OBJECTIVE: The objective of this study was to evaluate the effects of exogenously administered lactate and pyruvate on blood perfusion in endogenous and transplanted islets. METHODS: Anesthetized Wistar-Furth rats were given lactate or pyruvate intravenously, and regional blood perfusion was studied 3 or 30 minutes later with a microsphere technique. Separate rats received a 30-minute infusion of pyruvate or lactate into the portal vein before blood flow measurements. We also administered these substances to islet-implanted rats 4 weeks after transplantation and measured graft blood flow with laser Doppler flowmetry. The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was analyzed. RESULTS: The expression of monocarboxylate transporter 1 and lactate dehydrogenase A was markedly up-regulated in transplanted as compared with endogenous islets. Administration of pyruvate, but not lactate, increased mesenteric blood flow after 3 minutes. Pyruvate decreased mesenteric blood flow after 30 minutes, whereas lactate decreased only islet blood flow. These responses were absent in transplanted animals. A continuous intraportal infusion of lactate or pyruvate increased selectively islet blood flow but did not affect blood perfusion of transplanted islets. CONCLUSIONS: Lactate and pyruvate affect islet blood flow through effects mediated by interactions between the liver and the nervous system. Such a response can help adjust the release of islet hormones during excess substrate concentrations.
The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. In anti-CD3 stimulated PBMCs, GABA (100nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals. CD4+ T cells from ND individuals were grouped into responder or non-responder T cells according to effects of GABA (100nM, 500nM) on the cell proliferation. In the responder T cells, GABA decreased proliferation, and inhibited secretion of 37 cytokines in a concentration-dependent manner. In the non-responder T cells, GABA modulated release of 8 cytokines. GABA concentrations in plasma from T1D patients and ND individuals were correlated with 10 cytokines where 7 were increased in plasma of T1D patients. GABA inhibited secretion of 5 of these cytokines from both T1D PBMCs and ND responder T cells. The results identify GABA as a potent regulator of both Th1- and Th2-type cytokine secretion from human PBMCs and CD4+ T cells where GABA generally decreases the secretion.
AIMS/HYPOTHESIS: The aim of this study was to investigate pancreatic perfusion and its response to a glucose load in patients with type 1 diabetes mellitus compared with non-diabetic ('healthy') individuals.
METHODS: Eight individuals with longstanding type 1 diabetes and ten sex-, age- and BMI-matched healthy controls underwent dynamic positron emission tomography scanning with (15)O-labelled water before and after intravenous administration of glucose. Perfusion in the pancreas was measured. Portal and arterial hepatic perfusion were recorded as references.
RESULTS: Under fasting conditions, total pancreatic perfusion was on average 23% lower in the individuals with diabetes compared with healthy individuals. Glucose increased total pancreatic and portal hepatic blood perfusion in healthy individuals by 48% and 38%, respectively. In individuals with diabetes there was no significant increase in either total pancreatic or portal hepatic perfusion.
CONCLUSIONS/INTERPRETATION: Individuals with type 1 diabetes have reduced basal pancreatic perfusion and a severely impaired pancreatic and splanchnic perfusion response to intravenous glucose stimulation.
[(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP) PET of the pancreas has been shown to be a surrogate imaging biomarker of pancreatic islet mass. The change in islet mass in different stages of type 2 diabetes (T2D) as measured by non-invasive imaging is currently unknown. Here, we describe a cross-sectional study where subjects at different stages of T2D development with expected stratification of pancreatic islet mass were examined in relation to non-diabetic individuals. The primary outcome was the [(11)C]5-HTP uptake and retention in pancreas, as a surrogate marker for the endogenous islet mass.We found that metabolic testing indicated a progressive loss of beta cell function, but that this was not mirrored by a decrease in [(11)C]5-HTP tracer accumulation in the pancreas. This provides evidence of retained islet mass despite decreased beta cell function. The results herein indicates that beta cell dedifferentiation, and not necessarily endocrine cell loss, constitute a major cause of beta cell failure in T2D.
Objective. To determine whether carbon monoxide, a known gaseous vasorelaxator, affects pancreatic islet blood flow in rats. Material and methods. Sprague-Dawley rats were anaesthetized with thiobutabarbital and injected intravenously with the haem oxygenase inhibitor tin-protoporphyrin IX dichloride ( SnPP; 4, 10 or 20 mg/kg body-weight). After 15 min, blood flow measurements were performed using a microsphere technique. Results. There was a slight increase in mean arterial blood pressure with the highest dose of SnPP. No effects on total pancreatic, islet, duodenal, colonic, renal or adrenal blood flow were seen with any of the applied doses. Conclusions. The findings of this study suggest that the haem oxygenase-carbon monoxide system is likely to be of limited importance in the regulation of blood perfusion to the pancreas, the islets of Langerhans or any of the other studied organs.
Macroencapsulation devices provide the dual possibility to immunoprotect transplanted cells while also being retrievable; the latter bearing importance for safety in future trials with stem-cell derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the βAir device containing allogeneic human pancreatic islets to patients with type 1 diabetes. Four patients were transplanted with 1-2 βAir devices, each containing 155000-180000 IEQ (i.e. 1800-4600 IEQ per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the βAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the βAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited.
No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.
BACKGROUND: A factor of potential importance in the failure of islet grafts is poor or inadequate engraftment of the islets in the implantation organ. This study measured the oxygen tension and blood perfusion in 1-, 2-, and 9-month-old islet grafts. METHODS: The partial pressure of oxygen was measured in pancreatic islets transplanted beneath the renal capsule of diabetic and nondiabetic recipient rats with a modified Clark electrode (outer tip diameter 2-6 microm). The size of the graft (250 islets) was by purpose not large enough to cure the diabetic recipients. The oxygen tension in islets within the pancreas was also recorded. Blood perfusion was measured with the laser-Doppler technique. RESULTS: Within native pancreatic islets, the partial pressure of oxygen was approximately 40 mm Hg (n=8). In islets transplanted to nondiabetic animals, the oxygen tension was approximately 6-7 mm Hg 1, 2, and 9 months posttransplantation. No differences could be seen between the different time points after transplantation. In the diabetic recipients, an even more pronounced decrease in graft tissue oxygen tension was recorded. The mean oxygen tension in the superficial renal cortex surrounding the implanted islets was similar in all groups (approximately 15 mm Hg). Intravenous administration of glucose (0.1 gxkg(-1)x min(-1)) did not affect the oxygen tension in any of the investigated tissues. The islet graft blood flow was similar in all groups, measuring approximately 50% of the blood flow in the kidney cortex. CONCLUSION: The oxygen tension in islets implanted beneath the kidney capsule is markedly lower than in native islets up to 9 months after transplantation. Moreover, persistent hyperglycemia in the recipient causes an even further decrease in graft oxygen tension, despite similar blood perfusion. To what extent this may contribute to islet graft failure remains to be determined.
The retention of endogenous insulin secretion in type 1 diabetes is an attractive clinical goal, which opens possibilities for long-term restoration of glucose metabolism. Mesenchymal stromal cells (MSCs) constitute, based on animal studies, a promising interventional strategy for the disease. This prospective clinical study describes the translation of this cellular intervention strategy to patients with recent onset type 1 diabetes. Twenty adult patients with newly diagnosed type 1 diabetes were enrolled and randomized to MSC treatment or to the control group. Residual beta-cell function was analyzed as C-peptide concentrations in blood in response to a mixed meal tolerance test (MMTT) at one-year follow-up. In contrast to the patients in the control arm, who showed loss in both C-peptide peak values and C-peptide when calculated as area under the curve during the first year, these responses were preserved or even increased in the MSC-treated patients. Importantly, no side effects of MSC treatment were observed. We conclude that autologous MSC treatment in new onset type 1 diabetes constitute a safe and promising strategy to intervene in disease progression and preserve beta-cell function.
In a recent publication, we reported that islets transplanted to mouse striated muscle became revascularized with intra-islet vessel densities comparable to native islets. Revascularization of islet grafts was completely dependent on recruited Gr-1+ leukocytes. Diabetic mice cured by transplantation of 300 islets into muscle handled glucose tolerance tests as healthy controls, whereas mice cured by intraportal islet transplantation into the liver had increased blood glucose values during the load. The translational impact of these observations were confirmed by magnetic resonance imaging of autotransplanted islets in the forearm muscle of pancreactomized patients, and higher blood perfusion of the grafts compared to adjacent muscle were found. In summary, the striated muscle is a promising site for islet transplantation which promotes full revascularization of implanted grafts. The proangiogenic role of recruited leukocytes during engraftment needs to be further characterized, and considered for immune suppression treatments.
The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extraceaular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type Littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose toad in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP9(-/-) function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.
We identified an angiotensin-generating system in pancreatic islets and found that exogenously administered angiotensin II, after binding to its receptors (angiotensin II type 1 receptor [AT1R]), inhibits insulin release in a manner associated with decreased islet blood flow and (pro)insulin biosynthesis. The present study tested the hypothesis that there is a change in AT1R expression in the pancreatic islets of the obesity-induced type 2 diabetes model, the db/db mouse, which enables endogenous levels of angiotensin II to impair islet function. Islets from 10-week-old db/db and control mice were isolated and investigated. In addition, the AT1R antagonist losartan was administered orally to 4-week-old db/db mice for an 8-week period. We found that AT1R mRNA was upregulated markedly in db/db islets and double immunolabeling confirmed that the AT1R was localized to beta-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in db/db islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in db/db mice, but did not affect the insulin sensitivity of peripheral tissues. The present findings indicate that AT1R antagonism improves beta-cell function and glucose tolerance in young type 2 diabetic mice. Whether islet AT1R activation plays a role in the pathogenesis of human type 2 diabetes remains to be determined.
The failure of beta-cells has a central role in the pathogenesis of type 2 diabetes, and the identification of novel approaches to improve functional beta-cell mass is essential to prevent/revert the disease. Here we show a critical novel role for thrombospondin 1 (THBS1) in beta-cell survival during lipotoxic stress in rat, mouse and human models. THBS1 acts from within the endoplasmic reticulum to activate PERK and NRF2 and induce a protective antioxidant defense response against palmitate. Prolonged palmitate exposure causes THBS1 degradation, oxidative stress, activation of JNK and upregulation of PUMA, culminating in beta-cell death. These findings shed light on the mechanisms leading to beta-cell failure during metabolic stress and point to THBS1 as an interesting therapeutic target to prevent oxidative stress in type 2 diabetes.
Bone marrow mesenchymal stromal cells (BM-MSCs) have been characterized and used in many clinical studies based on their immunomodulatory and regenerative properties. We have recently reported the benefit of autologous MSC systemic therapy in the treatment of type 1 diabetes mellitus (T1D). Compared with allogeneic cells, use of autologous products reduces the risk of eliciting undesired complications in the recipient, including rejection, immunization, and transmission of viruses and prions; however, comparable potency of autologous cells is required for this treatment approach to remain feasible. To date, no analysis has been reported that phenotypically and functionally characterizes MSCs derived from newly diagnosed and late-stage T1D donors in vitro with respect to their suitability for systemic immunotherapy. In this study, we used gene array in combination with functional in vitro assays to address these questions. MSCs from T1D donors and healthy controls were expanded from BM aspirates. BM mononuclear cell counts and growth kinetics were comparable between the groups, with equivalent colony-forming unit-fibroblast capacity. Gene microarrays demonstrated differential gene expression between healthy and late-stage T1D donors in relation to cytokine secretion, immunomodulatory activity, and wound healing potential. Despite transcriptional differences, T1D MSCs did not demonstrate a significant difference from healthy controls in immunosuppressive activity, migratory capacity, or hemocompatibility. We conclude that despite differential gene expression, expanded MSCs from T1D donors are phenotypically and functionally similar to healthy control MSCs with regard to their immunomodulatory and migratory potential, indicating their suitability for use in autologous systemic therapy.
Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1), that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only similar to 15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.
In humans a well-developed serotonin system is localized to the pancreatic islets while being absent in exocrine pancreas. Assessment of pancreatic serotonin biosynthesis could therefore be used to estimate the human endocrine pancreas. Proof of concept was tested in a prospective clinical trial by comparisons of type 1 diabetic (T1D) patients, with extensive reduction of beta cells, with healthy volunteers (HV).C-peptide negative (i.e. insulin-deficient) T1D subjects (n=10) and HV (n=9) underwent dynamic Positron Emission Tomography with the radiolabeled serotonin precursor [(11)C]5-Hydroxy-Tryptophan ([(11)C]5-HTP).A significant accumulation of [(11)C]5-HTP was obtained in the pancreas of the HV, with large inter-individual variation. A substantial and highly significant reduction (66%) in the pancreatic uptake of [(11)C]5-HTP in T1D subjects was observed, and this was most evident in the corpus and caudal regions of the pancreas where beta-cells normally are the major constituent of the islets.[(11)C]5-HTP retention in the pancreas was reduced in T1D compared to non-diabetic subjects. Accumulation of [(11)C]5-HTP in the pancreas of both HV and subjects with T1D were in agreement with previously reported morphological observations on the beta cell volume implying that [(11)C]5-HTP retention is a useful non-invasive surrogate marker for the human endocrine pancreas.
We here report a case of diabetic ketoacidosis at onset of type 1 diabetes after a prolonged period of starvation due to anorexia nervosa. A 53-year-old female with a history of anorexia nervosa was admitted to the psychiatric clinic due to psychotic behaviour and inability to take care of herself. Twenty-four hours after admission she was transferred to the clinic of internal medicine due to altered mental status, and laboratory screening revealed a pH of 6.895 and blood glucose concentration of 40 mmol/L. Due to the unusual combination of prolonged starvation and diabetic ketoacidosis we implemented some modifications of existing treatment guidelines and some special considerations regarding nutrition in order to prevent a re-feeding syndrome.
Islet transplantation is an attractive treatment for selected patients with brittle type 1 diabetes. In the clinical setting, intraportal transplantation predominates. However, due to extensive early islet cell death, the quantity of islets needed to restore glucose homeostasis requires in general a minimum of two donors. Moreover, the deterioration of islet function over time results in few insulin-independent patients after five-year followup. Specific obstacles to the success of islet transplantation include site-specific concerns for the liver such as the instant blood mediated inflammatory reaction, islet lipotoxicity, low oxygen tension, and poor revascularization, impediments that have led to the developing interest for alternative implantation sites over recent years. Within preclinical settings, several alternative sites have now been investigated and proven favorable in various aspects. Muscle is considered a very promising site and has physiologically properties and technical advantages that could make it optimal for islet transplantation.