide Y (NPY) peptides and receptors in the elephant shark Callorhinchus milii, belonging to the chondrichthyans that diverged from the rest of the gnathostome (jawed vertebrate) lineage about 450 million years ago and the first chondrichthyan with a genome project. We have identified two peptide genes that are orthologous to NPY and PYY (peptide YY) in other vertebrates, and seven receptor genes orthologous to the Y1, Y2, Y4, Y5, Y6, Y7 and Y8 subtypes found in tetrapods and teleost fishes. The repertoire of peptides and receptors seems to reflect the ancestral configuration in the predecessor of all gnathostomes, whereas other lineages such as mammals and teleosts have lost one or more receptor genes or have acquired 1-2 additional peptide genes. Both the peptides and receptors showed broad and overlapping mRNA expression which may explain why some receptor gene losses could take place in some lineages, but leaves open the question why all the known ancestral receptors have been retained in the elephant shark.

12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf