uu.seUppsala University Publications
Change search
Refine search result
1 - 49 of 49
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aasebö, Kristine Ö.
    et al.
    Univ Bergen, Dept Clin Sci, Bergen, Norway.
    Dragomir, Anca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Sundström, Magnus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Mezheyeuski, Artur
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Eide, Geir Egil
    Univ Bergen, Dept Global Publ Hlth & Primary Care, Lifestyle Epidemiol Grp, Bergen, Norway;Haukeland Hosp, Ctr Clin Res, Bergen, Norway.
    Pontén, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Pfeiffer, Per
    Odense Univ Hosp, Dept Oncol, Odense, Denmark.
    Glimelius, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sorbye, Halfdan
    Univ Bergen, Dept Clin Sci, Bergen, Norway;Haukeland Hosp, Dept Oncol, Bergen, Norway.
    Consequences of a high incidence of microsatellite instability and BRAF-mutated tumors: A population-based cohort of metastatic colorectal cancer patients2019In: Cancer Medicine, ISSN 2045-7634, E-ISSN 2045-7634, Vol. 8, no 7, p. 3623-3635Article in journal (Refereed)
    Abstract [en]

    Background: Immunotherapy for patients with microsatellite-instable (MSI-H) tumors or BRAF-inhibitors combination treatment for BRAF-mutated (mutBRAF) tumors in metastatic colorectal cancer (mCRC) is promising, but the frequency of these molecular changes in trial patients are low. Unselected population-based studies of these molecular changes are warranted.

    Methods: A population-based cohort of 798 mCRC patients in Scandinavia was studied. Patient and molecular tumor characteristics, overall survival (OS) and progression-free survival (PFS) were estimated.

    Results: Here, 40/583 (7%) tumor samples were MSI-H and 120/591 (20%) were mutBRAF; 87% of MSI-H tumors were mutBRAF (non-Lynch). Elderly (>75 years) had more often MSI-H (10% vs 6%) and MSI-H/mutBRAF (9% vs 4%) tumors. Response rate (5% vs 44%), PFS (4 vs 8 months), and OS (9 vs 18 months) after first-line chemotherapy was all significantly lower in patients with MSI-H compared to patients with microsatellite stable tumors. MSI-H and mutBRAF were both independent poor prognostic predictors for OS (P = 0.049, P < 0.001) and PFS (P = 0.045, P = 0.005) after first-line chemotherapy. Patients with MSI-H tumors received less second-line chemotherapy (15% vs 37%, P = 0.005).

    Conclusions: In unselected mCRC patients, MSI-H and mutBRAF cases were more common than previously reported. Patients with MSI-H tumors had worse survival, less benefit from chemotherapy, and they differed considerably from recent third-line immunotherapy trial patients as they were older and most had mutBRAF tumor (non-Lynch).

  • 2.
    Altai, Mohamed
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Liu, Hao
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Ding, Haozhong
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Gräslund, Torbjorn
    KTH Royal Inst Technol, Dept Prot Sci, Roslagstullsbacken 21, S-11417 Stockholm, Sweden.
    Affibody-derived drug conjugates: Potent cytotoxic molecules for treatment of HER2 over-expressing tumors2018In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 288, p. 84-95Article in journal (Refereed)
    Abstract [en]

    Patients with HER2-positive tumors often suffer resistance to therapy, warranting development of novel treatment modalities. Affibody molecules are small affinity proteins which can be engineered to bind to desired targets. They have in recent years been found to allow precise targeting of cancer specific molecular signatures such as the HER2 receptor. In this study, we have investigated the potential of an affibody molecule targeting HER2, Z(HER2:2891), conjugated with the cytotoxic maytansine derivate MC-DM1, for targeted cancer therapy. Z(HER2:2891) was expressed as a monomer (Z(HER2:2891)), dimer ((Z(HER2:2891)) 2) and dimer with an albumin binding domain (ABD) for half-life extension ((Z(HER2:2891)) 2-ABD). All proteins had a unique C-terminal cysteine that could be used for efficient and site-specific conjugation with MC-DM1. The resulting affibody drug conjugates were potent cytotoxic molecules for human cells over-expressing HER2, with sub-nanomolar IC50-values similar to trastuzumab emtansine, and did not affect cells with low HER2 expression. A biodistribution study of a radiolabeled version of (Z(HER2:2891))(2)-ABD-MC-DM1, showed that it was taken up by the tumor. The major site of off-target uptake was the kidneys and to some extent the liver. (Z(HER2:2891)) 2-ABD-MC-DM1 was found to have a half-life in circulation of 14 h. The compound was tolerated well by mice at 8.5 mg/kg and was shown to extend survival of mice bearing HER2 over-expressing tumors. The findings in this study show that affibody molecules are a promising class of engineered affinity proteins to specifically deliver small molecular drugs to cancer cells and that such conjugates are potential candidates for clinical evaluation on HER2-overexpressing cancers.

  • 3.
    Asplund, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Antibodies for profiling the human proteome: The Human Protein Atlas as a resource for cancer research2012In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 12, no 13, p. 2067-2077Article, review/survey (Refereed)
    Abstract [en]

    In this review, we present an update on the progress of the Human Protein Atlas, with an emphasis on strategies for validating immunohistochemistry-based protein expression patterns and on the possibilities to extend the map of protein expression patterns for cancer research projects. The objectives underlying the Human Protein Atlas include (i) the generation of validated antibodies toward a major isoform of all proteins encoded by the human genome, (ii) creating an information database of protein expression patterns in normal human tissues, in cells, and in cancer, and (iii) utilizing generated antibodies and protein expression data as tools to identify clinically useful biomarkers. The success of such an effort is dependent on the validity of antibodies as specific binders of intended targets in applications used to map protein expression patterns. The development of strategies to support specific target binding is crucial and remains a challenge as a large fraction of proteins encoded by the human genome is poorly characterized, including the approximately one-third of all proteins lacking evidence of existence. Conceivable methods for validation include the use of paired antibodies, i.e. two independent antibodies targeting different and nonoverlapping epitopes on the same protein as well as comparative analysis of mRNA expression patterns with corresponding proteins.

  • 4.
    Boije, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Edqvist, Per-Henrik D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Hallböök, Finn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina2009In: Developmental Biology, ISSN 0012-1606, E-ISSN 1095-564X, Vol. 330, no 1, p. 105-113Article in journal (Refereed)
    Abstract [en]

    We have addressed the question when horizontal cells in the chick retina are generated and undergo their terminal mitosis. Horizontal cell progenitors replicate their DNA early and migrate bi-directionally to the horizontal cell layer. It was hypothesized that the cells undergo mitosis directly after replication and migrate as post-mitotic transition cells before differentiating to horizontal cells. However, our results show that cells expressing markers for the axon-bearing and the axon-less subtypes of horizontal cells undergo terminal mitosis while residing on the vitreal side of the retina. By combining horizontal cell transcription factors Lim1, Isl1 and Prox1 labeling with phospho-histone H3, a marker for mitosis, we demonstrate that all or a clear majority of vitreal mitoses are undertaken by the horizontal cell committed progenitors. The pattern of cells that incorporated the thymidine analogue EdU implied that the progenitors replicated their genome while migrating towards the vitreal side. Upon arrival to the vitreal retina they become arrested for about two days prior to mitosis. Hence, cells expressing horizontal cell markers are arrested in G2-phase on the vitreal side of the retina. These results support the existence of committed progenitors that give rise to horizontal cells and that those cells become arrested in G2-phase before undergoing terminal mitosis on the vitreal side of the retina followed by migration to the horizontal cell layer. The results also indicate that the regulation of the transition from G2-phase to mitosis is important for the development of these committed progenitor cells.

  • 5.
    Boije, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Fard, Shahrzad Shirazi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Hallböök, Finn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Horizontal Cells, the Odd Ones Out in the Retina, Give Insights into Development and Disease2016In: Frontiers in Neuroanatomy, ISSN 1662-5129, E-ISSN 1662-5129, Vol. 10, article id 77Article, review/survey (Refereed)
    Abstract [en]

    Thorough investigation of a neuronal population can help reveal key aspects regarding the nervous system and its development. The retinal horizontal cells have several extraordinary features making them particularly interesting for addressing questions regarding fate assignment and subtype specification. In this review we discuss and summarize data concerning the formation and diversity of horizontal cells, how morphology is correlated to molecular markers, and how fate assignment separates the horizontal lineage from the lineages of other retinal cell types. We discuss the novel and unique features of the final cell cycle of horizontal cell progenitors and how they may relate to retinoblastoma carcinogenesis.

  • 6.
    Byström, Sanna
    et al.
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Fredolini, Claudia
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Nyaiesh, Etienne-Nicholas
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Drobin, Kimi
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Uhlen, Mathias
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Centre for Research and Development, Gävleborg. Gavle Sjukhus, S-80188 Gavle, Sweden.;Umea Univ, Dept Radiat Sci, S-90187 Umea, Sweden..
    Ponten, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Schwenk, Jochen M.
    KTH Royal Inst Technol, Affin Prote, SciLifeLab, S-17165 Solna, Sweden..
    Affinity Proteomics Exploration of Melanoma Identifies Proteins in Serum with Associations to T-Stage and Recurrence2017In: Translational Oncology, ISSN 1944-7124, E-ISSN 1936-5233, Vol. 10, no 3, p. 385-395Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Blood-based proteomic profiling may aid and expand our understanding of diseases and their different phenotypes. The aim of the presented study was to profile serum samples from patients with malignant melanoma using affinity proteomic assays to describe proteins in the blood stream that are associated to stage or recurrence of melanoma. MATERIAL AND METHODS: Multiplexed protein analysis was conducted using antibody suspension bead arrays. A total of 232 antibodies against 132 proteins were selected from (i) a screening with 4595 antibodies and 32 serum samples from melanoma patients and controls, (ii) antibodies used for immunohistochemistry, (iii) protein targets previously related with melanoma. The analysis was performed with 149 serum samples from patients with malignant melanoma. Antibody selectivity was then assessed by Western blot, immunocapture mass spectrometry, and epitope mapping. Lastly, indicative antibodies were applied for IHC analysis of melanoma tissues. RESULTS: Serum levels of regucalcin (RGN) and syntaxin 7 (STX7) were found to be lower in patients with both recurring tumors and a high Breslow's thickness (T-stage 3/4) compared to low thickness (T-stage 1/2) without disease recurrence. Serum levels of methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) were instead elevated in sera of T3/4 patients with recurrence. The analysis of tissue sections with S100A6 and MTHFD1L showed positive staining in a majority of patients with melanoma, and S100A6 was significantly associated to T-stage. CONCLUSIONS: Our findings provide a starting point to further study RGN, STX7, MTHFD1L and S100A6 in serum to elucidate their involvement in melanoma progression and to assess a possible contribution to support clinical indications.

  • 7.
    Carreras-Puigvert, Jordi
    et al.
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Zitnik, Marinka
    Univ Ljubljana, Fac Comp & Informat Sci, SI-1000 Ljubljana, Slovenia.; Stanford Univ, Dept Comp Sci, Palo Alto, CA 94305 USA.
    Jemth, Ann-Sofie
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Carter, Megan
    Stockholm Univ, Dept Biochem & Biophys, S-10691 Stockholm, Sweden.
    Unterlass, Judith E
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Hallström, Björn
    KTH Royal Inst Technol, Sci Life Lab, Cell Profiling Affin Prote, S-17165 Stockholm, Sweden.
    Loseva, Olga
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Karem, Zhir
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Calderón-Montaño, José Manuel
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    Lindskog, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Matuszewski, Damian J.
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ait Blal, Hammou
    KTH Royal Inst Technol, Sci Life Lab, Cell Profiling Affin Prote, S-17165 Stockholm, Sweden.
    Berntsson, Ronnie P A
    Stockholm Univ, Dept Biochem & Biophys, S-10691 Stockholm, Sweden.
    Häggblad, Maria
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Biochem & Cellular Screening Facil, S-17165 Stockholm, Sweden.
    Martens, Ulf
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Biochem & Cellular Screening Facil, S-17165 Stockholm, Sweden.
    Studham, Matthew
    Stockholm Univ, Dept Biochem & Biophys, Stockholm Bioinformat Ctr, Sci Life Lab, Box 1031, S-17121 Solna, Sweden.
    Lundgren, Bo
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Biochem & Cellular Screening Facil, S-17165 Stockholm, Sweden.
    Wählby, Carolina
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Sonnhammer, Erik L L
    Stockholm Univ, Dept Biochem & Biophys, Stockholm Bioinformat Ctr, Sci Life Lab, Box 1031, S-17121 Solna, Sweden.
    Lundberg, Emma
    KTH Royal Inst Technol, Sci Life Lab, Cell Profiling Affin Prote, S-17165 Stockholm, Sweden.
    Stenmark, Pål
    Stockholm Univ, Dept Biochem & Biophys, S-10691 Stockholm, Sweden.
    Zupan, Blaz
    Univ Ljubljana, Fac Comp & Informat Sci, SI-1000 Ljubljana, Slovenia.; Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA.
    Helleday, Thomas
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Mol Biochem & Biophys, Sci Life Lab, S-17165 Stockholm, Sweden.
    A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family2017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, no 1, article id 1541Article in journal (Refereed)
    Abstract [en]

    The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality.

  • 8.
    Delforoush, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Berglund, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sundström, Christer
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Enblad, Gunilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Expression of possible targets for new proteasome inhibitors in diffuse large B-cell lymphoma2017In: European Journal of Haematology, ISSN 0902-4441, E-ISSN 1600-0609, Vol. 98, no 1, p. 52-56Article in journal (Refereed)
    Abstract [en]

    Objectives: Investigating expression of possible targets for proteasome inhibitors in patients with diffuse large B-cell lymphoma (DLBCL) and correlating the findings to clinical parameters and outcome.

    Methods: Tumour material from 92 patients with DLBCL treated with either R-CHOP like (n = 69) or CHOP like (n = 23) regimens were stained for possible targets of proteasome inhibitors.

    Results: The primary target molecule of bortezomib, proteasome subunit beta, type 5 (PSMB5), was not detected in the tumour cells in any of the cases but showed an abundant expression in cells in the microenvironment. However, the deubiquitinases (DUBs) of the proteasome, the ubiquitin carboxyl-terminal hydrolase L5 (UCHL5) and the ubiquitin specific peptidase 14 (USP14), were detected in the cytoplasm of the tumour cells in 77% and 74% of the cases, respectively. The adhesion regulating molecule 1 (ADRM1) was detected in 98% of the cases. There was no correlation between the expression of any of the studied markers and clinical outcome or GC/non-GC phenotype.

    Conclusions: We suggest that UCHL5 and/or USP14 should be further evaluated as new targets for proteasome inhibitors in DLBCL. The lack of expression of PSMB5 on the tumour cells might provide an explanation of the relatively poor results of bortezomib in DLBCL.

  • 9.
    Dieterich, Lothar C.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Mellberg, Sofie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Langenkamp, Elise
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Zhang, Lei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Zieba, Agata
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Salomäki, Henriikka
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Teichert, M.
    Huang, Hua
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Kraus, T.
    Augustin, H. G.
    Olofsson, Tommie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Söderberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools.
    Molema, G.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Georgii-Hemming, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Genetics.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Dimberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization2012In: Journal of Pathology, ISSN 0022-3417, E-ISSN 1096-9896, Vol. 228, no 3, p. 378-390Article in journal (Refereed)
    Abstract [en]

    Glioblastoma are aggressive astrocytic brain tumours characterized by microvascular proliferation and an abnormal vasculature, giving rise to brain oedema and increased patient morbidity. Here, we have characterized the transcriptome of tumour-associated blood vessels and describe a gene signature clearly associated with pleomorphic, pathologically altered vessels in human glioblastoma (grade IV glioma). We identified 95 genes differentially expressed in glioblastoma vessels, while no significant differences in gene expression were detected between vessels in non-malignant brain and grade II glioma. Differential vascular expression of ANGPT2, CD93, ESM1, ELTD1, FILIP1L and TENC1 in human glioblastoma was validated by immunohistochemistry, using a tissue microarray. Through qPCR analysis of gene induction in primary endothelial cells, we provide evidence that increased VEGF-A and TGFβ2 signalling in the tumour microenvironment is sufficient to invoke many of the changes in gene expression noted in glioblastoma vessels. Notably, we found an enrichment of Smad target genes within the distinct gene signature of glioblastoma vessels and a significant increase of Smad signalling complexes in the vasculature of human glioblastoma in situ. This indicates a key role of TGFβ signalling in regulating vascular phenotype and suggests that, in addition to VEGF-A, TGFβ2 may represent a new target for vascular normalization therapy.

  • 10.
    Edqvist, Per-Henrik D
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Neuroscience. Med Utv Biol.
    On the Determination, Differentiation and maturation of Developing retinal Interneurons2005Licentiate thesis, monograph (Other scientific)
  • 11.
    Edqvist, Per-Henrik D
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    Hallström, Björn M
    Danielsson, Angelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edlund, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Expression of Human Skin-Specific Genes Defined by Transcriptomics and Antibody-Based Profiling2015In: Journal of Histochemistry and Cytochemistry, ISSN 0022-1554, E-ISSN 1551-5044, Vol. 63, no 2, p. 129-141Article in journal (Refereed)
    Abstract [en]

    To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases.

  • 12.
    Edqvist, Per-Henrik D.
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Huvila, Jutta
    Forsstrom, Bjorn
    Talve, Lauri
    Carpen, Olli
    Salvesen, Helga B.
    Krakstad, Camilla
    Grenman, Seija
    Johannesson, Henrik
    Ljungqvist, Oscar
    Uhlen, Mathias
    Ponten, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Auranen, Annika
    Loss of ASRGL1 expression is an independent biomarker for disease-specific survival in endometrioid endometrial carcinoma2015In: Gynecologic Oncology, ISSN 0090-8258, E-ISSN 1095-6859, Vol. 137, no 3, p. 529-537Article in journal (Refereed)
    Abstract [en]

    Objective. For endometrial carcinoma, prognostic stratification methods do not satisfactorily identify patients with adverse outcome. Currently, histology, tumor grade and stage are used to tailoring surgical treatment and to determine the need for adjuvant treatment Low-risk patients are not considered to require adjuvant therapy or staging lymphadenectomy. For patients with intermediate or high risk, some guidelines recommend tailoring adjuvant treatment according to additional negative prognostic factors. Our objective was to evaluate the biomarker potential of the ASRGL1 protein in endometrial carcinoma. Methods. Using The Human Protein Atlas (www.proteinatlas.org), the L-asparaginase (ASRGL1) protein was identified as an endometrial carcinoma biomarker candidate. ASRGL1 expression was immunohistochemically evaluated with an extensively validated antibody on two independent endometrial carcinoma cohorts (n = 229 and n = 286) arranged as tissue microarrays. Staining results were correlated with clinical features. Results. Reduced expression of ASRGL1, defined as <75% positively stained tumor cells, was significantly associated with poor prognosis and reduced disease-specific survival in endometrioid endometrial adenocarcinoma (EEA). In multivariate analysis the hazard ratios for disease-specific survival were 3.55 (95% CI = 1.10-11.43; p = 0.003) and 323 (95% Cl = 1.53-6.81; p = 0.002) in the two cohorts, respectively. Of the 48 cases with Grade 3 Stage I tumor all disease-related deaths were associated with low ASRGL1 expression. Conclusions. Loss of ASRGL1 in EEA is a powerful biomarker for poor prognosis and retained ASRGL1 has a positive impact on survival. ASRGL1 immunohistochemistry has potential to become an additional tool for prognostication in cases where tailoring adjuvant treatment according to additional prognostic factors besides grade and stage is recommended.

  • 13.
    Edqvist, Per-Henrik D
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Niklasson, Mia
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Vidal-Sanz, Manuel
    Hallböök, Finn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Neuroscience.
    Forsberg-Nilsson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 8, p. e42488-Article in journal (Refereed)
    Abstract [en]

    Platelet-derived growth factor (PDGF) plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice.

    In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.

  • 14.
    Edqvist, Per-Henrik
    et al.
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Neuroscience. Medicinsk utvecklingsbiologi.
    Hallbook, Finn
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Medicine, Department of Neuroscience. Medicinsk utvecklingsbiologi.
    Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development2004In: Development, Vol. 131, no 6, p. 1343-1251Article in journal (Other (popular scientific, debate etc.))
  • 15.
    Elsir, Tamador
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Carlson, Joseph
    Ribom, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Ekman, Simon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Popova, Svetlana N
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Nistér, Monica
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    A study of embryonic stem cell-related proteins in human astrocytomas: Identification of Nanog as a predictor of survival2014In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 134, no 5, p. 1123-1131Article in journal (Refereed)
    Abstract [en]

    Recent studies suggest that the regulatory networks controlling the functions of stem cells during development may be abnormally active in human cancers. An embryonic stem cell (ESC) gene signature was found to correlate with a more undifferentiated phenotype of several human cancer types including gliomas, and associated with poor prognosis in breast cancer. In the present study, we used tissue microarrays of 80 low-grade (WHO grade II) and 98 high-grade human gliomas (WHO grade III and IV) to investigate the presence of the ESC-related proteins Nanog, Klf4, Oct4, Sox2 and c-Myc by immunohistochemistry. While similar patterns of co-expressed proteins between low- and high-grade gliomas were present, we found up-regulated protein levels of Nanog, Klf4, Oct4 and Sox2 in high-grade gliomas. Survival analysis by Kaplan-Meier analysis revealed a significant shorter survival in the subgroups of low-grade astrocytomas (n=42) with high levels of Nanog protein (p=0.0067) and of Klf4 protein (p=0.0368), in high-grade astrocytomas (n=85) with high levels of Nanog (p=0.0042), Klf4 (p=0.0447), and c-Myc (p=0.0078) and in glioblastomas only (n=71) with high levels of Nanog (p=0.0422) and of c-Myc (p= 0.0256). In the multivariate model, Nanog was identified as an independent prognostic factor in the subgroups of low-grade astrocytomas (p=0.0039), high-grade astrocytomas (p=0.0124) and glioblastomas only (p=0.0544), together with established clinical variables in these tumors. These findings provide further evidence for the joint regulatory pathways of ESC-related proteins in gliomas and identify Nanog as one of the key players in determining clinical outcome of human astrocytomas.

  • 16.
    Eriksson, Oskar
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Coagulation and inflammation science.
    Asplund, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hegde, Geeta
    Human Prot Atlas Project, Lab Surgpath, Mumbai Site, Bombay, Maharashtra, India..
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Navani, Sanjay
    Human Prot Atlas Project, Lab Surgpath, Mumbai Site, Bombay, Maharashtra, India..
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Siegbahn, A
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    A stromal cell population in the large intestine identified by tissue factor expression that is lost during colorectal cancer progression2016In: Thrombosis and Haemostasis, ISSN 0340-6245, Vol. 116, no 6, p. 1050-1059Article in journal (Refereed)
    Abstract [en]

    Colorectal cancer (CRC) is a major cause of morbidity and mortality, and the composition of the tumour stroma is a strong predictor of survival in this cancer type. Tissue factor (TF) functions as the trigger of haemostasis together with its ligand coagulation factor VII/ VIIa, and TF expression has been found in tumour cells of colorectal tumours. However, TF expression in the CRC tumour stroma or its relationship to patient outcome has not yet been studied. To address this question we developed and validated a specific anti-TF antibody using standardised methods within the Human Protein Atlas project. We used this antibody to investigate TF expression in normal colorectal tissue and CRC using immunofluorescence and immunohistochemistry in two patient cohorts. TF was strongly expressed in a cell population immediately adjacent to the colorectal epithelium. These TF-positive cells were ACTA2-negative but weakly vimentin-positive, defining a specific population of pericryptal sheath cells. In colorectal tumours, TF-positive sheath cells were progressively lost after the adenoma-to-carcinoma transition, demonstrating downregulation of this source of TF in CRC. Furthermore, loss of sheath cell TF was significantly associated with poor overall and disease-specific survival in rectal but not colon cancers. In conclusion, we demonstrate that TF is a marker of a specific cell population in the large intestine, which is lost during CRC progression. Our results highlight the role of the tumour stroma in this cancer type and suggest TF to be a potential prognostic biomarker in rectal cancers through the identification of pericryptal sheath cells.

  • 17. Fagerberg, Linn
    et al.
    Oksvold, Per
    Skogs, Marie
    Algenäs, Cajsa
    Lundberg, Emma
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Sivertsson, Asa
    Odeberg, Jacob
    Klevebring, Daniel
    Kampf, Caroline
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Asplund, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Sjöstedt, Evelina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Al-Khalili Szigyarto, Cristina
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Olsson, IngMarie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Rydberg, Urban
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Hudson, Paul
    Ottosson Takanen, Jenny
    Berling, Holger
    Björling, Lisa
    Tegel, Hanna
    Rockberg, Johan
    Nilsson, Peter
    Navani, Sanjay
    Jirström, Karin
    Mulder, Jan
    Schwenk, Jochen M
    Zwahlen, Martin
    Hober, Sophia
    Forsberg, Mattias
    von Feilitzen, Kalle
    Uhlén, Mathias
    Contribution of Antibody-based Protein Profiling to the Human Chromosome-centric Proteome Project (C-HPP)2013In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 12, no 6, p. 2439-2448Article in journal (Refereed)
    Abstract [en]

    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).

  • 18. Fei, Chen
    et al.
    Atterby, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Zhang, Wei Wei
    Larsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ryan, Frank P.
    Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics2014In: Journal of the Royal Society of Medicine, ISSN 0141-0768, E-ISSN 1758-1095, Vol. 107, no 1, p. 22-29Article in journal (Refereed)
    Abstract [en]

    Objectives: There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Design: Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Participants: Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. Setting: The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. Main Outcome Measures: The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. Results: We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. Conclusion: This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.

  • 19.
    Fonnes, T.
    et al.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Trovik, J.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Fasmer, K. E.
    Haukeland Hosp, Dept Radiol, Ctr Nucl Med PET, Bergen, Norway;Haukeland Hosp, Dept Radiol, Bergen, Norway.
    Marcickiewicz, J.
    Univ Gothenburg, Dept Gynaecol, Sahlgrenska Acad, Gothenburg, Sweden;Hallands Hosp Varberg, Dept Obstet & Gynaecol, Varberg, Sweden.
    Tingulstad, S.
    St Olavs Hosp, Dept Gynaecol, Trondheim, Norway.
    Staff, A. C.
    Oslo Univ Hosp, Dept Gynaecol, Oslo, Norway;Univ Oslo, Oslo, Norway.
    Bjorge, L.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Amant, F.
    Katholieke Univ Leuven, Dept Gynaecol Oncol, UZGasthuisberg, Leuven, Belgium;Netherlands Canc Inst, Ctr Gynaecol Oncol, Amsterdam, Netherlands;Acad Med Ctr, Amsterdam, Netherlands.
    Haldorsen, I. S.
    Haukeland Hosp, Dept Radiol, Bergen, Norway;Univ Bergen, Sect Radiol, Dept Clin Med, Bergen, Norway.
    Werner, H. M. J.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Akslen, L. A.
    Univ Bergen, Sect Pathol, Dept Clin Med, Ctr Canc Biomarkers CCBIO, Bergen, Norway;Haukeland Hosp, Dept Pathol, Bergen, Norway.
    Tangen, I. L.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Krakstad, C.
    Univ Bergen, Dept Clin Sci, Ctr Canc Biomarkers, CCBIO, Bergen, Norway;Haukeland Hosp, Dept Obstet & Gynaecol, Bergen, Norway.
    Asparaginase-like protein 1 expression in curettage independently predicts lymph node metastasis in endometrial carcinoma: a multicentre study2018In: British Journal of Obstetrics and Gynecology, ISSN 1470-0328, E-ISSN 1471-0528, Vol. 125, no 13, p. 1695-1703Article in journal (Refereed)
    Abstract [en]

    Objective Design Correct preoperative identification of high-risk patients is important to optimise surgical treatment and improve survival. We wanted to explore if asparaginase-like protein 1 (ASRGL1) expression in curettage could predict lymph node metastases and poor outcome, potentially improving preoperative risk stratification. Multicentre study. Setting Population Ten hospitals in Norway, Sweden and Belgium. Women diagnosed with endometrial carcinoma. Methods Main outcome measures ASRGL1 expression in curettage specimens from 1144 women was determined by immunohistochemistry. ASRGL1 status related to disease-specific survival, lymph node status, preoperative imaging parameters and clinicopathological data. Results Conclusions ASRGL1 expression had independent prognostic value in multivariate survival analyses, both in the whole patient population (hazard ratio (HR) 1.63, 95% CI 1.11-2.37, P = 0.012) and in the low-risk curettage histology subgroup (HR 2.54, 95% CI 1.44-4.47, P = 0.001). Lymph node metastases were more frequent in women with low expression of ASRGL1 compared with women with high ASRGL1 levels (23% versus 10%, P < 0.001), and low ASRGL1 level was found to independently predict lymph node metastases (odds ratio 2.07, 95% CI 1.27-3.38, P = 0.003). Low expression of ASRGL1 in curettage independently predicts lymph node metastases and poor disease-specific survival.

  • 20.
    Fonnes, Tina
    et al.
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Berg, Hege F.
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Bredholt, Therese
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Edqvist, Per-Henrik D.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sortland, Kristina
    Univ Bergen, Dept Biomed, Bergen.
    Berg, Anna
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Salvesen, Helga B.
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Akslen, Lars A.
    Haukeland Hosp, Dept Pathol, Bergen; Univ Bergen, Ctr Canc Biomarkers, Dept Clin Med, Sect Pathol, Bergen.
    Werner, Henrica M. J.
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Trovik, Jone
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Tangen, Ingvild L.
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Krakstad, Camilla
    Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen; Haukeland Hosp, Dept Obstet & Gynecol, Bergen.
    Asparaginase-like protein 1 is an independent prognostic marker in primary endometrial cancer, and is frequently lost in metastatic lesions2018In: Gynecologic Oncology, ISSN 0090-8258, E-ISSN 1095-6859, Vol. 148, no 1, p. 197-203Article in journal (Refereed)
    Abstract [en]

    Objective

    Loss of Asparaginase-like protein 1 (ASRGL1) has been suggested as a prognostic biomarker in endometrial carcinoma. Our objective was to validate this in a prospectively collected, independent patient cohort, and evaluate ASRGL1 expression in endometrial carcinoma precursor lesion and metastases.

    Methods

    782 primary endometrial carcinomas, 90 precursor lesions (complex atypical hyperplasia), and 179 metastases (from 87 patients) were evaluated for ASRGL1 expression by immunohistochemistry in relation to clinical and histopathological data. ASRGL1 mRNA level was investigated in 237 primary tumors and related to survival and ASRGL1 protein expression.

    Results

    Low expression of ASRGL1 protein and ASRGL1 mRNA predicted poor disease specific survival (P < 0.001). In multivariate survival analyses ASRGL1 had independent prognostic value both in the whole patient cohort (Hazard ratio (HR): 1.53, 95% confidence interval (CI): 1.04–2.26, P = 0.031) and within the endometrioid subgroup (HR: 2.64, CI: 1.47–4.74, P = 0.001). Low ASRGL1 expression was less frequent in patients with low grade endometrioid primary tumors compared to high grade endometrioid and non-endometrioid primary tumors, and ASRGL1 was lost in the majority of metastatic lesions.

    Conclusions

    In a prospective setting ASRGL1 validates as a strong prognostic biomarker in endometrial carcinoma. Loss of ASRGL1 is associated with aggressive disease and poor survival, and is demonstrated for the first time to have independent prognostic value in the entire endometrial carcinoma patient population.

  • 21.
    Fukuhara, Mari
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Agnarsdottir, Margret
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Coter, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    SATB2 is expressed in Merkel cell carcinoma2016In: Archives of Dermatological Research, ISSN 0340-3696, E-ISSN 1432-069X, Vol. 308, no 6, p. 449-454Article in journal (Refereed)
    Abstract [en]

    Merkel cell carcinoma (MCC) is a rare aggressive skin cancer with neuroendocrine differentiation. With immunohistochemistry, the tumor cells stain for both neuroendocrine (i.e., synaptophysin and chromogranin A) and epithelial markers. The epithelial marker cytokeratin 20 (CK20) stains positive with immunohistochemistry in a vast majority of MCCs. The expression of the special AT-rich sequence-binding protein (SATB2) was analyzed in MCC (n = 20) together with other forms of skin cancer and neuroendocrine tumors (n = 51) using immunohistochemistry. The results were compared to the expression of CK20, synaptophysin, and chromogranin A. The majority of the MCCs stained positive for synaptophysin and chromogranin A (95 vs 80 % respectively), and 75 % of the MCCs showed cytoplasmic positivity for CK20 and nuclear positivity for SATB2, with two discordant cases lacking expression of one of these markers. We conclude that immunohistochemistry for SATB2 can be used as an additional marker with similar sensitivity and specificity as CK20 for the diagnosis of Merkel cell carcinoma, suggesting a clinical utility in difficult cases where MCC is suspected.

  • 22.
    Glimelius, Bengt
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Melin, Beatrice
    Umeå Univ, Dept Radiat Sci, Umeå.
    Enblad, Gunilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Beskow, Anna H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Bill-Axelson, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Birgisson, Helgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Upper Abdominal Surgery.
    Björ, Ove
    Umeå Univ, Dept Radiat Sci, Umeå.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Hansson, Tony
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Helleday, Thomas
    Karolinska Inst, Div Translat Med & Chem Biol, Dept Med Biochem & Biophys, Sci Life Lab, Stockholm.
    Hellman, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Endocrine Surgery.
    Henriksson, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Hesselager, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Hultdin, Magnus
    Umeå Univ, Dept Med Biosci, Pathol, Umeå.
    Häggman, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Höglund, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Haematology.
    Jonsson, Håkan
    Umeå Univ, Dept Radiat Sci, Umeå.
    Larsson, Chatarina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Ljuslinder, Ingrid
    Umeå Univ, Dept Radiat Sci, Umeå.
    Mindus, Stephanie
    Akad Sjukhuset, Lung & Allergy Clin, Uppsala.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Riklund, Katrine
    Umeå Univ, Dept Radiat Sci, Umeå.
    Rosenquist, Richard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sandin, Fredrik
    Uppsala Univ Hosp, RCC Uppsala Örebro, Uppsala.
    Schwenk, Jochen M.
    KTH Royal Inst Technol, Sch Biotechnol, Affin Prote, SciLifeLab, Solna.
    Stenling, Roger
    Umeå Univ, Dept Med Biosci, Pathol, Umeå.
    Stålberg, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Stålberg, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Endocrine Surgery.
    Sundström, Christer Sundström
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Thellenberg Karlsson, Camilla
    Umeå Univ, Dept Radiat Sci, Umeå.
    Westermark, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Bergh, Anders
    Umeå Univ, Dept Med Biosci, Pathol, Umeå.
    Claesson-Welsh, Lena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Palmqvist, Richard
    Umeå Univ, Dept Med Biosci, Pathol, Umeå.
    Sjöblom, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    U-CAN: a prospective longitudinal collection of biomaterials and clinical information from adult cancer patients in Sweden.2018In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 57, no 2, p. 187-194Article in journal (Refereed)
    Abstract [en]

    Background: Progress in cancer biomarker discovery is dependent on access to high-quality biological materials and high-resolution clinical data from the same cases. To overcome current limitations, a systematic prospective longitudinal sampling of multidisciplinary clinical data, blood and tissue from cancer patients was therefore initiated in 2010 by Uppsala and Umeå Universities and involving their corresponding University Hospitals, which are referral centers for one third of the Swedish population.

    Material and Methods: Patients with cancer of selected types who are treated at one of the participating hospitals are eligible for inclusion. The healthcare-integrated sampling scheme encompasses clinical data, questionnaires, blood, fresh frozen and formalin-fixed paraffin-embedded tissue specimens, diagnostic slides and radiology bioimaging data.

    Results: In this ongoing effort, 12,265 patients with brain tumors, breast cancers, colorectal cancers, gynecological cancers, hematological malignancies, lung cancers, neuroendocrine tumors or prostate cancers have been included until the end of 2016. From the 6914 patients included during the first five years, 98% were sampled for blood at diagnosis, 83% had paraffin-embedded and 58% had fresh frozen tissues collected. For Uppsala County, 55% of all cancer patients were included in the cohort.

    Conclusions: Close collaboration between participating hospitals and universities enabled prospective, longitudinal biobanking of blood and tissues and collection of multidisciplinary clinical data from cancer patients in the U-CAN cohort. Here, we summarize the first five years of operations, present U-CAN as a highly valuable cohort that will contribute to enhanced cancer research and describe the procedures to access samples and data.

  • 23.
    Gremel, Gabriela
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergman, Julia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Djureinovic, Dijana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Maindad, Vikas
    Bharambe, Bhavana M.
    Khan, Wasif Ali Z. A.
    Navani, Sanjay
    Elebro, Jacob
    Jirstrom, Karin
    Hellberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Center for Clinical Research Dalarna. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Uhlen, Mathias
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    A systematic analysis of commonly used antibodies in cancer diagnostics2014In: Histopathology, ISSN 0309-0167, E-ISSN 1365-2559, Vol. 64, no 2, p. 293-305Article in journal (Refereed)
    Abstract [en]

    AimsImmunohistochemistry plays a pivotal role in cancer differential diagnostics. To identify the primary tumour from a metastasis specimen remains a significant challenge, despite the availability of an increasing number of antibodies. The aim of the present study was to provide evidence-based data on the diagnostic power of antibodies used frequently for clinical differential diagnostics. Methods and resultsA tissue microarray cohort comprising 940 tumour samples, of which 502 were metastatic lesions, representing tumours from 18 different organs and four non-localized cancer types, was analysed using immunohistochemistry with 27 well-established antibodies used in clinical differential diagnostics. Few antibodies, e.g. prostate-specific antigen and thyroglobulin, showed a cancer type-related sensitivity and specificity of more than 95%. A majority of the antibodies showed a low degree of sensitivity and specificity for defined cancer types. Combinations of antibodies provided limited added value for differential diagnostics of cancer types. ConclusionsThe results from analysing 27 diagnostic antibodies on consecutive sections of 940 defined tumours provide a unique repository of data that can empower a more optimal use of clinical immunohistochemistry. Our results highlight the benefit of immunohistochemistry and the unmet need for novel markers to improve differential diagnostics of cancer.

  • 24.
    Gremel, Gabriela
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Djureinovic, Dijana
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Niinivirta, Marjut
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Laird, Alexander
    Univ Edinburgh, MRC Human Genet Unit, Edinburgh, Midlothian, Scotland.;Univ Edinburgh, Inst Genet & Mol Med, Edinburgh Urol Canc Grp, Edinburgh, Midlothian, Scotland..
    Ljungqvist, Oscar
    Atlas Antibodies AB, Stockholm, Sweden..
    Johannesson, Henrik
    Atlas Antibodies AB, Stockholm, Sweden..
    Bergman, Julia
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Navani, Sanjay
    Lab Surgpath, Bombay, Maharashtra, India..
    Khan, Naila
    Lab Surgpath, Bombay, Maharashtra, India..
    Patil, Tushar
    Lab Surgpath, Bombay, Maharashtra, India..
    Sivertsson, Asa
    Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Uhlen, Mathias
    Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Harrison, David J.
    Univ St Andrews, Sch Med, St Andrews, Fife, Scotland..
    Ullenhag, Gustav
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Stewart, Grant D.
    Univ Edinburgh, Inst Genet & Mol Med, Edinburgh Urol Canc Grp, Edinburgh, Midlothian, Scotland.;Univ Cambridge, Addenbrookes Hosp, Acad Urol Grp, Box 43,Cambridge Biomed Campus,Hills Rd, Cambridge CB2 0QQ, England..
    Pontén, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    A systematic search strategy identifies cubilin as independent prognostic marker for renal cell carcinoma2017In: BMC Cancer, ISSN 1471-2407, E-ISSN 1471-2407, Vol. 17, article id 9Article in journal (Refereed)
    Abstract [en]

    Background: There is an unmet clinical need for better prognostic and diagnostic tools for renal cell carcinoma (RCC). Methods: Human Protein Atlas data resources, including the transcriptomes and proteomes of normal and malignant human tissues, were searched for RCC-specific proteins and cubilin (CUBN) identified as a candidate. Patient tissue representing various cancer types was constructed into a tissue microarray (n = 940) and immunohistochemistry used to investigate the specificity of CUBN expression in RCC as compared to other cancers. Two independent RCC cohorts (n = 181; n = 114) were analyzed to further establish the sensitivity of CUBN as RCC-specific marker and to explore if the fraction of RCCs lacking CUBN expression could predict differences in patient survival. Results: CUBN was identified as highly RCC-specific protein with 58% of all primary RCCs staining positive for CUBN using immunohistochemistry. In venous tumor thrombi and metastatic lesions, the frequency of CUBN expression was increasingly lost. Clear cell RCC (ccRCC) patients with CUBN positive tumors had a significantly better prognosis compared to patients with CUBN negative tumors, independent of T-stage, Fuhrman grade and nodal status (HR 0.382, CI 0.203-0.719, P = 0.003). Conclusions: CUBN expression is highly specific to RCC and loss of the protein is significantly and independently associated with poor prognosis. CUBN expression in ccRCC provides a promising positive prognostic indicator for patients with ccRCC. The high specificity of CUBN expression in RCC also suggests a role as a new diagnostic marker in clinical cancer differential diagnostics to confirm or rule out RCC.

  • 25.
    Gustafsson, H.
    et al.
    Linkoping Univ, Dept Radiol Norrkoping, Linkoping, Sweden.;Linkoping Univ, Dept Med & Hlth Sci IMH, Linkoping, Sweden.;Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden..
    Kale, A.
    Linkoping Univ, Dept Clin & Expt Med, Div Otorhinolaryngol & Head & Neck Surg, Linkoping, Sweden..
    Dasu, A.
    Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden.;Skandion Clin, Uppsala, Sweden..
    Lund, A.
    Linkoping Univ, Dept Phys Chem & Biol IFM, Uppsala, Sweden..
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Roberg, K.
    Linkoping Univ, Dept Clin & Expt Med, Div Otorhinolaryngol & Head & Neck Surg, Linkoping, Sweden..
    EPR Oximetry of Cetuximab-Treated Head-and-Neck Tumours in a Mouse Model2017In: Cell Biochemistry and Biophysics, ISSN 1085-9195, E-ISSN 1559-0283, Vol. 75, no 3-4, p. 299-309Article in journal (Refereed)
    Abstract [en]

    Head and neck squamous cell carcinoma (HNSCC) tumours are associated with high mortality despite advances in therapy. The monoclonal antibody cetuximab (Erbitux (R)) has been approved for the treatment of advanced HNSCC. However, only a subset of HNSC patients receiving cetuximab actually responds to treatment, underlining the need for a means to tailor treatments of individual patients. The aim of the present study was to investigate the effect of cetuximab treatment on tumour growth, on tumour partial oxygen pressure as measured by LiPc electron paramagnetic resonance oximetry and on the expression of proteins involved in tumour growth, metabolism and hypoxia. Two HNSCC cell lines, UT-SCC-2 and UT-SCC-14, were used to generate xenografts on female BALB/c (nu/nu) nude mice. Mice with xenografts were given three injections of intraperitoneal cetuximab or phosphate-buffered saline, and the tumour volume was recorded continuously. After treatment the tumour partial oxygen pressure was measured by LiPc electron paramagnetic resonance oximetry and the expression of epidermal growth factor receptor (EGFR), phosphorylated EGFR, Ki-67, MCT1, MCT4, GLUT1, CAIX and HIF-1 alpha were investigated by immunohistochemistry. In xenografts from both cell lines (UT-SCC-2 and UT-SCC-14) cetuximab had effect on the tumour volume but the effect was more pronounced on UT-SCC-14 xenografts. A higher tumour oxygenation was measured in cetuximab-treated tumours from both cell lines compared to untreated controls. Immunocytochemical staining after cetuximab treatment shows a significantly decreased expression of EGFR, pEGFR, Ki67, CAIX and nuclear HIF-1 alpha in UT-SCC-14 tumours compared to untreated controls. MCT1 and GLUT1 were significantly decreased in tumours from both cell lines but more pronounced in UT-SCC-14 tumours. Taken together, our results show that cetuximab treatment decreases the tumour growth and increases the tumour partial oxygen pressure of HNSCC xenografts. Furthermore we found a potential connection between the partial oxygen pressure of the tumours and the expression of proteins involved in tumour growth, metabolism and hypoxia.

