Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dowling, Damian
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Population Biology.
    Antos, Mark
    Sahlman, Tobias
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Population Biology.
    Dispersal and recruitment of juvenile Red-capped robins, Petroica goodenovii2003In: Emu: Austral Ornithology, ISSN 0158-4197, Vol. 103, p. 199-205Article in journal (Refereed)
  • 2.
    Ekblom, Robert
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Sæther, Stein Are
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Jacobsson, Pär
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Fiske, Peder
    Sahlman, Tobias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Grahn, Mats
    Kålås, John Atle
    Höglund, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Spatial pattern of MHC class II variation in the great snipe (Gallinago media)2007In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 16, no 7, p. 1439-1451Article in journal (Refereed)
    Abstract [en]

    The genes of the major histocompatibility complex (MHC) code for proteins involved in antigen recognition and triggering of the adaptive immune response, and are therefore likely to be under selection from parasites. These selection regimes may vary in space and time. Here we report a strong geographical structure in MHC class II B genes of a migrating bird, the great snipe (Gallinago media). Genetic differentiation in the MHC between two ecologically distinct distributional regions (Scandinavian mountain populations vs. East European lowland populations) was still present after statistically controlling for the effect of selectively neutral variation (microsatellites) using partial Mantel tests. This suggests a role for selection in generating this spatial structure and that it represents local adaptation to different environments. Differentiation between populations within the two regions was negligible. Overall, we found a high number of MHC alleles (50, from 175 individuals). This, together with a tendency for a higher rate of nonsynonymous than synonymous substitutions in the peptide binding sites, and high Tajima's D in certain regions of the gene, suggests a history of balancing selection. MHC variation is often thought to be maintained by some form of balancing selection, but the nature of this selection remains unclear. Our results support the hypothesis that spatial variation in selection regimes contributes to the high polymorphism.

  • 3.
    Saether, Stein Are
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Fiske, P.
    Kålås, J.A.
    Kuresoo, A.
    Luigujoe, L.
    Piertney, S.B.
    Sahlman, Tobias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Höglund, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Population and Conservation Biology.
    Inferring local adaptation from QST-FST comparisons: neutral genetic and quantitative trait variation in European populations of great snipe2007In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 20, no 4, p. 1563-1576Article in journal (Refereed)
    Abstract [en]

    We applied a phenotypic QST (PST) vs. FST approach to study spatial variation in selection among great snipe (Gallinago media) populations in two regions of northern Europe. Morphological divergence between regions was high despite low differentiation in selectively neutral genetic markers, whereas populations within regions showed very little neutral divergence and trait differentiation. QST > FST was robust against altering assumptions about the additive genetic proportions of variance components. The homogenizing effect of gene flow (or a short time available for neutral divergence) has apparently been effectively counterbalanced by differential natural selection, although one trait showed some evidence of being under uniform stabilizing selection. Neutral markers can hence be misleading for identifying evolutionary significant units, and adopting the PST–FST approach might therefore be valuable when common garden experiments is not an option. We discuss the statistical difficulties of documenting uniform selection as opposed to divergent selection, and the need for estimating measurement error. Instead of only comparing overall QST and FST values, we advocate the use of partial matrix permutation tests to analyse pairwise QST differences among populations, while statistically controlling for neutral differentiation.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf