uu.seUppsala University Publications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aspenström, Pontus
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm , Ludwig Institute for Cancer Research.
    Fransson, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm , Ludwig Institute for Cancer Research.
    Richnau, Ninna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm , Ludwig Institute for Cancer Research.
    Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton2006In: TIBS -Trends in Biochemical Sciences. Regular ed., ISSN 0968-0004, E-ISSN 1362-4326, Vol. 31, no 12, p. 670-679Article, review/survey (Refereed)
    Abstract [en]

    Pombe Cdc15 homology (PCH) proteins have emerged in many species as important coordinators of signalling pathways that regulate actomyosin assembly and membrane dynamics. For example, the prototype PCH protein, Cdc15p of Schizosaccharomyces pombe, has a role in assembly of the contractile ring, which is needed to separate dividing cells. Recently, mammalian PCH proteins have been found to bind phospholipids and to participate in membrane deformation. These findings suggest that PCH proteins are crucial linkers of membrane dynamics and actin polymerization, for example, during the internalization of transmembrane receptors. Intriguingly, some members of the PCH protein family are mutated in neurodegenerative and inflammatory diseases, which has implications for the identification of cures for such disorders.

  • 2.
    Aspenström, Pontus
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Richnau, Ninna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Johansson, Ann-Sofi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics2006In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 312, no 12, p. 2180-2194Article in journal (Refereed)
    Abstract [en]

    Binding partners for the Cdc42 effector CIP4 were identified by the yeast two-hybrid system, as well as by testing potential CIP4-binding proteins in coimmunoprecipitation experiments. One of the CIP4-binding proteins, DAAM1, was characterised in more detail. DAAM1 is a ubiquitously expressed member of the mammalian diaphanous-related formins, which include proteins such as mDia1 and mDia2. DAAM1 was shown to bind to the SH3 domain of CIP4 in vivo. Ectopically expressed DAAM1 localised in dotted pattern at the dorsal side of transfected cells and the protein was accumulated in the proximity to the microtubule organising centre. Moreover, ectopic expression of DAAM1 induced a marked alteration of the cell morphology, seen as rounding up of the cells, the formation of branched protrusions as well as a reduction of stress-fibres in the transfected cells. Coimmunoprecipitation experiments demonstrated that DAAM1 bound to RhoA and Cdc42 in a GTP-dependent manner. Moreover, DAAM1 was found to interact and collaborate with the non-receptor tyrosine kinase Src in the formation of branched protrusions. Taken together, our data indicate that DAAM1 communicates with Rho GTPases, CIP4 and Src in the regulation of the signalling pathways that co-ordinate the dynamics of the actin filament system.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf