uu.seUppsala University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Brandell, Daniel
    et al.
    Karo, Jaanus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Liivat, Anti
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Thomas, John
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems2007In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 13, no 10, p. 1039-1046Article in journal (Refereed)
    Abstract [en]

    The Nafion, Dow and Aciplex systems – where the prime differences lies in the side-chain length – have been studied by molecular dynamics (MD) simulation under standard pressure and temperature conditions for two different levels of hydration: 5 and 15 water molecules per (H)SO3 end-group. Structural features such as water clustering, water-channel dimensions and topology, and the dynamics of the hydronium ions and water molecules have all been analysed in relation to the dynamical properties of the polymer backbone and side-chains. It is generally found that mobility is promoted by a high water content, with the side-chains participating actively in the H3O+/H2O transport mechanism. Nafion, whose side-chain length is intermediate of the three polymers studied, is found to have the most mobile polymer side-chains at the higher level of hydration, suggesting that there could be an optimal side-chain length in these systems. There are also some indications that the water-channel network connectivity is optimal for high water-content Nafion system, and that this could explain why Nafion appears to exhibit the most favourable overall hydronium/water mobility.

  • 2.
    Karo, Jaanus
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Aabloo, A
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    A molecular dynamics study of the effect of side-chains on mobility in a polymer host2005In: Solid State Ionics, Vol. 176, no 39-40, p. 3041-3044Article in journal (Refereed)
    Abstract [en]

    The effect on polymer dynamics of adding methoxy-terminated poly(ethylene oxide) (PEO) side-chains with different lengths and separations to an amorphous long-chain PEO backbone has been studied by Molecular Dynamics (MD) simulation at 293 K and 330 K. The study is seen as having a direct general relevance to the optimal design of ion-conducting polymer hosts for both Li-ion battery and polymer fuel-cell applications. The MD box used contains a long-chain PEO backbone to which side-chains comprising 3, 6, 7, 8, 9 and 15 EO units are added. The chosen separations between the side-chains are 5, 10, 15, 20 and 50 EO units. All potentials used to describe these systems are taken from earlier work (J. Mater. Chem., 13 (2003) 214). The overall mobility of the polymer host system is found to have both minima and maxima at both temperatures for side-chain lengths in the range 6–9 EO units. This is almost totally independent of side-chain separation at 293 K, while the situation is more complex at 330 K.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf