For airborne gravity gradient data, it is a challenge to distinguish between high-frequency intrinsic and dynamically produced noise caused by the aircraft and small-scale effects from shallow density variations. To facilitate consistent interpretation, techniques that include all of the measured gravity gradient components are particularly promising. We represented the measurements by a common potential function accounting for lateral and height variations. Thus, it was possible to evaluate the internal consistency between the measured components and to identify components with bias or particularly strong noise. As an extra benefit for data sets that contain terrain-corrected and nonterrain-corrected gravity gradient measurements at flight altitude, we estimated terrain-corrected anomalies on the topographic relief using downward continuation and retrieved nonterrain-corrected gravity gradient data suitable for inversion using upward continuation. For a field data set from northern Sweden, the largest differences (up to 50 eotvos) between the measured and estimated components of the gravity gradient data were found in areas of high topographical relief. But the average residual standard deviations of the individual components were between 3.6 and 7.4 eotvos, indicating that the components were consistent in an average sense. We have determined the successful conversion of terrain-corrected airborne gravity gradient data to Bouguer gravity data on the topographic relief using ground-based vertical gravity data as a reference. A 3D inverse model computed from the nonterrain-corrected data clearly showed the depth extent of the geologic structures observed at the surface, but it only produced a weak representation of the shallow structure. In contrast, a 2D surface density model in which only lateral variations of density in the topographic relief was allowed exhibited more realistic density distributions in fair correlation with geology.
In 1985, the mining company Luossavaara-Kiirunavaara Aktiebolag collected airborne very-low-frequency (VLF) data in northern Sweden. The operators stored only the vertical component and the total magnetic field, which at that time were believed to be sufficient for qualitative interpretation. Therefore, the data could not be directly used for quantitative tensor VLF processing and inversion. To avoid the costs of resurveying, we have developed a novel technique to estimate the tippers from the measured VLF data by computing anomalous and normal parts of the horizontal components of the magnetic field from two transmitters separately. Retrieval of the normal horizontal components was possible because one component of the horizontal magnetic field was used as the phase reference during the measurements. Additionally, we have determined how the approximate apparent resistivity suitable for data visualization can be computed from the components of the magnetic field assuming an average normal resistivity of the subsurface. Maps of apparent resistivity combined with topography show a clear correlation between high topography and high resistivity, whereas conductive zones are found in valleys in between. More importantly, the 3D model inverted from the calculated tippers shows excellent agreement with a map of the surface geology. Based on this comparison, some less resistive zones can be related to fluids in fractures and others can be related to mineralized contact zones. We suggest to focus further exploration on conductive zones surrounding areas with basaltic composition.
Tensor radiomagnetotelluric (RMT) and electrical resistivity tomography (ERT) data were acquired along 10 parallel lines to image electrical resistivity of the vadose and the saturated zone in an area near Trecate, 45 km west of Milan in Italy. In 1994, the area was exposed to an oil contamination caused by a tank explosion and has since been subject to monitoring and remediation programs. For the first time, we have examined a 3D inversion of full tensor RMT data and have compared the results with 2D joint inversion of RMT and ERT data. First, a synthetic 3D resistivity model with similar variations close to those measured at the Trecate site was generated for the comparison. The synthetic tests showed that resistivity models from 2D joint inversion of ERT and RMT data contain more details closer to the surface compared to the models from the 3D inversion of tensor RMT data. High resistivity structures are better resolved by the 2D joint inversion, whereas the more conductive features are better recovered by the 3D inversion. In the next step, the ERT and RMT data collected in the Trecate site were modeled with the same approaches used in the synthetic modeling. Using the measured tensor RMT data, it was possible to carry out full 3D inversion to study the underlying geology. Comparison between the resistivity models from both inversions with the lithological data from the existing boreholes, resistivity models from the inversion of crosshole resistivity data, and water content models from magnetic resonance soundings measurements showed that the electrical resistivity, depth to the top and thickness of the water saturated zone is modeled more accurately With the 3D inversion.
Radio- and controlled-source-tensor magnetotelluric (RMT and CSTMT) methods are used to target hydrothermal veins of copper mineralization. The data were acquired along six eastwest- and three north-south-trending profiles, covering an area of about 500 x 400 m(2). The tensor RMT data were collected in the 10-250-kHz frequency band. A double horizontal magnetic dipole transmitter in the 4-12.5-kHz frequency range allowed us to constrain the deeper parts of the resistivity models better. To obtain optimum field parameters, ground magnetic profiling was conducted prior to the RMT and CSTMT surveys. Although the study area (in Iran) is remote, a number of radio transmitters with acceptable signal-to-noise ratio were utilized. The 2D inversion of RMT data led to unstable resistivity models with large data misfits. Thus, the RMT data were used to complement and analyze the near-surface resistivity anomalies observed in the 2D CSTMT models. Analyses of strike and dimensionality from the CSTMT data suggests that the low-resistivity structures are mainly three dimensional; therefore, 2D inversion of determinant data is chosen. Independent 2D inversion models of the determinant CSTMT data along crossing profiles are in good agreement. Known copper mineralization is imaged well in the CSTMT models. The thinning of the conductive overburden correlates very well with magnetic highs, indicating the bedrock is resistive and magnetic. In this sense, the magnetic and electromagnetic fields complement each other. Analysis of the 2D resistivity models indicates the volcanic rock deepens at the center of the study area. This zone is associated with a magnetic low and therefore is recommended for detailed exploration work.
In order to gain a better understanding of the geometry of surface faults, five Controlled Source/Radio Magnetotelluric (CSRMT) profiles were measured across the Volvi basin, 45 km northeast of the city of Thessaloniki in Greece. The data were collected in two frequency ranges: a) 1–12.5 kHz using a remotely controlled double horizontal magnetic dipole transmitter (CSAMT measurements), and b) 15–250 kHz using the signal from distant radio transmitters (RMT measurements). The transition from the RMT band to the CSAMT band was smooth and continuous allowing us to combine both datasets for plane-wave modeling. The surface geology shows a predominantly 2D structure, and therefore we planned the survey into profiles perpendicular to the geological strike. We have used a 2D interpretation tool to model the data in TE, TM, TE + TM and determinant modes. Using a 4% error floor on the impedance, 2D resistivity models from inversion of the determinant data provide lower RMS data fits (4.2 and 1.2 for resistivity and phase, respectively) compared to the combined TE + TM data (4.4, 2.8, overall resistivity and phase, respectively). 2D inversion of the measured tensor data shows a sharp change in the depth to the top of resistive gneiss–schist basement that is overlain by a less resistive overburden at southern basin flanks. The change in depth to the bedrock is clearly seen in all 2D models along the measured profiles suggesting the existence of normal faults with strike directions of NE–SW to E–W. The 2D electrical resistivity models suggest that the bedrock deepens towards south-west. The resistivity models are also compared with the existing borehole information in the area and show a reasonable correlation. For example the sharp change of depth to the bedrock towards the center of the basin as seen in the resistivity models are also confirmed by the borehole data.
We introduce a new technique to level aerogeophysical data. Our approach is applicable to flight-line data without any need for tie-line measurements. The technique is based on polynomial fitting of data points in 1D and 2D sliding windows. A polynomial is fitted to data points in a 2D circular window that contains at least three flight lines. Then the same procedure is done inside a 1D window placed at the center of the 2D window. The leveling error is the difference between 1D and 2D polynomial fitted data at the center of the windows. To demonstrate the reliability of the method, it was tested on a synthetic aeromagnetic data set contaminated by some linear artifacts. Using the differential polynomial fitting method, we can remove the linear artifacts from the data. The method then was applied to two real airborne data sets collected in Iran. The leveling errors are removed effectively from the aeromagnetic data using the differential polynomial fitting. In the case of helicopter-towed electromagnetic (HEM) data, the polynomial fitting method is used to level the measured real (in-phase) and imaginary (quadrature) components, as well as the calculated apparent resistivity. The HEM data are sensitive to height variations, so we introduce an average-height scaling method to reduce the height effect before leveling in-phase and quadrature components. The method also is effective in recovering some of the attenuated anomalies. After scaling, the differential polynomial fitting method was applied to the data and effectively removed the remaining line-to-line artifacts.
ORUÇ (2010) proposes a new method for interpretation of gravity gradient tensor (GGT) data. This method seems interesting in theoretical point of view, although, we have found some flaws in the equations he has derived. In this paper, we correct the introduced equations and describe some theoretical points, briefly.
We have developed a constrained inversion technique for interpretation of gravity gradient tensor data. For dike and contact models striking in the y -direction, the measured g xz and g zz components can be jointly inverted for estimating the model parameters horizontal position, depth to the top, thickness, dip angle, and density contrast. For a given measurement point, the strike direction of the gravity gradient tensor caused by a quasi 2D structure can be estimated from the eigenvector corresponding to the smallest eigenvalue. Then, the measured components can be transformed into the strike coordinate system. It is assumed that the maximum of g zz is approximately located above the causative body. In the case of gridded data, all measurement points enclosed by a square window centered at the maximum of g zz are used to estimate the source parameters. The number of data points used for estimating source parameters is increased by increasing the size of the window. Solutions with the smallest data-fit error were selected as the most reliable solutions from any set of solutions. The gravity gradient tensor data are deconvolved using both dike and contact models within a set of square windows. Then, the model with the smallest data-fit error is chosen as the best model. We studied the effect of random noise and interfering sources using synthetic examples. The method is applied to a gravity gradient tensor data set from the Vredefort impact structure in South Africa. In this particular case, the dike model provides solutions with smaller data-fit errors than the contact model. This supports the idea that in the central dome area there is a predominance of vertical structures related to the formation of the transient crater and subsequent central uplift of the lower and middle crustal material.
We^{ }have developed a new method to locate geologic bodies using^{ }the gravity gradient tensor. The eigenvectors of the symmetric gravity^{ }gradient tensor can be used to estimate the position of^{ }the source body as well as its strike direction. Fora given measurement point, the eigenvector corresponding to the maximumeigenvalue points approximately toward the center of mass of the^{ }causative body. For a collection of measurement points, a robust^{ }least-squares procedure is used to estimate the source point as^{ }the point that has the smallest sum of square distances^{ }to the lines defined by the eigenvectors and the measurement^{ }positions. It's assumed that the maximum of the first vertical^{ }derivative of the vertical component of gravity vector g_{zz} is^{ }approximately located above the center of mass. Observation points enclosed^{ }in a square window centered at the maximum of g_{zz}are used to estimate the source location. By increasing the^{ }size of the window, the number of eigenvectors used in^{ }the robust least squares and subsequently the number of solutions^{ }increase. As a criterion for selecting the best solution from^{ }a set of previously computed solutions, we chose that solution^{ }having the minimum relative error (less than a given threshold)^{ }of its depth estimate. The strike direction of the source^{ }can be estimated from the direction of the eigenvectors correspondingto the smallest eigenvalue for quasi 2D structures. To study^{ }the effect of additive random noise and interfering sources, the^{ }method was tested on synthetic data sets, and it appears^{ }that our method is robust to random noise in the^{ }different measurement channels. The method was also tested on gravity^{ }gradient tensor data from the Vredefort impact structure, South Africa.^{ }The results show a very good agreement with the available^{ }geologic information.
In this paper, we describe a non-linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low-pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters horizontal position, depth to the top, dip angle, width and susceptibility contrast can be estimated by non-linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg-Marquardt algorithm together with the trust-region-reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Sarna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.
This^{ }study has shown that the same properties of the gravity^{ }gradient tensor are valid for the pseudogravity gradient tensor derived^{ }from magnetic field data, assuming that the magnetization direction is^{ }known. Eigenvectors of the pseudogravity gradient tensor are used to^{ }estimate depth to the center of mass of geologic bodies.^{ }The strike directions of 2D geological structures are estimated from^{ }the eigenvectors corresponding to the smallest eigenvalues. For a set^{ }of data points enclosed by a square window, a robust^{ }least-squares procedure is used to estimate the source point which^{ }has the smallest sum of squared distances to the lines^{ }passing through the measurement points and parallel to the eigenvectorscorresponding to the maximum eigenvalues. The dimensionality of the pseudogravity^{ }field is defined from the dimensionality indicator I, derived from^{ }the tensor components. In the case of quasi-2D sources, a^{ }rectangular window is used in the robust least-squares procedure to^{ }reduce the uncertainty of estimations.Based on synthetic data sets, the^{ }method was tested on synthetic models and found to be^{ }robust to random noise in magnetic field data. The application^{ }of the method was also tested on a pseudogravity gradient^{ }tensor derived from total magnetic field data over the Särna^{ }area in west-central Sweden. Combined with Euler deconvolution, the method^{ }provides useful complementary information for interpretation of aeromagnetic data.
We use data from two magnetotelluric profiles, ToSca10 and ToSca'09, over the Scandinavian Mountains to study the crustal structure in southern Norway. The profiles cross the major tectonic structures of the Caledonian orogen as well as the western margin of the Precambrian Baltica. Dimensionality and strike analyses indicate generally 3-D behavior of the data. However, the majority of the used data distinguishes a preferable strike direction, which is supported by the geology of the region. Hence, we employ 2-D inversion and choose to invert the determinant of the impedance tensor to mitigate 3-D effects in the data on our 2-D models. Magnetotelluric data from both profiles are inverted using a damped least squares solution based on a singular value decomposition. We improved the solution by defining the inverse model covariance matrix through gradient or Laplacian smoothing operators. The two-dimensional inversion models of the ToSca'09 and ToSca'10 field data from southern Norway derived from the damped least squares scheme with the Laplacian inverse model covariance matrix are presented. Resistive rocks, extending to the surface, image the autochthonous Southwest Scandinavian Domain and the allochthonous Western Gneiss Region. Near-surface conductors, which are located between the resistive Caledonian nappes and Precambrian basement, delineate highly conductive shallow-sea sediments, so called alum shales. They exhibit a decollement along which the Caledonian nappes were overthrust. A deeper, upper to midcrustal conducting layer in the Southwest Scandinavian Domain may depict the remnants of closed ocean basins formed during the accretions and collisions of various Sveconorwegian terranes. In ToSca'10, the Caledonian nappes, the conducting alum shales and the deeper conductor are terminated in the west by the Faltungsgraben shear complex which represents a crustal scale boundary between the Western Gneiss Region in the west and the Southwest Scandinavian Domain in the east.
New magnetotelluric (MT) data in north-west Fennoscandia were acquired within the framework of the project "Magnetotellurics in the Scandes" (MaSca). The project focuses on the investigation of the crustal and upper mantle lithospheric structure in the transition zone from stable Precambrian cratonic interior to passive continental margin beneath the Caledonian orogen and the Scandinavian Mountains in western Fennoscandia. An array of 59 synchronous long period and 220 broad-band MT sites was occupied in the summers of 2011 to 2013. We estimated MT transfer functions in the period range from 0.003 to 10(5) s. The Q-function multi-site multi-frequency analysis and the phase tensor were used to estimate strike and dimensionality of MT data. Dimensionality and strike analyses indicate generally 2-D behaviour of the data with 3-D effects at some sites and period bands. In this paper we present 2-D inversion of the data, 3-D inversion models are shown in the parallel paper. We choose to invert the determinant of the impedance tensor to mitigate 3-D effects in the data on our 2-D models. Seven crustal-scale and four lithospheric-scale 2-D models are presented. The resistive regions are images of the Archaean and Proterozoic basement in the east and thin Caledonian nappes in the west. The middle and lower crust of the Svecofennian province is conductive. The southern end of the Kittila Greenstone Belt is seen in the models as a strong upper to middle crustal conductor. In the Caledonides, the highly conductive alum shales are observed along the Caledonian Thrust Front. The thickest lithosphere is in the Palaeoproterozioc Svecofennian Domain, not in the Archaean. The thickness of the lithosphere is around 200 km in the north and 300 km in the south-west.
New magnetotelluric (MT) data in north-west Fennoscandia were acquired within the framework of the project "Magnetotellurics in the Scandes" (MaSca). The project focuses on the investigation of the crustal and upper mantle lithospheric structure in the transition zone from stable Precambrian cratonic interior to passive continental margin beneath the Caledonian orogen and the Scandinavian Mountains in western Fennoscandia. An array of 59 simultaneous long period and 220 broad-band MT sites were occupied in the summers of 2011 to 2013. The 3-D inversion of the MaSca data was obtained using the ModEM 3-D code. The full impedance and tipper data were used for the inversion. The rocks of Archaean and Proterozoic basement towards east and the Caledonian nappes towards west are modelled as resistive structures. In the central and southern parts, the whole crust is resistive and reflects the Trans-Scandinavian Igneous Belt granitoids. The middle to lower crust of the Svecofennian province is conductive. An uppermost crustal conductor is revealed in the Skelleftea Ore District. The south end of the Kittila Greenstone Belt is seen in the models as a strong upper to middle crustal conductor. In the Caledonides, the highly conductive alum shales are observed along the Caledonian Thrust Front. A map of the crustal conductance for the north-west Fennoscandian Shield is presented.
New broadband magnetotelluric (MT) data have been acquired along two parallel profiles in the central part of the metallogenic Skellefte district in northern Sweden. The data were recorded as part of the Swedish 4D modelling of mineral belts project and cover an area with several economical and sub-economical deposits. The dimensionality and quality of the data were carefully analyzed and new error floors were systematically determined prior to inverse modelling in 2D and 3D. The algorithms used were EMILIA and WSINV3DMT. For the 2D inversion, only the determinant of the impedance tensor was used, while for the 3D inversion all elements were considered. The obtained models fit the inverted data, and image the main regional features. A detailed comparison reveals the superiority of the 3D model, both in model structures and data fit. After assessing the main features in the model, an interpretation is proposed and refined with the support of previous geophysical studies. The most interesting features are large and medium-sized conductors associated with crustal-scale shear zones and faults within the Skellefte Group rocks. These may be depicting a network of fossil pathways for hydrothermal fluid transport and as such, provide new insight into past processes in the area.
New magnetotelluric (MT) data from two perpendicular profiles in the Kristineberg area, northern Sweden, were analysed and modelled. In the Skellefte Ore District, the Kristineberg volcanic hosted massive sulphide (VHMS) deposit mine is one of the largest and deepest (1250 m). Seventeen broadband magnetotelluric stations were installed along two existing seismic reflection lines. The profiles were 6 and 12 km long with 500 m and 1 km site spacing, respectively. The obtained MT transfer functions in the period range of 0.0015–200 s are of fairly good quality. Detailed strike and dimensionality analysis reveal consistent but period dependent, strike directions, indicating a change in the geoelectrical strike with depth. From the two-dimensional inversion of the determinant of the impedance tensor, two stable conductivity models with good data fit were obtained. The addition of seismic reflection information from the co-located survey, improved the data fit of one of them. Extensive sensitivity analyses helped to delineate the well resolved regions of the models and to determine the position of pronounced boundaries. The results are in good agreement with previous studies, especially regarding the presence of a deep conductor interpreted as a structural basement to the district. They also reveal with more detail the configuration of the main geological units of the Skellefte Ore District, especially of the ore bearing volcanic rocks and the embedded alteration zones.
A seismic reflection and MT survey was carried out along a 27-km long transect in northwestern Skellefte District, as part of a bigger 3D modeling project. The main motivation for the data acquisition is to elucidate the geologic relationship between the known mineralizations in the Adak mining camp to the north and in the well studied Kristineberg area south of the transect. The seismic reflection data were acquired with a VIBSIST system, and show reflectivity down to 3 s. Apart from the conventional processing for crystalline environments, the seismic data was also subject to an azimuthal binning procedure and cross-dip analysis, allowing the orientation of planar reflectors in 3D. Regarding the MT data, it is primarily of good quality along the 17 installed sites. The inversion of the determinant of the impedance tensor yielded a stable 2D resistivity model, dominated by resistors corresponding to the postorogenic intrusions along the transect. Adding the location of the analyzed seismic reflectors in the MT inversion rendered an integrated model that facilitated a preliminary joint interpretation of the data sets. Overall, the results are in good agreement with surface observations and reveal a crude configuration of the geologic units below the transect. The most prominent outcomes are the lateral and depth extent of the large postorogenic intrusions in the area reaching to 5- or 6-km depth, the dimensions of the nearly vertical Brännäs gabbro extending to 6-km depth, and the presence of enhanced conductivities along the transect at about 10 km depth. The latter is probably related to the deep conductor previously identified in the district.
New seismic velocity models based on teleseismic traveltime tomography show a sharp lithospheric boundary at the Sorgenfrei–Tornquist Zone (STZ) between 100 and 250 km depth with P-waves about 4% faster and S-waves 6% faster within the cratonic lithosphere to the north. Experiments and thermodynamic calculations indicate that seismic velocity differences in the shallow mantle down to the transition zone must be mostly of thermal origin as typical mantle rocks are characterized by similar velocities based on composition alone. We propose a dynamical model of convection in the upper mantle that is consistent with rheological data and that satisfies the seismic observations by maintaining an abrupt lateral temperature contrast over hundreds of Myrs. A step-like increase in lithospheric thickness from 100 to 250 km is assumed to have formed in a Triassic rifting event at the STZ (around 220 Ma) and is subsequently exposed to active convection below. A lithosphere that is distinct from the mantle in terms of temperature and composition remains stable against convective erosion. Heat advection to different depth beneath the thin and the thick lithosphere leads to a maximum horizontal contrast of 500 °C at 150 km depth over a lateral transition distance of 100 km, sufficient to generate 5% and 8% in maximum P- and S-wave velocity perturbation, respectively. A purely conductive model under the same conditions yields only Δvp ≈ 1% and Δvs ≈ 2%, while a lithospheric evolution simulation without a compositional effect on the rheology leads to significant thermo-mechanical erosion of the lithosphere giving Δvp ≈ 2% and Δvs ≈ 4%.
A 3-D model of the crustal electrical resistivity was constructed from the inversion of magnetotelluric data in the Kristineberg area, Skellefte district, the location of one of Sweden's most successful mining activities. Forward modelling of vertical magnetic transfer data supports our model which was derived from the magnetotelluric impedance only. The dominant features in the 3-D model are the strong conductors at various depth levels and resistive bodies of variable thickness occurring in the shallower subsurface. The deepest conductor, previously associated with the Skellefte crustal conductivity anomaly, is imaged in the southern part of the area as a north-dipping feature starting at similar to 4 km depth. Several shallow conductors are attributed to graphite in the black shales defining the contact between the metasedimentary rocks and the underlying metavolcanic rocks. Furthermore, an elongated intermediate depth conductor is possibly associated with alteration zones in the metavolcanic rocks that host the ore occurrences. The most prominent crustal resistors occur in the southern and northern part of the area, where their lateral extent on the surface coincides with the late-orogenic Revsund type intrusions. To the east, a resistive feature can be correlated to the early-orogenic Viterliden intrusion. The 3-D model is compared with two previous 2-D inversion models along two perpendicular profiles. The main electrical features are confirmed with the new model and previous uncertainties regarding 3-D effects, caused by off-profile conductors, can be better assessed in 3-D, although the resolution is lower due to a coarser model discretization. The comparison with seismic sections along two north-south profiles reveals structural correspondence between electrical features, zones of different reflectivity and geological units.
A 2D conductivity model of the Kristineberg area in the Skellefte Ore District, Northern Sweden, has been derived from new magnetotelluric measurements. This complements an intensive geophysical and geological study of the area, including reflection seismics, gravity and aeromagnetic data modeling as well as geological field observations. In a pilot study, 20 broadband MT stations were installed in May 2007 along a 20 km long north–south profile. Dimensionality analysis shows that a 2D interpretation of the data is justified, although the presumed geoelectric strike direction of N75°E is not consistent over the whole profile. The new conductivity model of the upper crust agrees well with the results from the seismic studies. Interpreting both independent data sets confirms the major features from the previous model, such as the thickness of the Revsund granites in the south, the existence of a structural basement with metasedimentary origin, and gives new insight into the nature of the volcanic rocks and their possible mineral content.
We studied the behaviour of controlled source responses of 2½-D synthetic models based on controlled source tensor magnetotelluric (CSTMT, 1 – 12 kHz) and radio magnetotelluric (RMT, 14 – 250 kHz) data sets collected along profiles on the Hallandsås Horst, Southern Sweden with a view to study the depth extent of possible near surface fractures zones that might intersect a tunnel under construction. Based upon 2½-D forward modelling of the TE- and TM-mode RMT data, a simplified 2D model was constructed such that a dipping conductor was continued down to a depth of 140 m, which is the depth of the tunnel. Based on this extended model, we calculated both plane wave and controlled source responses for the frequency range 1-250 kHz corresponding to the source location in the study. Finally, we inverted both data sets under plane wave assumptions. When comparing synthetic controlled source and plane wave data in the frequency range 1 – 12 kHz, we find that the CSTMT transfer functions generally deviate from the plane wave condition for frequencies less than 6 kHz. The phases are much more distorted than apparent resistivities. The TM mode phases, in particular, are generally distorted for frequencies less than 6 kHz. Regarding the vertical magnetic fields, we find that at all frequencies the real part of tippers are distorted by source effects, but the tipper component along the profile direction is much less affected by the off-profile lying source than the tipper component orthogonal to the profile direction. Based upon synthetic model studies of combined CSTMT and RMT (in short; CSRMT) responses, we find that determinant data are less distorted than individual TE- and TM-mode data. On the other hand, TE- and TM-response have greater resolving power and used with care (selecting data that are weakly distorted by source effects), the corresponding models can resolve the conductor down to tunnel depths.
We have combined tensor radio magnetotelluric- (RMT, 15-250. kHz) and controlled source tensor magnetotelluric (CSTMT, 1-12. kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40. km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant.The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4-180kHz could be used. The four lowest frequencies of CSTMT in the range of 1-2.8kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1^{°} on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers.The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20. m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40-400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40. m and a width of several hundred metres. This is a potential aquifer that extends in approximately N-S direction for some kilometres.
P>For the first time, a comparative analysis of the resolution and variance properties of 2-D models of electrical resistivity derived from single and joint inversions of dc resistivity (DCR) and radiomagnetotelluric (RMT) measurements is presented. DCR and RMT data are inverted with a smoothness-constrained 2-D scheme. Model resolution, model variance and data resolution analyses are performed both with a classical linearized scheme that employs the smoothness-constrained generalized inverse and a non-linear truncated singular value decomposition (TSVD). In the latter method, the model regularization used in the inversion is avoided and non-linear semi-axes give an approximate description of the non-linear confidence surface in the directions of the model eigenvectors. Hence, this method analyses the constraints that can be provided by the data. Model error estimates are checked against improved and independent estimates of model variability from most-squares inversions. For single and joint inverse models of synthetic data sets, the smoothness-constrained scheme suggests relatively small model errors (typically up to 30 to 40 per cent) and resolving kernels that are spread over several cells in the vicinity of the investigated cell. Linearized smoothness-constrained errors are in good agreement with the corresponding most-squares errors. The variability of the RMT model as estimated from non-linear semi-axes is confirmed by TSVD-based most-squares inversions for most model cells within the depth range of investigation. In contrast to this, most-squares errors of the DCR model are consistently larger than errors estimated from non-linear semi-axes except for the smallest truncation levels. The model analyses confirm previous studies that DCR data can constrain resistive and conductive structures equally well while RMT data provide superior constraints for conductive structures. The joint inversion can improve error and resolution of structures which are within the depth ranges of exploration of both methods. In such parts of the model which are outside the depth range of exploration for one method, error and resolution of the joint inverse model are close to those of the best single inversion result subject to an appropriate weighting of the different data sets.
Magnetotelluric (MT), radiomagnetotelluric (RMT), and, in particular, controlled-source audiomagnetotelluric (CSAMT) data are often heavily distorted by near-surface inhomogeneities. We developed a novel scheme to invert MT, RMT, and CSAMT data in the form of scalar or tensorial impedances and vertical magnetic transfer functions simultaneously for layer resistivities and electric and magnetic galvanic distortion parameters. The inversion scheme uses smoothness constraints to regularize layer resistivities and either Marquardt-Levenberg damping or the minimum-solution length criterion to regularize distortion parameters. A depth of investigation range is estimated by comparing layered model sections derived from first- and second-order smoothness constraints. Synthetic examples demonstrate that earth models are reconstructed properly for distorted and undistorted tensorial CSAMT data. In the inversion of scalar CSAMT data, such as the determinant impedance or individual tensor elements, the reduced number of transfer functions inevitably leads to increased ambiguity for distortion parameters. As a consequence of this ambiguity for scalar data, distortion parameters often grow over the iterations to unrealistic absolute values when regularized with the Marquardt-Levenberg scheme. Essentially, compensating relationships between terms containing electric and/or magnetic distortion are used in this growth. In a regularization with the minimum solution length criterion, the distortion parameters converge into a stable configuration after several iterations and attain reasonable values. The inversion algorithm was applied to a CSAMT field data set collected along a profile over a tunnel construction site at Hallandsasen, Sweden. To avoid erroneous inverse models from strong anthropogenic effects on the data, two scalar transfer functions (one scalar impedance and one scalar vertical magnetic transfer function) were selected for inversion. Compared with a regularization of distortion parameters with the Marquardt-Levenberg method; the minimum-solution length criterion, yielded smaller absolute values of distortion parameters and a horizontally more homogeneous distribution of electrical conductivity.
A novel approach to assess variance and resolution properties of 2-D models of electrical resistivity derived from magnetotelluric measurements is presented. Based on a truncated singular value decomposition (TSVD) scheme on a local subspace, it partly takes the non-linearity of the inverse problem into account. The TSVD resolution and variance analysis is performed on a single cell at a time. A variance threshold is selected and the resulting model resolution is determined. As an improvement over existing schemes, non-linear semi-axes are introduced to describe the non-linear confidence surface in the directions of the model eigenvectors and they replace the inverse singular values entering into the standard expression of model variances. The model variance of the cell considered is estimated from the sum of squares of the non-linear semi-axes up to the given variance threshold. This, in turn, gives the truncation level of the TSVD and the row of the model resolution matrix belonging to the considered cell can be computed from the model eigenvectors of the TSVD. The information contained in the resolution matrix is condensed to easily comprehensible measures like the centre of resolution and horizontal and vertical resolution lengths.The validity of our non-linear model variance and resolution estimates is tested with a most-squares technique which gives an improved estimate of model variability.A synthetic model with a conductive block in a homogenous half-space is analysed. TSVD analyses for model cells on the upper edge of the block and outside the block illustrate how the truncation process works. Typically, the linear and non-linear semi-axes are almost equal up to a certain singular value number, after which the non-linear semi-axes increase much less than the linear semi-axes. This important result indicates that the resolution of 2-D magnetotelluric models is significantly better than previously suggested by linear schemes for the computation of model variance and resolution properties. A field example from the Skediga area (Sweden) shows that the electrical resistivity distribution of sand and gravel formations which are only laterally bounded by conductive clay lenses is relatively well resolved whereas there is little resolution for the transition between the sand and gravel layer and the basement under a clay cover.
Electromagnetic surface measurements with the radiomagnetotelluric (RMT) method in the frequency range between 10 and 300 kHz are typically interpreted in the quasi-static approximation, that is, assuming displacement currents are negligible. In this paper, the dielectric effect of displacement currents on RMT responses over resistive subsurface models is studied with a two-dimensional (2-D) forward and inverse scheme, that can operate both in the quasi-static approximation and including displacement currents.Forward computations of simple models exemplify how responses that allow for displacements currents deviate from responses computed in the quasi-static approximation. The differences become most obvious for highly resistive subsurface models of about 3000 Ohm*m and more and at high frequencies. For such cases, the apparent resistivities and phases of the transverse magnetic (TM) and transverse electric (TE) modes are significantly smaller than in the quasi-static approximation. Along profiles traversing 2-D subsurface models, sign reversals in the real part of the vertical magnetic transfer function (VMT) are often more pronounced than in the quasi-static approximation. On both sides of such sign reversals, the responses computed including displacement currents are larger than typical measurement errors.The 2-D inversion of synthetic data computed including displacement currents demonstrates that serious misinterpretations in the form of artefacts in inverse models can be made if displacement currents are neglected during the inversion. Hence, the inclusion of the dielectric effect is a crucial improvement over existing quasi-static 2-D inverse schemes. Synthetic data from a 2-D model with constant dielectric permittivity and a conductive block buried in a highly resistive layer which in turn is underlain by a conductive layer are inverted. In the quasi-static inverse model, the depth to the conductive structures is overestimated, artefactual resistors appear on both sides of the conductive block, and a spurious conductive layer is imaged at the surface.High-frequency RMT field data from Ävrö, Sweden, are re-interpreted using the newly developed 2-D inversion scheme which includes displacement currents. In contrast to previous quasi-static modelling, the new inverse models have electrical resistivity values comparable to a normal-resistivity borehole log and boundaries between resistive and conductive structures which correlate with the positions of seismic reflectors.
The resolution and variance properties of 2D models of electrical resistivity derived from magnetotelluric measurements are analysed with a truncated singular value decomposition (TSVD) scheme on a local subspace partly taking into account the non-linearity of the inverse problem.
The TSVD resolution and variance analysis is performed on a local subspace pertaining to one single cell of interest at a time. The trade-off between model variance and model resolution is used to determine a level of truncation by fixing a variance threshold.
Non-linear semi-axes describe the non-linear confidence surface in the directions of the model eigenvectors and replace the inverse singular values in the computation of model variances. The model variance of the cell considered is estimated from the sum of squares of the non-linear semi-axes up to the given variance threshold. This - in turn - gives the truncation level of the TSVD and the row of the model resolution matrix belonging to the considered cell can be computed from the model eigenvectors of the TSVD.
The validity of our non-linear model variance and resolution estimates is tested with a most-squares inversion which gives an independent and improved estimate of model variability.
A field example from the Skediga area (Sweden) shows that the electrical resistivity distribution of sand and gravel formations which are only laterally bounded by conductive clay lenses is relatively well resolved whereas there is little resolution for the transition between the sand and gravel layer and the basement under a clay cover.