  • 26.
    Huvila, Jutta
    et al.
    Univ Turku, Turku Univ Hosp, Dept Pathol, Pl 52, FIN-20520 Turku, Finland.
    Laajala, Teemu D.
    Univ Turku, Dept Math & Stat, Pl20, Helsinki 00014, Finland;Univ Helsinki, FIMM, Inst Mol Med Finland, Pl20, FIN-00014 Helsinki, Finland.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH Royal Inst Technol, Sci Life Lab, S-10044 Stockholm, Sweden;Chalmers Univ Technol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden.
    Talve, Lauri
    Univ Turku, Turku Univ Hosp, Dept Pathol, Pl 52, FIN-20520 Turku, Finland.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Grenman, Seija
    Univ Turku, Turku Univ Hosp, Dept Gynaecol & Obstet, Pl52, FIN-20520 Turku, Finland.
    Carpen, Olli
    Univ Turku, Turku Univ Hosp, Dept Pathol, Pl 52, FIN-20520 Turku, Finland;Univ Helsinki, Dept Pathol, Helsinki, Finland;Finland HUSIAB, Pl720, Helsinki 00029, Finland.
    Aittokallio, Tero
    Univ Turku, Dept Math & Stat, Pl20, Helsinki 00014, Finland;Univ Helsinki, FIMM, Inst Mol Med Finland, Pl20, FIN-00014 Helsinki, Finland.
    Auranen, Annika
    Univ Tampere, Tampere Univ Hosp, Dept Gynaecol & Obstet, Pl2000, Tampere 33521, Finland.
    Combined ASRGL1 and p53 immunohistochemistry as an independent predictor of survival in endometrioid endometrial carcinoma2018In: Gynecologic Oncology, ISSN 0090-8258, E-ISSN 1095-6859, Vol. 149, no 1, p. 173-180Article in journal (Refereed)
    Abstract [en]

    Objective. In clinical practise, prognostication of endometrial cancer is based on clinicopathological risk factors. The use of immunohistochemistry-based markers as prognostic tools is generally not recommended and a systematic analysis of their utility as a panel is lacking. We evaluated whether an immunohistochemical marker panel could reliably assess endometrioid endometrial cancer (EEC) outcome independent of clinicopathological information. Methods. A cohort of 306 EEC specimens was profiled using tissue microarray (TMA). Cost- and time-efficient immunohistochemical analysis of well-established tissue biomarkers (ER, PR, HER2, Ki-67, MLH1 and p53) and two new biomarkers (L1CAM and ASRGL1) was carried out. Statistical modelling with embedded variable selection was applied on the staining results to identify minimal prognostic panels with maximal prognostic accuracy without compromising generalizability. Results. A panel including p53 and ASRGL1 immunohistochemistry was identified as the most accurate predictor of relapse-free and disease-specific survival. Within this panel, patients were allocated into high- (5.9%), intermediate- (295%) and low- (64.6%) risk groups where high-risk patients had a 30-fold risk (P < 0.001) of dying of EEC compared to the low-risk group. Conclusions. P53 and ASRGL1 immunoprofiling stratifies EEC patients into three risk groups with significantly different outcomes. This simple and easily applicable panel could provide a useful tool in EEC risk stratification and guiding the allocation of treatment modalities.

  • 27. Huvila, Jutta
    et al.
    Talve, Lauri
    Carpen, Olli
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Grenman, Seija
    Auranen, Annika
    Progesterone receptor negativity is an independent risk factor for relapse in patients with early stage endometrioid endometrial adenocarcinoma2013In: Gynecologic Oncology, ISSN 0090-8258, E-ISSN 1095-6859, Vol. 130, no 3, p. 463-469Article in journal (Refereed)
    Abstract [en]

    Objective. In endometrioid endometrial adenocarcinoma (EEA), the currently established prognostic factors in clinical guidelines are stage and grade. Many guidelines include lymphovascular invasion (LVI) and tumor size as prognostic factors. Although several studies have associated lack of estrogen (ER) and progesterone receptor (PR) expression with reduced outcome, the prognostic use of these markers is uncommon. Better prognostication of clinical behavior would be useful in patients with early stage (I-II) disease. In this study we evaluated ER and PR as prognostic factors in EEA, and compared their expression with other potential biomarkers and clinical parameters. Methods. Tissue microarrays were constructed from 182 patients with stages I-II EEA. ER, PR, p53, Ki-67, PTEN, MLH and HER-2 expression were assessed by immunohistochemical staining and HER-2 was confirrried with SISH. The results were correlated with clinicopathologic parameters and to disease-free survival. Results. Eleven patients (6%) developed recurrent disease during a median follow up time of 62.8 months. In univariate analysis FIGO grade (p = 0.019), positive expression of p53 (p = 0.010) and negative PR expression (p = 0.001) were associated with a shorter disease-free survival. In multivariate analysis only negative PR expression (p = 0.019) was significantly associated with a shorter disease-free survival. LVI and tumor size where not of prognostic value. Conclusions. Lack of PR expression is a strong, independent risk factor for tumor recurrence in patients with stages I-II endometrioid endometrial cancer. The use of this easily measurable biomarker as a prognostic factor in the clinical context should be considered and tested in a larger patient population. 

  • 28. Jedlinski, Adam
    et al.
    Garvin, Stina
    Johansson, Ann-Charlotte
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Roberg, Karin
    Cetuximab sensitivity of head and neck squamous cell carcinoma xenografts is associated with treatment-induced reduction in EGFR, pEGFR, and pSrc.2017In: Journal of Oral Pathology & Medicine, ISSN 0904-2512, E-ISSN 1600-0714, Vol. 46, no 9, p. 717-724Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The aims of this study were to validate in vitro drug sensitivity testing of head and neck squamous cell carcinoma (HNSCC) cell lines in an in vivo xenograft model and to identify treatment-induced changes in the epidermal growth factor receptor (EGFR) signaling pathway that could be used as markers for cetuximab treatment response.

    MATERIALS AND METHODS: The in vitro and in vivo cetuximab sensitivity of two HNSCC cell lines, UT-SCC-14 and UT-SCC-45, was assessed using a crystal violet assay and xenografts in nude mice, respectively. The expression of EGFR, phosphorylated EGFR (pEGFR), phosphorylated Src (pSrc), and Ki-67 was investigated by immunohistochemistry. To verify these results, the in vitro expression of EGFR and pEGFR was analyzed with ELISA in a panel of 10 HNSCC cell lines.

    RESULTS: A close correlation was found between in vitro and in vivo cetuximab sensitivity data in the two investigated HNSCC cell lines. In treatment sensitive UT-SCC-14 xenografts, there was a decrease in EGFR, pEGFR, and pSrc upon cetuximab treatment. Interestingly, in insensitive UT-SCC-45 xenografts, an increased expression of these three proteins was found. The change in EGFR and pEGFR expression in vivo was confirmed in cetuximab-sensitive and cetuximab-insensitive HNSCC cell lines using ELISA.

    CONCLUSION: High sensitivity to cetuximab was strongly associated with a treatment-induced reduction in pEGFR both in vivo and in vitro in a panel of HNSCC cell lines, suggesting that EGFR and pEGFR dynamics could be used as a predictive biomarker for cetuximab treatment response.

  • 29.
    Landegren, Nils
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sharon, Donald
    Freyhult, Eva
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Hallgren, Åsa
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Eriksson, Daniel
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bensing, Sophie
    Wahlberg, Jeanette
    Nelson, Lawrence M
    Gustafsson, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Pediatrics.
    Husebye, Eystein S
    Anderson, Mark S
    Snyder, Michael
    Kämpe, Olle
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 12016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 20104Article in journal (Refereed)
    Abstract [en]

    Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features multiple autoimmune disease manifestations. It is caused by mutations in the Autoimmune regulator (AIRE) gene, which promote thymic display of thousands of peripheral tissue antigens in a process critical for establishing central immune tolerance. We here used proteome arrays to perform a comprehensive study of autoimmune targets in APS1. Interrogation of established autoantigens revealed highly reliable detection of autoantibodies, and by exploring the full panel of more than 9000 proteins we further identified MAGEB2 and PDILT as novel major autoantigens in APS1. Our proteome-wide assessment revealed a marked enrichment for tissue-specific immune targets, mirroring AIRE's selectiveness for this category of genes. Our findings also suggest that only a very limited portion of the proteome becomes targeted by the immune system in APS1, which contrasts the broad defect of thymic presentation associated with AIRE-deficiency and raises novel questions what other factors are needed for break of tolerance.

  • 30.
    Nazir, Madiha
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Senkowski, Wojciech
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Nyberg, Frida
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Blom, Kristin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Chemistry.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Jarvius, Malin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Andersson, Claes
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Gustafsson, Mats G
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Nygren, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Larsson, Rolf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Fryknäs, Mårten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Targeting tumor cells based on Phosphodiesterase 3A expression2017In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 361, no 2, p. 308-315Article in journal (Refereed)
    Abstract [en]

    We and others have previously reported a correlation between high phosphodiesterase 3 A (PDE3A) expression and selective sensitivity to phosphodiesterase (PDE) inhibitors. This indicates that PDE3A could serve both as a drug target and a biomarker of sensitivity to PDE3 inhibition. In this report, we explored publicly available mRNA gene expression data to identify cell lines with different PDE3A expression. Cell lines with high PDE3A expression showed marked in vitro sensitivity to PDE inhibitors zardaverine and quazinone, when compared with those having low PDE3A expression. Immunofluorescence and immunohistochemical stainings were in agreement with PDE3A mRNA expression, providing suitable alternatives for biomarker analysis of clinical tissue specimens. Moreover, we here demonstrate that tumor cells from patients with ovarian carcinoma show great variability in PDE3A protein expression and that level of PDE3A expression is correlated with sensitivity to PDE inhibition. Finally, we demonstrate that PDE3A is highly expressed in subsets of patient tumor cell samples from different solid cancer diagnoses and expressed at exceptional levels in gastrointestinal stromal tumor (GIST) specimens. Importantly, vulnerability to PDE3 inhibitors has recently been associated with co-expression of PDE3A and Schlafen family member 12 (SLFN12). We here demonstrate that high expression of PDE3A in clinical specimens, at least on the mRNA level, seems to be frequently associated with high SLFIV12 expression. In conclusion, PDE3A seems to be both a promising biomarker and drug target for individualized drug treatment of various cancers.

  • 31.
    Niinivirta, Marjut
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University Hospital, Department of Oncology.
    Enblad, Gunilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University Hospital, Department of Oncology.
    Edqvist, Per-Henrik D
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dragomir, Anca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ullenhag, Gustav
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University Hospital, Department of Oncology.
    Tumoral ANXA1 Is a Predictive Marker for Sunitinib Treatment of Renal Cancer Patients2017In: Journal of Cancer, ISSN 1837-9664, E-ISSN 1837-9664, Vol. 8, no 19, p. 3975-3983Article in journal (Refereed)
    Abstract [en]

    Background and aims: There is no established predictive marker for the treatment of renal cancer. Metastatic renal cell carcinoma (mRCC) patients are often treated with sunitinib, a tyrosine kinase inhibitor. Sunitinibs anti-cancer effect is at least partly mediated through interfering with angiogenesis. Our aim with the current study was to assess annexin A1 (ANXA1), which stimulates angiogenesis, as a predictive marker for sunitinib therapy in mRCC patients. Since previous studies have indicated a predictive potential for cubilin, we also investigated the predictivity of ANXA1 combined with cubilin.

    Methods: ANXA1 expression was analysed in tumor tissue from a cohort of patients with advanced RCC (n= 139) using immunohistochemistry. Ninety-nine of the patients were treated with sunitinib in the first or second-line setting. Twenty-two of these were censored because of toxicity leading to the termination of treatment and the remaining (n= 77) were selected for the present study.

    Results: Twenty-five (32%) out of seventy-seven of the tumors lacked ANXA1 in the cytoplasm. On statistical analyses using Kaplan-Meier method, aNXA1 negative tumors were significantly associated with a longer treatment benefit in terms of progression free survival (PFS). Overall survival was also significantly better for patients with ANXA1 negative tumors. The combined ANXA1 positive and cubilin negative expression could more accurately than ANXA1 alone define the group not benefitting from treatment.

    Conclusions: Our results indicate that cytoplasmic expression of ANXA1 is a negative predictive marker for sunitinib therapy in mRCC patients. A possible explanation for this finding is that sunitinibs anti-angiogenic effect cannot overcome the pro-angiogenic drive from many ANXA1 proteins.

  • 32.
    Niinivirta, Marjut
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Enblad, Gunilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dragomir, Anca
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ullenhag, Gustav J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Tumoral cubilin is a predictive marker for treatment of renal cancer patients with sunitinib and sorafenib2017In: Journal of Cancer Research and Clinical Oncology, ISSN 0171-5216, E-ISSN 1432-1335, Vol. 143, no 6, p. 961-970Article in journal (Refereed)
    Abstract [en]

    Purpose Tyrosine kinase inhibitors like sunitinib and sorafenib are commonly used to treat metastatic renal cell cancer patients. Cubilin is a membrane protein expressed in the proximal renal tubule. Cubilin and megalin function together as endocytic receptors mediating uptake of many proteins. There is no established predictive marker for metastatic renal cell cancer patients and the purpose of the present study was to assess if cubilin can predict response to treatment with tyrosine kinase inhibitors.

    Methods Cubilin protein expression was analyzsed in tumor tissue from a cohort of patients with metastatic renal cell cancer (n = 139) using immunohistochemistry. One hundred and thirty six of the patients were treated with sunitinib or sorafenib in the first- or second-line setting. Thirty of these were censored because of toxicity leading to the termination of treatment and the remaining (n = 106) were selected for the current study.

    Results Fifty-three (50%) of the tumors expressed cubilin in the membrane. The median progression-free survival was 8 months in patients with cubilin expressing tumors and 4 months in the cubilin negative group. In addition, the overall survival was better for patients with cubilin positive tumors. We also found that the fraction of cubilin negative patients was significantly higher in the non-responding group (PFS ≤3 months) compared to responding patients (PFS >3 months).

    Conclusions We show for the first time that tumoral expression of cubilin is a positive predictive marker for treatment of metastatic renal cell cancer patients with sunitinib and sorafenib.

  • 33. Pena, Cristina
    et al.
    Virtudes Cespedes, Maria
    Lindh, Maja Bradic
    Kiflemariam, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    Mezheyeuski, Artur
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Hagglof, Christina
    Birgisson, Helgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Colorectal Surgery.
    Bojmar, Linda
    Jirstrom, Karin
    Sandstrom, Per
    Olsson, Eleonor
    Veerla, Srinivas
    Gallardo, Alberto
    Sjöblom, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    Chang, Andy C. -M.
    Reddel, Roger R.
    Mangues, Ramon
    Augsten, Martin
    Ostman, Arne
    STC1 Expression By Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer2013In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 74, no 4, p. 1287-1297Article in journal (Refereed)
    Abstract [en]

    Platelet-derived growth factor (PDGF) receptor signaling is a major functional determinant of cancer-associated fibroblasts (CAF). Elevated expression of PDGF receptors on stromal CAFs is associated with metastasis and poor prognosis, but mechanism(s) that underlie these connections are not understood. Here, we report the identification of the secreted glycoprotein stanniocalcin-1 (STC1) as a mediator of metastasis by PDGF receptor function in the setting of colorectal cancer. PDGF-stimulated fibroblasts increased migration and invasion of cocultured colorectal cancer cells in an STC1-dependent manner. Analyses of human colorectal cancers revealed significant associations between stromal PDGF receptor and STC1 expression. In an orthotopic mouse model of colorectal cancer, tumors formed in the presence of STC1-deficient fibroblasts displayed reduced intravasation of tumor cells along with fewer and smaller distant metastases formed. Our results reveal a mechanistic basis for understanding the contribution of PDGF-activated CAFs to cancer metastasis.

  • 34.
    Pontén, Fredrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Schwenk, J. M.
    Asplund, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Edqvist, Per-Henrik D.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    The Human Protein Atlas as a proteomic resource for biomarker discovery2011In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 270, no 5, p. 428-446Article, review/survey (Refereed)
    Abstract [en]

    Ponten F, Schwenk JM, Asplund A, Edqvist P-HD(Uppsala University, Uppsala; and KTH-Royal Institute of Technology, Stockholm; Sweden). The Human Protein Atlas as a proteomic resource for biomarker discovery (Review). J Intern Med 2011; 270: 428-446. The analysis of tissue-specific expression at both the gene and protein levels is vital for understanding human biology and disease. Antibody-based proteomics provides a strategy for the systematic generation of antibodies against all human proteins to combine with protein profiling in tissues and cells using tissue microarrays, immunohistochemistry and immunofluorescence. The Human Protein Atlas project was launched in 2003 with the aim of creating a map of protein expression patterns in normal cells, tissues and cancer. At present, 11 200 unique proteins corresponding to over 50% of all human protein encoding genes have been analysed. All protein expression data, including underlying high-resolution images, are published on the free and publically available Human Protein Atlas portal (http://www.proteinatlas.org). This database provides an important source of information for numerous biomedical research projects, including biomarker discovery efforts. Moreover, the global analysis of how our genome is expressed at the protein level has provided basic knowledge on the ubiquitous expression of a large proportion of our proteins and revealed the paucity of cell-andtissue-type-specific proteins.

  • 35.
    Popova, Svetlana N
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Dimberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Ekman, Simon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Hesselager, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Sooman, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Subtyping of gliomas of various WHO grades by the application of immunohistochemistry2014In: Histopathology, ISSN 0309-0167, E-ISSN 1365-2559, Vol. 64, no 3, p. 365-379Article in journal (Refereed)
    Abstract [en]

    Aims

    In 2010, four subtypes (classical, proneural, mesenchymal, and neural) of glioblastoma multiforme (GBM) were defined by molecular genetic analyses. The objective of this study was to assess whether gliomas, independently of the type and grade, could be subdivided into protein-based subtypes.

    Methods and results

    A tissue microarray (TMA) approach was applied to incorporate tissue samples of low-grade and high-grade gliomas into five TMAs. High expression levels of epidermal growth factor receptor (EGFR), CD44, c-MER proto-oncogene tyrosine kinase (MERTK), platelet-derived growth factor receptor α, p53, oligodendrocyte transcription factor 2 (OLIG2) and isocitrate dehydrogenase 1 with the R132H mutation were assessed using immunohistochemistry (IHC). Glioma could be subdivided into four subtypes by IHC. The majority of the low-grade gliomas were of the proneural subtype, i.e. high p53 expression (63% of grade II). The classical subtype, with high EGFR and low p53 expression, was most common in GBMs (39%), followed by the proneural (29%) and mesenchymal (with high CD44 and MERTK expression) (29%) subtypes, a frequency that is in line with previously published data based on molecular genetics.

    Conclusions

    Assessment of the expression of the five proteins EGFR, CD44, MERTK, p53 and OLIG2 is sufficient for subtyping gliomas, and can be recommended for implementation in clinical practice for both low-grade and high-grade gliomas.

  • 36.
    Põlajeva, Jelena
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Bergström, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Lundequist, Anders
    Sjösten, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Nilsson, Gunnar
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Westermark, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Pejler, Gunnar
    Forsberg Nilsson, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Tchougounova, Elena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Glioma-derived macrophage migration inhibitory factor (MIF) promotes mast cell recruitment in a STAT5-dependent manner2014In: Molecular Oncology, ISSN 1574-7891, E-ISSN 1878-0261, Vol. 8, no 1, p. 50-58Article in journal (Refereed)
    Abstract [en]

    Recently, glioma research has increased its focus on the diverse types of cells present in brain tumors. We observed previously that gliomas are associated with a profound accumulation of mast cells (MCs) and here we investigate the underlying mechanism. Gliomas express a plethora of chemoattractants. First, we demonstrated pronounced migration of human MCs toward conditioned medium from cultures of glioma cell lines. Subsequent cytokine array analyses of media from cells, cultured in either serum-containing or -free conditions, revealed a number of candidates which were secreted in high amounts in both cell lines. Among these, we then focused on macrophage migration inhibitory factor (MIF), which has been reported to be pro-inflammatory and -tumorigenic. Infiltration of MCs was attenuated by antibodies that neutralized MIF. Moreover, a positive correlation between the number of MCs and the level of MIF in a large cohort of human glioma tissue samples was observed. Further, both glioma-conditioned media and purified MIF promoted differential phosphorylation of a number of signaling molecules, including signal transducer and activator of transcription 5 (STAT5), in MCs. Inhibition of pSTAT5 signaling significantly attenuated the migration of MCs toward glioma cell-conditioned medium shown to contain MIF. In addition, analysis of tissue microarrays (TMAs) of high-grade gliomas revealed a direct correlation between the level of pSTAT5 in MCs and the level of MIF in the medium. In conclusion, these findings indicate the important influence of signaling cascades involving MIF and STAT5 on the recruitment of MCs to gliomas.

  • 37.
    Rexhepaj, Elton
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Agnarsdóttir, Margrét
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergman, Julia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Uhlen, Mathias
    Gallagher, William M.
    Lundberg, Emma
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    A Texture Based Pattern Recognition Approach to Distinguish Melanoma from Non-Melanoma Cells in Histopathological Tissue Microarray Sections2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 5, p. e62070-Article in journal (Refereed)
    Abstract [en]

    Aims: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. Methods and Results: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157). Conclusion: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.

  • 38.
    Roodakker, Kenney Roy
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Alhuseinalkhudhur, Ali
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Al-Jaff, Mohammed
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Georganaki, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Zetterling, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Berntsson, Shala G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Danfors, Torsten
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Strand, Robin
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dimberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Region-by-region analysis of PET, MRI, and histology in en bloc-resected oligodendrogliomas reveals intra-tumoral heterogeneity2019In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 46, no 3, p. 569-579Article in journal (Refereed)
  • 39.
    Roy, Ananya
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology. Swedish Univ Agr Sci, Dept Biomed Sci & Vet Publ Hlth, Uppsala, Sweden..
    Attarha, Sanaz
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Weishaupt, Holger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Swartling, Fredrik J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Bergqvist, Michael
    Umea Univ, Dept Radiat Sci, Umea, Sweden..
    Siebzehnrubl, Florian A.
    Cardiff Univ, Sch Biosci, European Canc Stem Cell Res Inst, Cardiff, S Glam, Wales..
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology. Gothenburg Univ, Sahlgrenska Acad, Dept Clin Neurosci, Inst Neurosci & Physiol, Gothenburg, Sweden..
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tchougounova, Elena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Neuro-Oncology.
    Serglycin as a potential biomarker for glioma: association of serglycin expression, extent of mast cell recruitment and glioblastoma progression2017In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 8, no 15, p. 24815-24827Article in journal (Refereed)
    Abstract [en]

    Serglycin is an intracellular proteoglycan with a unique ability to adopt highly divergent structures by glycosylation with variable types of glycosaminoglycans (GAGs) when expressed by different cell types. Serglycin is overexpressed in aggressive cancers suggesting its protumorigenic role. In this study, we explored the expression of serglycin in human glioma and its correlation with survival and immune cell infiltration. We demonstrate that serglycin is expressed in glioma and that increased expression predicts poor survival of patients. Analysis of serglycin expression in a large cohort of low- and high-grade human glioma samples reveals that its expression is grade dependent and is positively correlated with mast cell (MC) infiltration. Moreover, serglycin expression in patient-derived glioma cells is significantly increased upon MC co-culture. This is also accompanied by increased expression of CXCL12, CXCL10, as well as markers of cancer progression, including CD44, ZEB1 and vimentin.In conclusion, these findings indicate the importance of infiltrating MCs in glioma by modulating signaling cascades involving serglycin, CD44 and ZEB1. The present investigation reveals serglycin as a potential prognostic marker for glioma and demonstrates an association with the extent of MC recruitment and glioma progression, uncovering potential future therapeutic opportunities for patients.

  • 40.
    Sjöstedt, Evelina
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, SE-17121 Stockholm, Sweden.
    Sivertsson, Åsa
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, SE-17121 Stockholm, Sweden.
    Noraddin, Feria Hikmet
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Katona, Borbala
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Näsström, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Vuu, Jimmy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kesti, Dennis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, SE-17121 Stockholm, Sweden.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Olsson, Ingmarie
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Uhlen, Mathias
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Sci Life Lab, SE-17121 Stockholm, Sweden.
    Lindskog, Cecilia
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Integration of Transcriptomics and Antibody-Based Proteomics for Exploration of Proteins Expressed in Specialized Tissues2018In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 17, no 12, p. 4127-4137Article in journal (Refereed)
    Abstract [en]

    A large portion of human proteins are referred to as missing proteins, defined as protein-coding genes that lack experimental data on the protein level due to factors such as temporal expression, expression in tissues that are difficult to sample, or they actually do not encode functional proteins. In the present investigation, an integrated omics approach was used for identification and exploration of missing proteins. Transcriptomics data from three different sources-the Human Protein Atlas (HPA), the GTEx consortium, and the FANTOM5 consortium-were used as a starting point to identify genes selectively expressed in specialized tissues. Complementing the analysis with profiling on more specific tissues based on immunohistochemistry allowed for further exploration of cell-type-specific expression patterns. More detailed tissue profiling was performed for >300 genes on complementing tissues. The analysis identified tissue-specific expression of nine proteins previously listed as missing proteins (POU4F1, FRMD1, ARHGEF33, GABRG1, KRTAP2-1, BHLHE22, SPRR4, AVPR1B, and DCLK3), as well as numerous proteins with evidence of existence on the protein level that previously lacked information on spatial resolution and cell-type-specific expression pattern. We here present a comprehensive strategy for identification of missing proteins by combining transcriptomics with antibody-based proteomics. The analyzed proteins provide interesting targets for organ-specific research in health and disease.

  • 41.
    Smits, Anja
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Jin, Zhe
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    Elsir, Tamador
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Pedder, Hugo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Nistér, Monica
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Dimberg, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Aronica, Eleonora
    Birnir, Bryndis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Physiology.
    GABA-A Channel Subunit Expression in Human Glioma Correlates with Tumor Histology and Clinical Outcome2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 5, p. e37041-Article in journal (Refereed)
    Abstract [en]

    GABA (γ-aminobutyric acid) is the main inhibitory neurotransmitter in the CNS and is present in high concentrations in presynaptic terminals of neuronal cells. More recently, GABA has been ascribed a more widespread role in the control of cell proliferation during development where low concentrations of extrasynaptic GABA induce a tonic activation of GABA receptors. The GABA-A receptor consists of a ligand-gated chloride channel, formed by five subunits that are selected from 19 different subunit isoforms. The functional and pharmacological properties of the GABA-A channels are dictated by their subunit composition. Here we used qRT-PCR to compare mRNA levels of all 19 GABA-A channel subunits in samples of human glioma (n = 29) and peri-tumoral tissue (n = 5). All subunits except the ρ1 and ρ3 subunit were consistently detected. Lowest mRNA levels were found in glioblastoma compared to gliomas of lower malignancy, except for the θ subunit. The expression and cellular distribution of the α1, γ1, ρ2 and θ subunit proteins was investigated by immunohistochemistry on tissue microarrays containing 87 gliomas grade II. We found a strong co-expression of ρ2 and θ subunits in both astrocytomas (r = 0.86, p<0.0001) and oligodendroglial tumors (r = 0.66, p<0.0001). Kaplan-Meier analysis and Cox proportional hazards modeling to estimate the impact of GABA-A channel subunit expression on survival identified the ρ2 subunit (p = 0.043) but not the θ subunit (p = 0.64) as an independent predictor of improved survival in astrocytomas, together with established prognostic factors. Our data give support for the presence of distinct GABA-A channel subtypes in gliomas and provide the first link between specific composition of the A-channel and patient survival.

  • 42.
    Sooman, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Ekman, Simon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Tsakonas, Georgios
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Jaiswal, Archita
    Navani, Sanjay
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bergström, Stefan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Johansson, Mikael
    Wu, Xuping
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Blomquist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Lennartsson, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    PTPN6 expression is epigenetically regulated and influences survival and response to chemotherapy in high-grade gliomas2014In: Tumor Biology, ISSN 1010-4283, E-ISSN 1423-0380, Vol. 35, no 5, p. 4479-4488Article in journal (Refereed)
    Abstract [en]

    Background: The prognosis of high-grade glioma patients is poor and the tumors are characterized by resistance to therapy. The aims of this study were to analyze the prognostic value of the expression of the protein tyrosine phosphatase, non-receptor type 6 (PTPN6, also referred to as SHP1) in high-grade glioma patients and the epigenetic regulation of the expression of PTPN6 and the role of its expression in chemotherapy resistance in glioma-derived cells.

    Material and methods: PTPN6 expression was analyzed with immunohistochemistry in 89 high-grade glioma patients. Correlation between PTPN6 expression and overall survival was analyzed with Kaplan-Meier univariate analysis and Cox regression multivariate analysis. Differences in drug sensitivity to a panel of 16 chemotherapeutic drugs between PTPN6 overexpressing clones and control clones were analyzed in vitro with the fluorometric microculture cytotoxicity assay. Cell cycle analysis was done with Krishan staining and flow cytometry. Apoptosis was analyzed with a cell death detection ELISA kit as well as cleaved caspase-3 and caspase-9 Western blotting. Autophagy was analyzed with LC3B Western blotting. Methylation of the PTPN6 promoter was analyzed with bisulfite-Pyrosequencing and demethylation of PTPN6 was done with decitabine treatment.

    Results: PTPN6 expression correlated in univariate analysis to poor survival for anaplastic glioma patients (p=0.026). In glioma-derived cell lines, overexpression of PTPN6 caused increased resistance (p<0.05) to the chemotherapeutic drugs bortezomib, cisplatin and melphalan. PTPN6 expression did not affect bortezomib-induced cell cycle arrest, apoptosis or autophagy. Low PTPN6 promoter methylation correlated to protein expression and the protein expression was increased upon demethylation in glioma-derived cells.

    Conclusion: PTPN6 expression may be a factor contributing to poor survival for anaplastic glioma patients and in glioma-derived cells its expression is epigenetically regulated and influences the response to chemotherapy.

  • 43.
    Sooman, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Freyhult, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Jaiswal, Archita
    Navani, Sanjay
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tchougounova, Elena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Elsir, Tamador
    Cancer Center Karolinska, Karolinska University Hospital Solna, Stockholm, Sweden.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
    Lennartsson, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Ekman, Simon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    FGF2 as a potential prognostic biomarker for proneural glioma patients2015In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 54, no 3, p. 385-394Article in journal (Refereed)
    Abstract [en]

    Background. The survival of high-grade glioma patients is poor and the treatment of these patients can cause severe side effects. This fosters the necessity to identify prognostic biomarkers, in order to optimize treatment and diminish unnecessary suffering of patients. The aim of this study was to identify prognostic biomarkers for high-grade glioma patients.

    Methods. Eleven proteins were selected for analysis due to their suggested importance for survival of patients with other types of cancers and due to a high variation in protein levels between glioma patients (according to the Human Protein Atlas, www.proteinatlas.org). Protein expression patterns of these 11 proteins were analyzed by immunohistochemistry in tumor samples from 97 high-grade glioma patients. The prognostic values of the proteins were analyzed with univariate and multivariate Cox regression analyses for the high-grade glioma patients, including subgroup analyses of histological subtypes and immunohistochemically defined molecular subtypes.

    Results. The proteins with the most significant (univariate and multivariate p < 0.05) correlations were analyzed further with cross-validated Kaplan-Meier analyses for the possibility of predicting survival based on the protein expression pattern of the corresponding candidate. Random Forest classification with variable subset selection was used to analyze if a protein signature consisting of any combination of the 11 proteins could predict survival for the high-grade glioma patients and the subgroup with glioblastoma patients. The proteins which correlated most significantly (univariate and multivariate p < 0.05) to survival in the Cox regression analyses were Myc for all high-grade gliomas and FGF2, CA9 and CD44 for the subgroup of proneural gliomas, with FGF2 having a strong negative predictive value for survival. No prognostic signature of the proteins could be found.

    Conclusion. FGF2 is a potential prognostic biomarker for proneural glioma patients, and warrants further investigation.

  • 44.
    Sooman, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Lennartsson, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwig Institute for Cancer Research.
    Gullbo, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Pharmacology.
    Bergqvist, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Tsakonas, Georgios
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Johansson, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Edqvist, Per-Henrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Pontén, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Jaiswal, Archita
    The Human Protein Atlas Project, Mumbai Site, Lab Surgpath, 204 Bombay Market, 731/1 Tardeo Main Road, Mumbai 400034, India.
    Navani, Sanjay
    The Human Protein Atlas Project, Mumbai Site, Lab Surgpath, 204 Bombay Market, 731/1 Tardeo Main Road, Mumbai 400034, India.
    Alafuzoff, Irina
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Popova, Svetlana
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Blomquist, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Ekman, Simon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Vandetanib combined with a p38 MAPK inhibitor synergistically reduces glioblastoma cell survival2013In: Medical Oncology, ISSN 1357-0560, E-ISSN 1559-131X, Vol. 30, no 3, p. 638-Article in journal (Refereed)
    Abstract [en]

    The survival for patients with high-grade glioma is poor, and only a limited number of patients respond to the therapy. The aim of this study was to analyze the significance of using p38 MAPK phosphorylation as a prognostic marker in high-grade glioma patients and as a therapeutic target in combination chemotherapy with vandetanib. p38 MAPK phosphorylation was analyzed with immunohistochemistry in 90 high-grade glioma patients. Correlation between p38 MAPK phosphorylation and overall survival was analyzed with Mann-Whitney U test analysis. The effects on survival of glioblastoma cells of combining vandetanib with the p38 MAPK inhibitor SB 203580 were analyzed in vitro with the median-effect method with the fluorometric microculture cytotoxicity assay. Two patients had phosphorylated p38 MAPK in both the cytoplasm and nucleus, and these two presented with worse survival than patients with no detectable p38 MAPK phosphorylation or phosphorylated p38 MAPK only in the nucleus. This was true for both high-grade glioma patients (WHO grade III and IV, n = 90, difference in median survival: 6.1 months, 95 % CI [0.20, 23], p = 0.039) and for the subgroup with glioblastoma patients (WHO grade IV, n = 70, difference in median survival: 6.1 months, 95 % CI [0.066, 23], p = 0.043). The combination of vandetanib and the p38 MAPK inhibitor SB 203580 had synergistic effects on cell survival for glioblastoma-derived cells in vitro. In conclusion, p38 MAPK phosphorylation may be a prognostic marker for high-grade glioma patients, and vandetanib combined with a p38 MAPK inhibitor may be useful combination chemotherapy for glioma patients.

  • 45. Uhlen, Mathias
    et al.
    Fagerberg, Linn
    Hallstroem, Bjoern M.
    Lindskog, Cecilia
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Oksvold, Per
    Mardinoglu, Adil
    Sivertsson, Asa
    Kampf, Caroline
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Sjöstedt, Evelina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Olsson, IngMarie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Edlund, Karolina
    Lundberg, Emma
    Navani, Sanjay
    Szigyarto, Cristina Al-Khalili
    Odeberg, Jacob
    Djureinovic, Dijana
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Takanen, Jenny Ottosson
    Hober, Sophia
    Alm, Tove
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Berling, Holger
    Tegel, Hanna
    Mulder, Jan
    Rockberg, Johan
    Nilsson, Peter
    Schwenk, Jochen M.
    Hamsten, Marica
    von Feilitzen, Kalle
    Forsberg, Mattias
    Persson, Lukas
    Johansson, Fredric
    Zwahlen, Martin
    von Heijne, Gunnar
    Nielsen, Jens
    Pontén, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Tissue-based map of the human proteome2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 347, no 6220, p. 394-+Article in journal (Refereed)
    Abstract [en]

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

  • 46.
    Uhlen, Mathias
    et al.
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden.;Danish Tech Univ, Ctr Biosustainabil, Copenhagen, Denmark.;Royal Inst Technol, AlbaNova Univ Ctr, KTH, Sch Biotechnol, Stockholm, Sweden..
    Zhang, Cheng
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Lee, Sunjae
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Sjöstedt, Evelina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden.
    Fagerberg, Linn
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Bidkhori, Gholamreza
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Benfeitas, Rui
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Arif, Muhammad
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Liu, Zhengtao
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Edfors, Fredrik
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Sanli, Kemal
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    von Feilitzen, Kalle
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Oksvold, Per
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Lundberg, Emma
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Hober, Sophia
    Royal Inst Technol, AlbaNova Univ Ctr, KTH, Sch Biotechnol, Stockholm, Sweden..
    Nilsson, Peter
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Mattsson, Johanna Sofia Margareta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Schwenk, Jochen M.
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden..
    Brunnström, Hans
    Lund Univ, Skane Univ Hosp, Div Pathol, Lund, Sweden..
    Glimelius, Bengt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sjöblom, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Djureinovic, Dijana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Lindskog, Cecilia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Mardinoglu, Adil
    KTH, Royal Inst Technol, Sci Life Lab, Stockholm, Sweden.;Royal Inst Technol, AlbaNova Univ Ctr, KTH, Sch Biotechnol, Stockholm, Sweden.;Chalmers, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden..
    Ponten, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    A pathology atlas of the human cancer transcriptome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 357, no 6352, article id eaan2507Article in journal (Refereed)
    Abstract [en]

    Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.

  • 47. van Kempen, Leon C. L.
    et al.
    Jarry, Jonathan
    Elchebly, Mounib
    Redpath, Margaret
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Scolyer, Richard
    Schadendorr, Dirk
    Greenwood, Celia M. T.
    van den Oord, Joost
    Spatz, Alan
    The protein phosphatase 2 subunit PR48 is a novel melanoma tumor suppressor gene.2013In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 73, no 8, p. S1-Article in journal (Other academic)
  • 48.
    van Kempen, Leon C. L.
    et al.
    McGill Univ, Dept Pathol, Montreal, PQ, Canada.;Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Redpath, Margaret
    McGill Univ, Dept Pathol, Montreal, PQ, Canada.;Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Elchebly, Mounib
    Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Klein, Kathleen Oros
    Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Papadakis, Andreas I.
    McGill Univ, Dept Pathol, Montreal, PQ, Canada.;Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Wilmott, James S.
    Royal Prince Alfred Hosp, Melanoma Inst Australia, Sydney, NSW, Australia.;Univ Sydney, Sydney, NSW, Australia..
    Scolyer, Richard A.
    Royal Prince Alfred Hosp, Melanoma Inst Australia, Sydney, NSW, Australia.;Univ Sydney, Sydney, NSW, Australia..
    Edqvist, Per-Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Schadendorf, Dirk
    Univ Hosp Essen, Dept Dermatol, Essen, Germany.;German Canc Consortium DKTK, Heidelberg, Germany..
    van Rijk, Anke F.
    Lady Davis Inst Med Res, Montreal, PQ, Canada..
    Michiels, Stefan
    Gustave Roussy, Serv Biostat & Epidemiol, Villejuif, France.;Univ Paris Sud, INSERM, UMR 1018, Ctr Res Epidemiol & Populat Hlth CESP, Le Kremlin Bicetre, France..
    Dumay, Anne
    Univ Paris Diderot, Sorbonne Paris Cite, Labex Inflamex, INSERM,UMR S 1149,Ctr Rech Inflammat, Paris, France..
    Helbling-Leclerc, Anne
    Univ Paris Sud, CNRS, UMR 8200, Villejuif, France.;Univ Paris Sud, Gustave Roussy, CNRS UMR 8200, Villejuif, France..
    Dessen, Philippe
    Univ Paris Sud, Gustave Roussy, INSERM UMR 1170, Hematopoiese Normale & Pathol, Villejuif, France..
    Wouters, Jasper
    Katholieke Univ Leuven, Lab Translat Cell & Tissue Res, Leuven, Belgium.;Katholieke Univ Leuven, VIB Ctr Biol Dis, Lab Computat Biol, Leuven, Belgium.;Katholieke Univ Leuven, Dept Human Genet, Leuven, Belgium..
    Stass, Marguerite
    Katholieke Univ Leuven, Univ Hosp Leuven, Dept Surg Oncol, Leuven, Belgium..
    Greenwood, Celia M. T.
    Lady Davis Inst Med Res, Montreal, PQ, Canada.;McGill Univ, Dept Oncol, Montreal, PQ, Canada.;McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada..
    Ghanem, Ghanem E.
    Univ Libre Bruxelles, Inst Jules Bordet, Lab Oncol & Expt Surg, Brussels, Belgium..
    van den Oord, Joost
    Katholieke Univ Leuven, Lab Translat Cell & Tissue Res, Leuven, Belgium..
    Feunteun, Jean
    Univ Paris Sud, Gustave Roussy, CNRS UMR 8200, Villejuif, France..
    Spatz, Alan
    McGill Univ, Dept Pathol, Montreal, PQ, Canada.;Lady Davis Inst Med Res, Montreal, PQ, Canada.;McGill Univ, Dept Oncol, Montreal, PQ, Canada..
    The protein phosphatase 2A regulatory subunit PR70 is a gonosomal melanoma tumor suppressor gene2016In: Science Translational Medicine, ISSN 1946-6234, E-ISSN 1946-6242, Vol. 8, no 369, article id 369ra177Article in journal (Refereed)
    Abstract [en]

    Male gender is independently and significantly associated with poor prognosis in melanoma of all clinical stages. The biological underpinnings of this sex difference remain largely unknown, but we hypothesized that gene expression from gonosomes (sex chromosomes) might play an important role. We demonstrate that loss of the inactivated X chromosome in melanomas arising in females is strongly associated with poor distant metastasis-free survival, suggesting a dosage benefit from two X chromosomes. The gonosomal protein phosphatase 2 regulatory subunit B, beta (PPP2R3B) gene is located on the pseudoautosomal region (PAR) of the X chromosome in females and the Y chromosome in males. We observed that, despite its location on the PAR that predicts equal dosage across genders, PPP2R3B expression was lower in males than in females and was independently correlated with poor clinical outcome. PPP2R3B codes for the PR70 protein, a regulatory substrate-recognizing subunit of protein phosphatase 2A. PR70 decreased melanoma growth by negatively interfering with DNA replication and cell cycle progression through its role in stabilizing the cell division cycle 6 (CDC6)-chromatin licensing and DNA replication factor 1 (CDT1) interaction, which delays the firing of origins of DNA replication. Hence, PR70 functionally behaves as an X-linked tumor suppressor gene.

  • 49.
    Zetterling, Maria
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Roodakker, Kenney Roy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Berntsson, Shala Ghaderi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Edqvist, Per-Henrik D
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Latini, Francesco
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Landtblom, Anne-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology. Linköping Univ, Ctr Med Image Sci & Visualizat, Linköping, Sweden.
    Pontén, Fredrik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Alafuzoff, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Larsson, Elna-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Smits, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology. Danish Epilepsy Ctr, Dianalund, Denmark.
    Extension of diffuse low-grade gliomas beyond radiological borders as shown by the coregistration of histopathological and magnetic resonance imaging data2016In: Journal of Neurosurgery, ISSN 0022-3085, E-ISSN 1933-0693, Vol. 125, no 5, p. 1155-1166Article in journal (Refereed)
    Abstract [en]

    Background: Magnetic resonance imaging tends to underestimate the extent of diffuse low-grade gliomas (DLGGs). With the aim of studying the presence of tumor cells outside the radiological border, the authors developed a method of correlating MRI findings with histological data in patients with suspected DLGGs in whom en bloc resections were performed.

    Methods: Five patients with suspected DLGG suitable for en bloc resection were recruited from an ongoing prospective study. Sections of the entire tumor were immunostained with antibodies against mutated IDH1 protein (IDH1-R132H). Magnetic resonance images were coregistered with corresponding IDH1 images. The growth pattern of tumor cells in white and gray matter was assessed in comparison with signal changes on corresponding MRI slices.

    Results: Neuropathological assessment revealed DLGG in 4 patients and progression to WHO Grade III glioma in 1 patient. The tumor core consisted of a high density of IDH1-R132H–positive tumor cells and was located in both gray and white matter. Tumor cells infiltrated along the peripheral fibers of the white matter tracts. In all cases, tumor cells were found outside the radiological tumor border delineated on T2-FLAIR MRI sequences.

    Conclusions: The authors present a new method for the coregistration of histological and radiological characteristics of en bloc–removed infiltrative brain tumors that discloses tumor invasion at the radiological tumor borders. This technique can be applied to evaluate the sensitivity of alternative imaging methods to detect scattered tumor cells at tumor borders. Accurate methods for detection of infiltrative tumor cells will improve the possibility of performing radical tumor resection. In future studies, the method could also be used for in vivo studies of tumor invasion.

1 - 49 of 49
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf