uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Demoulin, Jean-Baptiste
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwiginstitutet för cancerforskning.
    Enarsson, Mia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Essaghir, Ahmed
    Heldin, Carl-Henrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, Ludwiginstitutet för cancerforskning.
    Forsberg-Nilsson, Karin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia2006Ingår i: Growth Factors, ISSN 0897-7194, E-ISSN 1029-2292, Vol. 24, nr 3, s. 184-196Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have previously shown that platelet-derived growth factor AA (PDGF-AA) stimulates the expansion of neuronal progenitors from neural stem cells, but is unable to replace fibroblast-growth factor 2 (FGF-2) as a stem cell mitogen. In the present study, we compared gene expression in neural stem cells that were grown in the presence of FGF-2 and in cells cultured with PDGF-AA or in the absence of growth factor, which induces differentiation. The genetic program elicited by PDGF-AA (156 significantly regulated genes) was not unique, but an intermediate between the ones of FGF-2-cultured stem cells and differentiated cells. These observations are compatible with the hypothesis that PDGF-AA induces a partial differentiation of neural stem cells, which retain the ability to proliferate, rather than acting solely as an instructing agent for neuronal differentiation. Finally, the transcriptional signature of stem cells grown with FGF-2 included a large number of genes over-expressed in gliomas and a core set of conserved genes periodically expressed during the eukaryote cell cycle.

  • 2.
    Erlandsson, Anna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Forsberg-Nilsson, Karin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Stem cell factor is a chemoattractant and a survival factor for CNS stem cells2004Ingår i: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 301, nr 2, s. 201-210Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.

  • 3. Gaengel, Konstantin
    et al.
    Niaudet, Colin
    Hagikura, Kazuhiro
    Siemsen, Barbara Lavina
    Muhl, Lars
    Hofmann, Jennifer J.
    Ebarasi, Lwaki
    Nystrom, Staffan
    Rymo, Simin
    Chen, Long Long
    Pang, Mei-Fong
    Jin, Yi
    Raschperger, Elisabeth
    Roswall, Pernilla
    Schulte, Doerte
    Benedito, Rui
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Fuxe, Jonas
    Uhlen, Per
    Adams, Ralf
    Jakobsson, Lars
    Majumdar, Arindam
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Vestweber, Dietmar
    Uv, Anne
    Betsholtz, Christer
    The Sphingosine-1-Phosphate Receptor S1PR1 Restricts Sprouting Angiogenesis by Regulating the Interplay between VE-Cadherin and VEGFR22012Ingår i: Developmental Cell, ISSN 1534-5807, E-ISSN 1878-1551, Vol. 23, nr 3, s. 587-599Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.

  • 4. Gaengel, Konstantin
    et al.
    Niaudet, Colin
    Hagikura, Kazuhiro
    Siemsen, Lavina Barbara
    Muhl, Lar
    Hofmann, J. Jennifer
    Ebarasi, Lwaki
    Nystrom, Staffan
    Rymo, Simin
    Long, Chen Long
    Mei-Fong, Pang
    Yi, Jin
    Raschperger, Elisabeth
    Roswall, Pernilla
    Schulte, Doerte
    Benedito, Rui
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Hellstrom, Mats
    Fuxe, Jonas
    Uhlen, Per
    Adams, Ralf
    Jakobsson, Lars
    Majumdar, Arindam
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Vestweber, Dietmar
    Uv, Anne
    Betsholtz, Christer
    The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR22013Ingår i: Angiogenesis, ISSN 0969-6970, E-ISSN 1573-7209, Vol. 16, nr 1, s. 246-247Artikel i tidskrift (Övrigt vetenskapligt)
  • 5.
    Hellström, Anders R.
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Watt, Brenda
    Fard, Shahrzad Shirazi
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Medicinsk utvecklingsbiologi.
    Tenza, Daniele
    Mannström, Paula
    Narfström, Kristina
    Ekesten, Björn
    Ito, Shosuke
    Wakamatsu, Kazumasa
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Ulfendahl, Mats
    Kullander, Klas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Raposo, Graca
    Kerje, Susanne
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hallböök, Finn
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Medicinsk utvecklingsbiologi.
    Marks, Michael S.
    Andersson, Leif
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Inactivation of Pmel Alters Melanosome Shape But Has Only a Subtle Effect on Visible Pigmentation2011Ingår i: PLoS Genetics, ISSN 1553-7390, Vol. 7, nr 9, s. e1002285-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel(-/-)). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel(-/-) melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation.

  • 6.
    Kundu, Snehangshu
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ali, Muhammad Akhtar
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Handin, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaci.
    Padhan, Narendra
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Karoutsou, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ban, Kenneth
    Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, 8 Med Dr,02-06, Singapore 117597, Singapore.;ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore..
    Wisniewski, Jacek R.
    Max Planck Inst Biochem, Dept Prote & Signal Transduct, Biochem Prote Grp, D-82152 Martinsried, Germany..
    Artursson, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaci.
    He, Liqun
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sjöblom, Tobias
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Linking FOXO3, NCOA3, and TCF7L2 to Ras pathway phenotypes through a genome-wide forward genetic screen in human colorectal cancer cells2018Ingår i: Genome Medicine, ISSN 1756-994X, E-ISSN 1756-994X, Vol. 10, artikel-id 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background:

    The Ras pathway genes KRAS, BRAF, or ERBBs have somatic mutations in similar to 60% of human colorectal carcinomas. At present, it is unknown whether the remaining cases lack mutations activating the Ras pathway or whether they have acquired mutations in genes hitherto unknown to belong to the pathway.

    Methods:

    To address the second possibility and extend the compendium of Ras pathway genes, we used genome-wide transposon mutagenesis of two human colorectal cancer cell systems deprived of their activating KRAS or BRAF allele to identify genes enabling growth in low glucose, a Ras pathway phenotype, when targeted.

    Results:

    Of the 163 recurrently targeted genes in the two different genetic backgrounds, one-third were known cancer genes and one-fifth had links to the EGFR/Ras/MAPK pathway. When compared to cancer genome sequencing datasets, nine genes also mutated in human colorectal cancers were identified. Among these, stable knockdown of FOXO3, NCOA3, and TCF7L2 restored growth in low glucose but reduced MEK/MAPK phosphorylation, reduced anchorage-independent growth, and modulated expressions of GLUT1 and Ras pathway related proteins. Knockdown of NCOA3 and FOXO3 significantly decreased the sensitivity to cetuximab of KRAS mutant but not wild-type cells.

    Conclusions:

    This work establishes a proof-of-concept that human cell-based genome-wide forward genetic screens can assign genes to pathways with clinical importance in human colorectal cancer.

  • 7.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Neural Stem and Progenitor Cells: Cellular Responses to Known and Novel Factors2010Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Neural stem cell self-renewal and differentiation are tightly regulated events during CNS development, leading to cell division into new neural stem cells or the formation of neurons and glial cells. This thesis focuses on the cellular responses induced by known and novel factors in neural stem and progenitor cells (NSPCs).

    Platelet-derived growth factor (PDGF) signaling has previously been implicated in NSPC regulation as well as in tumor formation. In order to evaluate the differentiation process and find new regulators of NSPCs a micro-array screen was performed, evaluating transcription during normal differentiation and the effect of PDGF-AA in this process. The transcriptional profile of PDGF-AA treated NSPCs was shown to be an intermediate between the profiles of neural stem cells and their progeny. The NSPC transcriptome was also found to have similarities with that of experimental glioma. A previously non-characterized transcript, the nuclear receptor binding protein 2 (NRBP2), was identified and found to be expressed in the developing and adult mouse brain and in medulloblastoma. NRBP2 down-regulation rendered neural progenitors sensitive to induced cell death.

    Different PDGF ligands interact with different combinations of PDGF receptors. Therefore NSPCs were stimulated with either PDGF-AA or -BB to further evaluate cellular responses with regard to the two specific isoforms. A divergent effect between the two isoforms in long-term proliferation and cell survival was found, with PDGF-BB being the most efficient stimulator.