We present an efficient approximate inversion scheme for near-surface loop-loop EM induction data (slingram) that can be applied to obtain 2D or 3D models on a normal desktop computer. Our approach is derived from a volume integral equation formulation with an arbitrarily conductive homogeneous half-space as a background model. The measurements are not required to fulfill the low induction number condition (low frequency and conductivity). The high efficiency of the method is achieved by invoking the Born approximation around a half-space background. The Born approximation renders the forward operator linear. The choice of a homogeneous half-space yields closed form expressions for the required electromagnetic normal fields. It also yields a translationally invariant forward operator, i.e., a highly redundant Jacobian. In connection with the application of a matrix-free conjugate gradient method, this allows for very low memory requirements during the inversion, even in three dimensions. As a consequence of the Born approximation, strong conductive deviations from the background model are underestimated. Highly resistive anomalies are in principle overestimated, but at the same time difficult to resolve with induction methods. In the case of extreme contrasts, our forward model may fail in simultaneously explaining all the data collected. We applied the method to EM34 data from a profile that has been extensively studied with other electromagnetic methods and compare the results. Then, we invert three conductivity maps from the same area in a 3D inversion.
We have studied a gabbro intrusion in northern Sweden, using 3D inversion of airborne magnetic data, ground-based gravity data, and petrophysical measurements on outcrop samples. Gabbro intrusions are of interest because they are potential hosts of Cu-Ni and platinum group element mineralization. We developed a joint inversion algorithm and applied it to both potential-field data sets to obtain spatial distributions of density and magnetic susceptibility. The distributions were coupled through a nonrigidly enforced parameter relationship determined from the petrophysical samples. We managed the problem of balancing the influence of the two data sets by a novel adaptive reweighting scheme that enforced the discrepancy principle for each data set independently. We demonstrated in tests with synthetic data that neither individual nor joint inversions gave reliable estimates for the depth extension of the intrusive body, the near-surface details, or any complex geometrical features. However, the joint inversion improved the image of the interface between the intrusion and the surrounding rocks and revealed that the density and susceptibility models satisfied the observed petrophysical relationship, which, in turn, caused the structures in the models to align. The geometry of the intrusion was an intrinsic result of the inversion, based on the two distinct petrophysical trends for the gabbro and the surrounding rocks. The inferred shape was simple and concise, and was therefore a useful and testable hypothesis about the subsurface geology that was in agreement with both potential-field data sets and the petrophysical information.
The Geological Survey of Sweden has been collecting airborne tensor very low frequency data (VLF) over several decades, covering large parts of the country. The data has been an invaluable source of information for identifying conductive structures that can among other things be related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because the method only uses two differently polarized plane waves of very similar frequency, vertical resolution is low and interpretation is in most cases limited to maps that are directly derived from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this paper, we present for the first time a 3-D inversion for tensor VLF data in order to further increase the usefulness of the data set. The inversion is performed using a non-linear conjugate gradient scheme (Polak-RibiSre) with an inexact line-search. The gradient is obtained by an algebraic adjoint method that requires one additional forward calculation involving the adjoint system matrix. The forward modelling is based on integral equations with an analytic formulation of the half-space Green's tensor. It avoids typically required Hankel transforms and is particularly amenable to singularity removal prior to the numerical integration over the volume elements. The system is solved iteratively, thus avoiding construction and storage of the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently farther away interactions are represented with less detail and therefore with less computational effort, enabling us to bridge the gap between the relatively short wavelengths of the fields (tens of metres) and the large model dimensions (several square kilometres). We find that the approximation of the fields can be off by several per cent, yet the transfer functions in the air are practically unaffected. We verify our code using synthetic calculations from well-established 2-D methods, and trade modelling accuracy off against computational effort in order to keep the inversion feasible in both respects. Our compromise is to limit the permissible resistivity to not fall below 100 Omega m to maintain computational domains as large as 10 x 10 km(2) and computation times on the order of a few hours on standard PCs. We investigate the effect of possible local violations of these limits. Even though the conductivity magnitude can then not be recovered correctly, we do not observe any structural artefacts related to this in our tests. We invert a data set from northern Sweden, where we find an excellent agreement of known geological features, such as contacts or fault zones, with elongated conductive structures, while high resistivity is encountered in probably less disturbed geology, often related to topographic highs, which have survived predominantly glacial erosion processes. As expected from synthetic studies, the resolution is laterally high, but vertically limited down to the top of conductive structures.
We investigate the structure of the accretionary wedge of the Caledonian orogen, the underlying autochthonous/parautochthonous carbonaceous alum shales and the Precambrian basement. We have conducted 60 broad-band magnetotelluric soundings along a 180 km long profile in JAmtland, Sweden, across the eastern section of the Central Scandinavian Caledonides. Dimensionality analysis and regional strike estimates indicate that the conductivity structure can be approximated by a 2-D model having a N40 degrees E strike direction, consistent with the dominant geological strike. The determinant average of the impedance tensor, together with the tipper transfer function from the best 34 sites, were inverted by the REBOCC 2-D inversion code. An electrically highly conducting layer beneath the Caledonides images alum shales, the autochthonous Cambrian carbon-bearing black shales on top of the Precambrian basement. Based on the comparison of electrical conductivity and seismic reflectivity models, we suggest that the Caledonian accretionary wedge thickens in a step-wise manner from ca. 1 to 5-6 km towards the west. In the east, the wedge is composed of the lower allochthon. In the west, the wedge reaches the thickness of 15 km and is composed of the lower allochthon at the bottom, the middle/upper allochthons at the top and resistive allochthonous basement slices. The upper crust of the autochthonous Precambrian basement is homogeneous and resistive from surface down to 15 km and can be associated with the Revsund and RAtan granites. The border between the eastern Revsund- and western RAtan-type granites coincides in the JAmtland region, with the boundary between the northern Central Svecofennian Province and the southern Svecofennian volcanic belt and is marked by a subvertical conductor associated with a steeply dipping band of reflectors. The lower crust and uppermost mantle in the easternmost part of the profile are very resistive, whereas in west, they are 2-3 orders of magnitude more conductive. The increase of average crustal conductivity is related to the Caledonian processes or later opening of the Atlantic Ocean that have affected also the lower crust.
A detailed magnetotelluric survey was conducted in 2013 in the Sehqanat oil field, southwestern Iran to map the geoelectrical structures of the sedimentary Zagros zone, particularly the boundary between the Gachsaran Formation acting as cap rock and the Asmari Formation as the reservoir. According to the electrical well logs, a large resistivity contrast exists between the two formations. The Gachsaran Formation is formed by tens to hundreds of metres of evaporites and it is highly conductive (ca. 1 m-10 m), and the Asmari Formation consists of dense carbonates, which are considerably more resistive (more than 100 m). Broadband magnetotelluric data were collected along five southwest-northeast directed parallel lines with more than 600 stations crossing the main geological trend. Although dimensionality and strike analysis of the magnetotelluric transfer functions showed that overall they satisfied local 2D conditions, there were also strong 3D conditions found in some of the sites. Therefore, in order to obtain a more reliable image of the resistivity distribution in the Sehqanat oil field, in addition to standard 2D inversion, we investigated to what extent 3D inversion of the data was feasible and what improvements in the resistivity image could be obtained. The 2D inversion models using the determinant average of the impedance tensor depict the main resistivity structures well, whereas the estimated 3D model shows significantly more details although problems were encountered in fitting the data with the latter. Both approaches resolved the Gachsaran-Asmari transition from high conductivity to moderate conductivity. The well-known Sehqanat anticline could also be delineated throughout the 2D and 3D resistivity models as a resistive dome-shaped body in the middle parts of the magnetotelluric profiles.
The magnetotelluric (MT) method has proved to be an effective tool in hydrocarbon exploration especially in areas with geological structures/formations where seismic reflection provides neither good quality data nor images. The Sehqanat oil field located in the sedimentary zone of Zagros in SW of Iran is a typical example. It is covered by the high velocity and heterogeneous formation of Gachsaran, which is exposed at the surface and has a thickness varying from 500 m to more than 2 km in the region. Gachsaran is composed mainly of salt and evaporites overlying, as a cap rock, the Asmari limestone formation which is the main reservoir in all oil fields of Iran along the Zagros range. The main geological interface which is targeted to be imaged with the MT method is the contact between the highly conductive evaporites of the Gachsaran formation and the underlying more resistive carbonates of the Asmari formation. MT data at more than 600 stations along five parallel SW-NE profiles crossing the main geological trend of the study area and transient electromagnetic data over 400 stations to be used for static shift corrections of the MT data were available. Dimensionality and strike analysis of the MT data show dominant two-dimensional (2-D) conditions in almost all sites and periods. The 2-D resistivity models resolved the boundary between Gachsaran and Asmari formations as a transition zone from highly conductive to resistive structures. The Sehrjanat anticline has also been delineated throughout the 2-D resistivity sections as a resistive dome-shaped body located in the middle part of the MT profiles. There is a considerable correlation between the 2-D resistivity models and the adjacent 2-D reflection seismic sections so that a more reliable interpretation on the hydrocarbon trap of the Sehqanat anticline can be obtained.
More than 7% of the Scandinavian landmass is covered with fresh-water bodies in the form of lakes and rivers. This poses a unique challenge to carry out electromagnetic survey on shallow-water bodies for various purposes for example geotechnical investigations. Recently boat-towed RMT (radio-magnetotelluric) technique was introduced and used for measurements over the Lake Mälaren in Stockholm, Sweden. The RMT covers a wide range of frequencies (10-250 kHz) and provides good resolution for shallow subsurface studies although it lacks resolution at greater depths. Using controlled-source frequencies in the range of 1-10 kHz sufficient penetration depths can be achieved for most of the near surface targets. In this study, we present the results from the combined use of controlled-source and RMT (CSRMT) data that were obtained over frozen Lake Mälaren. The objective of this study was to map bedrock surface and fractures in the middle of the profile where using only RMT data these were not adequate. We demonstrate a new technique where CSRMT surveys were carried out over frozen-shallow-water bodies and we expect the idea to be used in the near future for other applications where moderately-resistive water bodies are present.
The resolution and sensitivity of water-borne boat-towed multi-frequency radio-magnetotelluric (RMT) data for delineating zones of weaknesses in bedrock are examined in this study. 2D modeling of RMT data along 40 profiles in joint transverse electric (TE) and transverse magnetic (TM) as well as determinant mode was used for this purpose. The RMT data were acquired over two water passages from the Lake Malaren near the city of Stockholm where one of the largest underground infrastructure projects, a multi-lane tunnel, in Europe is currently being developed. Comparison with available borehole coring, refraction seismic and bathymetric data was used to scrutinize the RMT resistivity models. A low-resistivity zone observed in the middle of all the profiles is suggested to be from fracture/fault zones striking in the same direction as the water passages. Drilling observations confirm the presence of brittle structures in the bedrock, which manifest themselves as zones of low-resistivity and low-velocity in the RMT and refraction seismic data, respectively. Nevertheless, RMT is an inductive electromagnetic method hence the presence of conductive lake sediments may shield detecting the underlying fractured bedrock. The loss of resolution at depth implies that the structures within the bedrock under the lake sediments cannot reliably be delineated. To support this, a synthetic data analysis was carried out providing useful information on how to improve and plan the lake measurements for future studies. Synthetic modeling results for example suggested that frequencies as low as 3 kHz would be required to reliably resolve the bedrock and fracture zone within it in the study area. The modeling further illustrated the advantage of a fresh water layer that acts as a near-surface homogeneous medium eliminating the static shift effects. While boat-towed RMT data provided substantial information about the subsurface geology, the acquisition system should be upgraded to enable controlled-source data acquisition to increase the penetration depth and to overcome the shortcomings of using only radio-frequencies.
A wide band magnetotelluric study of the ophiolitic zone of the Zagros orogenic belt was conducted in the Neyriz area of southwestern Iran. The purpose of the study was to image subsurface structures electrically and relocate the main Zagros thrust fault in the region. The thrust fault has a complex structure with obscure behavior and is believed to be located within a zone of ongoing continental plate convergence. The fault zone with a NW–SE geological trend is parallel to the Zagros orogenic belt and separates the Neyriz ophiolite assemblage from the adjacent Sanandaj-Sirjan metamorphic zone. Magnetotelluric data were collected along a SW–NE profile across the geologic strike; the study included 18 stations and modeling was performed using a 2-D inversion scheme. Analysis of both modes of magnetotelluric data (TE and TM) clarifies the signatures of large resistivity variation in the study area. Due to the presence of a high contrast in resistivity between the ophiolites and neighboring rocks, we are able to discern two sharp boundaries as faulting planes and borders of the ophiolite–radiolarite zone in the north-eastern and southwestern parts of the 2-D resistivity models, respectively.
A wide band magnetotelluric study of the ophiolitic zone of the Zagros orogenic belt was conducted in the Neyriz area of southwestern Iran. The purpose of the study was to image subsurface structures electrically and relocate the main Zagros thrust fault in the region. The thrust fault has a complex structure with obscure behavior and is believed to be located within a zone of ongoing continental plate convergence. The fault zone with a NW-SE geological trend is parallel to the Zagros orogenic belt and separates the Neyriz ophiolite assemblage from the adjacent Sanandaj-Sirjan metamorphic zone. Magnetotelluric data were collected along a SW-NE profile across the geologic strike; the study included 18 stations and modeling was performed using a 2-D inversion scheme. Analysis of both modes of magnetotelluric data (TE and TM) clarifies the signatures of large resistivity variation in the study area. Due to the presence of a high contrast in resistivity between the ophiolites and neighboring rocks, we are able to discern two sharp boundaries as faulting planes and borders of the ophiolite-radiolarite zone in the north-eastern and southwestern parts of the 2-D resistivity models, respectively.
Zagros is a relatively young and active fold-thrust belt, which has formed due to convergence between the Eurasian and Arabian plates. Magnetotelluric (MT) soundings along a transect were carried out to determine the crustal structure in the collision zone of the two Palaeocontinents. MT data were analysed and modelled using 2-D inversion schemes. The models show clear conductive and resistive domains along the MT profile consistent to a great extent with documented tectonic features and surface geology. The models obtained from the joint inversion of transverse electric and transverse magnetic modes as well as the inversion of the determinant data show similar features along the profile. The new MT results reveal that the transition between two continents at the surface coincides with the western boundary of Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT). Along the profile towards northeast the conductors at top indicate massive Neogene sediments of the central domain (CD) while the very thick, shallow-located, resistive body (5-25 km thick and 100 km long) beneath is unlikely to be of oceanic affinity, but continental. Another main feature along the profile is the main resistive and conductive parts of the Arabian Plate, which coincide with the tectonic events of High Zagros Fault and Mountain Front Fault. Two highly conductive thick zones are recognized at the southwest part and in the middle of the profile apparently extending to a depth of about 50 km, possibly related to a downward smearing effect due to the presence of thick sedimentary columns in the upper crust. Along the profile, conductive features are recognized at the metamorphic SSZ and Urumieh-Dokhtar Magmatic Assemblage units as well as at CD. Below site 31 along the surface trace of the MZT, the transition between the two continents is distinguished by a complex sequence of conductive and resistive zones both varying laterally as well as vertically. The main difference between the two domains is that the Eurasian Plate seems to be more resistive than the Arabian Plate, although some part of the difference can be related to the thick sequence of conductive sedimentary rocks on the Arabian Plate.
We describe the implementation of a new fast imaging technique for filtering very-low-frequency (VLF) data measured on profiles into corresponding equivalent current systems in the earth. Single-frequency VLF data using magnetic measurements alone are often used to delineate lateral changes in electrical conductivity, e.g., fracture zones in crystalline terrains or changes in lithology in the sedimentary cover. Here, an attempt is made to add depth information to the conductivity distribution by realizing that the single-frequency VLF profile data contain information about (1) the background medium through their decay away from the conductors, (2) the position, and (3) the depth of the dominating conductors through the relative contribution of in-phase and quadrature components to the VLF anomaly in addition to the rate of change of the anomaly close to the conductors. Synthetic data from a model containing a shallow and a deeper conductor are filtered to show that the estimated current distributions coincide well with the horizontal position of the conductors, but even they provide some smeared images of the depth distribution of the conductors. A comparison with models obtained from regularized inversion of the same data shows good correspondence. The VLF field data from an area with clay lenses overlying wet sand and crystalline basement are filtered into current distributions that grossly mimic the electrical conductivity distribution of the clay lenses as obtained from radiomagnetotelluric measurements along the same profile.
We have developed a constrained inversion technique for interpretation of gravity gradient tensor data. For dike and contact models striking in the y-direction, the measured g(xz) and g(zz) components can be jointly inverted for estimating the model parameters horizontal position, depth to the top, thickness, dip angle, and density contrast. For a given measurement point, the strike direction of the gravity gradient tensor caused by a quasi 2D structure can be estimated from the eigenvector corresponding to the smallest eigenvalue. Then, the measured components can be transformed into the strike coordinate system. It is assumed that the maximum of g(zz) is approximately located above the causative body. In the case of gridded data, all measurement points enclosed by a square window centered at the maximum of g(zz) are used to estimate the source parameters. The number of data points used for estimating source parameters is increased by increasing the size of the window. Solutions with the smallest data-fit error were selected as the most reliable solutions from any set of solutions. The gravity gradient tensor data are deconvolved using both dike and contact models within a set of square windows. Then, the model with the smallest data-fit error is chosen as the best model. We studied the effect of random noise and interfering sources using synthetic examples. The method is applied to a gravity gradient tensor data set from the Vredefort impact structure in South Africa. In this particular case, the dike model provides solutions with smaller data-fit errors than the contact model. This supports the idea that in the central dome area there is a predominance of vertical structures related to the formation of the transient crater and subsequent central uplift of the lower and middle crustal material.
We have implemented a practical fast Fourier transform technique for fast and approximate calculation of terrain effects for airborne measurement of the gravity gradient tensor and the total magnetic field. The calculations proceed in two steps. Starting from a digital terrain model (DTM), we first calculate the fields on a plane surface lying above the highest point of the terrain in the selected area. This calculation can be made arbitrarily accurate by including a sufficiently large number of terms in Parker’s well-known Fourier transform technique. The second step involves a downward continuation of the fields to a draped surface describing the positions of the airborne measurements. The inherent instability of downward continuation through the level of the highest terrain is compensated for by low-pass filtering the calculated fields on the plane surface prior to downward continuation. We use a Gaussian filter with cutoff wavenumbers well below the Nyquist wavenumber corresponding to a wavelength equal to the distance between flight lines. Tests on synthetic data as well as on real data from a DTM from northern Sweden demonstrated that the method works well and provides a low-pass-filtered version of the true terrain effect.
Different geophysical methods were used to determine the characteristics of a highly conductive structure in Northern Sweden, first discovered on airborne data. Airborne electromagnetic (very low frequency) data indicate a high conductivity structure coincident with low magnetic patterns. The airborne data were processed in different ways to enhance various structures/features. In particular we introduce a new transformation to current density that is suitable for delineating conductive structures. Ground measurements of the total magnetic field, radiomagnetotelluric measurements and resistivity imaging provided valuable information that was used in the compilation of a new bedrock map over the area. The results of our measurements indicate that the conducting structure consists of metasedimentary rocks containing thin horizons of pyrrhotite and graphite.
The WNW-ESE striking Atalanti fault is one of the large fault segments of the ca. 110-km-long WNW-ESE trending Sperchios-Chalkis Fault System that subsided along the NE slopes of the Kalidromon and Chlomo Mts. in Central Greece forming an extensive graben similar to the Corinthiakos Gulf. Although, the fault is characterized by recent seismic activity, it has up to now not been investigated by means of geophysical methods that could define the geometrical features of the structure in depth. Magnetotelluric measurements performed along three 14-km-long profiles A, B, and C and across the fault with a total of 28 stations indicate that its geoelectric strike is WNW-ESE. Two-dimensional bimodal and the determinant of the impedance tensor inversions were applied to the data. The best data fit was achieved using the determinant data. The resulting 2D models were further interpreted both separately and all together in order to define the geometry of the structure down to a depth of several kilometers. The derived resistivity model defines that the Atalanti fault strikes WNW-ESE and forms a damage zone that contains two high-angle fault branches that dip at angles of 60 degrees and 80 degrees respectively. Thus, the interpreted geometry of the Atalanti fault and consequently the Sperchios-Chalkis Fault System differs from previous interpretation of a low-angle extensional crustal structure. In addition, the electrical resistivity model indicates the subsidence of the overthrust of the Internal Hellenides over the Parnassos zone toward the NNE from a depth of 2 km to deeper crustal levels due to the Atalanti fault.