    Stem cell factor (SCF) has previously been identified as a regulator in the hematopoietic system and we showed that SCF induces a migratory response in NSPCs. In addition, SCF positively affected cell survival but had no effect on NSPC differentiation. Insights into the regulatory mechanisms involved in neural stem cell signaling are needed to develop diagnostic tools and novel treatments.

    Delarbeten
    1. The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia
    Öppna denna publikation i ny flik eller fönster >>The gene expression profile of PDGF-treated neural stem cells corresponds to partially differentiated neurons and glia
    Visa övriga...
    2006 (Engelska)Ingår i: Growth Factors, ISSN 0897-7194, E-ISSN 1029-2292, Vol. 24, nr 3, s. 184-196Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We have previously shown that platelet-derived growth factor AA (PDGF-AA) stimulates the expansion of neuronal progenitors from neural stem cells, but is unable to replace fibroblast-growth factor 2 (FGF-2) as a stem cell mitogen. In the present study, we compared gene expression in neural stem cells that were grown in the presence of FGF-2 and in cells cultured with PDGF-AA or in the absence of growth factor, which induces differentiation. The genetic program elicited by PDGF-AA (156 significantly regulated genes) was not unique, but an intermediate between the ones of FGF-2-cultured stem cells and differentiated cells. These observations are compatible with the hypothesis that PDGF-AA induces a partial differentiation of neural stem cells, which retain the ability to proliferate, rather than acting solely as an instructing agent for neuronal differentiation. Finally, the transcriptional signature of stem cells grown with FGF-2 included a large number of genes over-expressed in gliomas and a core set of conserved genes periodically expressed during the eukaryote cell cycle.

    Nyckelord
    PDGF, FGF-2, neural stem cell, microarray, differentiation, neuron
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-22419 (URN)10.1080/08977190600696430 (DOI)000241724500004 ()17079202 (PubMedID)
    Tillgänglig från: 2007-03-06 Skapad: 2007-03-06 Senast uppdaterad: 2017-12-07Bibliografiskt granskad
    2. Nuclear receptor binding protein 2 is induced during neural progenitor differentiation and affects cell survival
    Öppna denna publikation i ny flik eller fönster >>Nuclear receptor binding protein 2 is induced during neural progenitor differentiation and affects cell survival
    Visa övriga...
    2008 (Engelska)Ingår i: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 39, nr 1, s. 32-9Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We previously identified nuclear receptor binding protein 2 (NRBP2) in a screen for genes induced by differentiation of neural stem/progenitor cells. Here we show that during embryonic mouse brain development NRBP2 was expressed in the walls of the third and fourth ventricles, and in the hippocampus. In the adult brain, Purkinje cells of the cerebellum and neurons in the CA3 region of the hippocampus were main sites of NRBP2 expression. Analysis of a pediatric medulloblastoma showed that clusters of NRBP2 positive tumor cells co-expressed neurofilament, but not GFAP. Thus, NRBP2 was associated with neuronal differentiation both in normal and malignant brain tissue. We report that NRBP2 is a 55-60 kDa protein with mainly cytoplasmic location. In vitro, NRBP2 protein levels increased as neural stem/progenitor cells differentiated, and its down regulation by siRNA rendered neural progenitor cells more vulnerable to apoptosis. NRBP2 has no previously assigned function and our studies suggest a role for NRBP2 in neural progenitor cell survival.

    Nyckelord
    neural stem cell, neural progenitor, apoptosis, CNS development, cerebellum, Purkinje cells
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-100051 (URN)10.1016/j.mcn.2008.05.013 (DOI)000259052500004 ()18619852 (PubMedID)
    Tillgänglig från: 2009-03-24 Skapad: 2009-03-24 Senast uppdaterad: 2017-12-13Bibliografiskt granskad
    3. A divergent effect of PDGF-AA and -BB on differentiating neural stem and progenitor cells
    Öppna denna publikation i ny flik eller fönster >>A divergent effect of PDGF-AA and -BB on differentiating neural stem and progenitor cells
    (Engelska)Manuskript (preprint) (Övrig (populärvetenskap, debatt, mm))
    Nationell ämneskategori
    Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
    Forskningsämne
    Cellforskning
    Identifikatorer
    urn:nbn:se:uu:diva-110720 (URN)
    Tillgänglig från: 2009-11-23 Skapad: 2009-11-23 Senast uppdaterad: 2013-08-01Bibliografiskt granskad
    4. Stem cell factor is a chemoattractant and a survival factor for CNS stem cells
    Öppna denna publikation i ny flik eller fönster >>Stem cell factor is a chemoattractant and a survival factor for CNS stem cells
    2004 (Engelska)Ingår i: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 301, nr 2, s. 201-210Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Migration of neural cells to their final positions is crucial for the correct formation of the central nervous system. Several extrinsic factors are known to be involved in the regulation of neural migration. We asked if stem cell factor (SCF), well known as a chemoattractant and survival factor in the hematopoietic lineage, could elicit similar responses in neural stem cells. For that purpose, a microchemotaxis assay was used to study the effect of SCF on migration of neural stem cells from the embryonic rat cortex. Our results show that SCF-induced chemotaxis and that specific antibodies to SCF or tyrosine kinase inhibitors abolished the migratory response. The SCF-receptor, Kit, was expressed in neural stem cells and in their differentiated progeny. We also show that SCF is a survival factor, but not a mitogen or a differentiation factor for neural stem cells. These data suggest a role for SCF in cell migration and survival in the developing cortex.

    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-90760 (URN)10.1016/j.yexcr.2004.08.009 (DOI)15530856 (PubMedID)
    Tillgänglig från: 2003-09-11 Skapad: 2003-09-11 Senast uppdaterad: 2017-12-14Bibliografiskt granskad
  • 8.
    Larsson, Jimmy
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Bergström, Tobias
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Forsberg-Nilsson, Karin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    A divergent effect of PDGF-AA and -BB on differentiating neural stem and progenitor cellsManuskript (preprint) (Övrig (populärvetenskap, debatt, mm))
  • 9.
    Lawson, Michael J.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Camsund, Daniel
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi.
    Larsson, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Baltekin, Özden
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi.
    Fange, David
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi.
    Elf, Johan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi.
    In situ genotyping of a pooled strain library after characterizing complex phenotypes2017Ingår i: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 13, nr 10, artikel-id 947Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, we present a proof-of-principle experiment that extends advanced live cell microscopy to the scale of pool-generated strain libraries. We achieve this by identifying the genotypes for individual cells in situ after a detailed characterization of the phenotype. The principle is demonstrated by single-molecule fluorescence time-lapse imaging of Escherichia coli strains harboring barcoded plasmids that express a sgRNA which suppresses different genes in the E.coli genome through dCas9 interference. In general, the method solves the problem of characterizing complex dynamic phenotypes for diverse genetic libraries of cell strains. For example, it allows screens of how changes in regulatory or coding sequences impact the temporal expression, location, or function of a gene product, or how the altered expression of a set of genes impacts the intracellular dynamics of a labeled reporter.

  • 10.
    Mansouri, Larry
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Sutton, Lesley-Ann
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Ljungström, Viktor
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Bondza, Sina
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk strålningsvetenskap.
    Arngården, Linda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Bhoi, Sujata
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Larsson, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräknings- och systembiologi.
    Cortese, Diego
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Kalushkova, Antonia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Gunnarsson, Rebeqa
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Young, Emma
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Falk-Sörqvist, Elin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Plevova, Karla
    Muggen, Alice
    Yan, Xiao-Jie
    Sander, Birgitta
    Enblad, Gunilla
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Smedby, Karin E.
    Juliusson, Gunnar
    Belessi, Chrysoula
    Chiorazzi, Nicholas
    Strefford, Jonathan C.
    Langerak, Anton W.
    Pospisilova, Sarka
    Davi, Frederic
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Wiklund, Helena Jernberg
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Ghia, Paolo
    Söderberg, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Stamatopoulos, Kostas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Nilsson, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Rosenquist, Richard
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Recurrent Mutations within the Nfkbie gene: A Novel Mechanism for NF-kappa B Deregulation in Aggressive Chronic Lymphocytic Leukemia2014Ingår i: Blood, ISSN 0006-4971, E-ISSN 1528-0020, Vol. 124, nr 21Artikel i tidskrift (Övrigt vetenskapligt)
  • 11.
    Mansouri, Larry
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sutton, Lesley-Ann
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Ljungström, Viktor
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Bondza, Sina
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för radiologi, onkologi och strålningsvetenskap, Enheten för biomedicinsk strålningsvetenskap. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Arngården, Linda
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Bhoi, Sujata
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Larsson, Jimmy
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Cortese, Diego
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Kalushkova, Antonia
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Plevova, Karla
    Central European Institute of Technology, Masaryk University & University Hospital Brno, Brno, Czech Republic.
    Young, Emma
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Gunnarsson, Rebeqa
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Falk Sörqvist, Elin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Lönn, Peter
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Muggen, Alice F.
    Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
    Yan, Xiao-Jie
    The Karches Center for Chronic Lymphocytic Leukemia Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America, .
    Sander, Birgitta
    Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
    Enblad, Gunilla
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Smedby, Karin E.
    Department of Medicine, Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden.
    Juliusson, Gunnar
    Department of Laboratory Medicine, Stem Cell Center, Hematology and Transplantation, Lund University, Lund, Sweden.
    Belessi, Chrysoula
    Hematology Department, General Hospital of Nikea, Piraeus, Greece.
    Rung, Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Chiorazzi, Nicholas
    The Karches Center for Chronic Lymphocytic Leukemia Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.
    Strefford, Jonathan C.
    Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
    Langerak, Anton W.
    Department of Immunology, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
    Pospisilova, Sarka
    Central European Institute of Technology, Masaryk University & University Hospital Brno, Brno, Czech Republic.
    Davi, Frederic
    AP-HP, Hôpital Pitié-Salpêtrière, Department of Hematology, and Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.
    Hellström, Mats
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Jernberg Wiklund, Helena
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Ghia, Paolo
    Division of Experimental Oncology, Department of Onco-Haematology, IRCCS Istituto Scientifico San Raffaele, Fondazione Centro San Raffaele, Università Vita-Salute San Raffaele, Milan, Italy.
    Söderberg, Ola
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Stamatopoulos, Kostas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. nstitute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greece.
    Nilsson, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg. Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
    Rosenquist Brandell, Richard
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia2015Ingår i: Journal of Experimental Medicine, ISSN 0022-1007, E-ISSN 1540-9538, Vol. 212, nr 6, s. 833-843Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.

  • 12.
    Nitzsche, Anja
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Testini, Chiara
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Ekvärn, Elisabet
    Larsson, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Bentley, Katie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Philippides, Andrew
    Roche, Francis P.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Egaña, Isabel
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Smith, Ross
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Hellberg, Carina
    Ballmer-Hofer, Kurt
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Paladin (Pald1) regulates endothelial sprouting, VE-cadherin junction stability and vascular permeabilityManuskript (preprint) (Övrigt vetenskapligt)
  • 13.
    Pandzic, Tatjana
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    He, Liqun
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Kundu, Snehangshu
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ban, Kenneth
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. NUS, Yong Loo Lin Sch Med, A STAR, Dept Biochem,Inst Mol & Cell Biol, Singapore, Singapore..
    Ali, Muhammad Akhtar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hellström, Anders R.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Schuh, Anna
    Univ Oxford, Radcliffe Dept Med, Oxford, England..
    Clifford, Ruth
    Univ Oxford, Radcliffe Dept Med, Oxford, England..
    Blakemore, Stuart J.
    Univ Southampton, Canc Sci, Fac Med, Southampton, Hants, England..
    Strefford, Jonathan C.
    Univ Southampton, Canc Sci, Fac Med, Southampton, Hants, England..
    Baumann, Tycho
    Univ Southampton, Canc Sci, Fac Med, Southampton, Hants, England..
    Lopez-Guillermo, Armando
    Hosp Clin Barcelona, IDIBAPS, Serv Hematol, Barcelona, Spain..
    Campo, Elias
    Univ Barcelona, IDIBAPS, Hosp Clin, Unitat Hematol, Barcelona, Spain..
    Ljungström, Viktor
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mansouri, Larry
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Rosenquist, Richard
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sjöblom, Tobias
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia2016Ingår i: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 22, nr 24, s. 6217-6227Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. Experimental Design: We used piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. Results: In total, this screen identified 782 genes with transposon integrations in fludarabine-resistant pools of cells. One of the identified genes is a known resistance mediator DCK (deoxycytidine kinase), which encodes an enzyme that is essential for the phosphorylation of the prodrug to the active metabolite. BMP2K, a gene not previously linked to CLL, was also identified as a modulator of response to fludarabine. In addition, 10 of 782 transposon-targeted genes had previously been implicated in treatment resistance based on somatic mutations seen in patients refractory to fludarabine-based therapy. Functional characterization of these genes supported a significant role for ARID5B and BRAF in fludarabine sensitivity. Finally, pathway analysis of transposon-targeted genes and RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. Conclusions: To our knowledge, this is the first forward genetic screen for chemotherapy resistance in CLL. The screen pinpointed novel genes and pathways involved in fludarabine resistance along with previously known resistance mechanisms. Transposon screens can therefore aid interpretation of cancer genome sequencing data in the identification of genes modifying sensitivity to chemotherapy.

  • 14.
    Pandzic, Tatjana
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Rendo, Verónica
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Lim, Jinyeong
    Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyangsi, Republic of Korea.
    Larsson, Chatarina
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Larsson, Jimmy
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär systembiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Stoimenov, Ivaylo
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Kundu, Snehangshu
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ali, Muhammad Akhtar
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi.
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    He, Liqun
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Lindroth, Anders M.
    Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyangsi, Republic of Korea.
    Sjöblom, Tobias
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Somatic PRDM2 c.4467delA mutations in colorectal cancers control histone methylation and tumor growth2017Ingår i: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 8, nr 58, s. 98646-98659Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The chromatin modifier PRDM2/RIZ1 is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of PRDM2, affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat. We then engineered isogenic cell systems where the PRDM2 c.4467delA mutation in human HCT116 colorectal cancer cells was corrected to wild-type by genome editing. Restored PRDM2 increased global histone 3 lysine 9 dimethylation and reduced migration, anchorage-independent growth and tumor growth in vivo. Gene set enrichment analysis revealed regulation of several hallmark cancer pathways, particularly of epithelial-to-mesenchymal transition (EMT), with VIM being the most significantly regulated gene. These observations provide direct evidence that PRDM2 c.4467delA is a driver mutation in colorectal cancer and confirms PRDM2 as a cancer gene, pointing to regulation of EMT as a central aspect of its tumor suppressive action.

  • 15.
    Wallgard, Elisabet
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Nitzsche, Anja
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Larsson, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Guo, Xiaoyuan
    Dieterich, Lothar C.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Dimberg, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Olofsson, Tommie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Pontén, Fredrik C
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Maekinen, Taija
    Kalen, Mattias
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Hellström, Mats
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Cancer och vaskulärbiologi.
    Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development2012Ingår i: Developmental Dynamics, ISSN 1058-8388, E-ISSN 1097-0177, Vol. 241, nr 4, s. 770-786Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Angiogenesis is implicated in many pathological conditions. The role of the proteins involved remains largely unknown, and few vascular-specific drug targets have been discovered. Previously, in a screen for angiogenesis regulators, we identified Paladin (mouse: X99384, human: KIAA1274), a protein containing predicted S/T/Y phosphatase domains.

    Results: We present a mouse knockout allele for Paladin with a beta-galactosidase reporter, which in combination with Paladin antibodies demonstrate that Paladin is expressed in the vasculature. During mouse embryogenesis, Paladin is primarily expressed in capillary and venous endothelial cells. In adult mice Paladin is predominantly expressed in arterial pericytes and vascular smooth muscle cells. Paladin also displays vascular-restricted expression in human brain, astrocytomas, and glioblastomas.

    Conclusions: Paladin, a novel putative phosphatase, displays a dynamic expression pattern in the vasculature. During embryonic stages it is broadly expressed in endothelial cells, while in the adult it is selectively expressed in arterial smooth muscle cells.

1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf