uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alhuseinalkhudhur, Ali
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Frejd, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Kinetic Analysis of the HER2-binding ABY-025 Affibody Using Dynamic PET in Patients with Metastatic Breast Cancer2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S457-S457Article in journal (Other academic)
  • 2.
    Bergström, Sara K.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Edenwall, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Lavén, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Markides, Karin E.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Polyamine deactivation of integrated poly(dimethylsiloxane) structures investigated by radionuclide imaging and capillary electrophoresis experiments2005In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 77, no 3, p. 938-942Article in journal (Refereed)
    Abstract [en]

    The poly(dimethylsiloxane) (PDMS) material provides a number of advantageous features, such as flexibility, elasticity, and transparency, making it useful in integrated analytical systems. Hard fused-silica capillary structures and soft PDMS channels can easily be combined by a tight fit, which offers many alternatives for structure combinations. PDMS and fused silica are in different ways prone to adsorption of low levels of organic compounds. The need for modification of the inner wall surface of PDMS channels may often be necessary, and in this paper, we describe an easy and effective method using the amine-containing polymer PolyE-323 to deactivate both fused-silica and PDMS surfaces. The adsorption of selected peptides to untreated surfaces was compared to PolyE-323-modified surfaces, using both radionuclide imaging and capillary electrophoresis experiments. The polyamine modification displayed a substantially reduced adsorption of three hydrophobic test peptides compared to the native PDMS surface. Filling and storage of aqueous solution were also possible in PolyE-323-modified PDMS channels. In addition, hybrid microstructures of fused silica and PDMS could simultaneously be deactivated in one simple coating procedure.

  • 3.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Muhammad, Taj
    Ding, Chenmin
    Nair, Manoj
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    68Ga-Labeling of RGD peptides and biodistribution2012In: International Journal of Clinical and Experimental Medicine, ISSN 1940-5901, E-ISSN 1940-5901, Vol. 5, no 2, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Several peptides comprising Arg-Gly-Asp (RGD) domain and macrocyclic chelator were labeled with 68Ga for the imaging of angiogenesis. The analogues varied in peptide constitution, linker and chelator type. The labeling efficiency did not vary with the peptide constitution and linker type, but depended on the chelator type. Four of the compounds containing 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) chelator were labeled at 90 ± 5°C using conventional or microwave heating reaching 90% of 68Ga incorporation after 5 and 2 min respectively, when the concentration of the precursor was 2.5 μM. The compound having 2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA) as the chelator could be labeled at room temperature within 5 min using 2.5 μM peptide precursor. Two of the compounds contained a poly (ethylene glycol) (PEG) linker to the chelator. The biodistribution of the analogues was studied in male rats.

  • 4.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Muhammad, Taj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Ding, Chenmin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Nair, Manoj
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Ga-68-Labeling of RGD peptides and biodistribution2012In: International Journal of Clinical and Experimental Medicine, ISSN 1940-5901, E-ISSN 1940-5901, Vol. 5, no 2, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Several peptides comprising Arg-Gly-Asp (RGD) domain and macrocyclic chelator were labeled with Ga-68 for the imaging of angiogenesis. The analogues varied in peptide constitution, linker and chelator type. The labeling efficiency did not vary with the peptide constitution and linker type, but depended on the chelator type. Four of the compounds containing 2,2', 2 '', 2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) chelator were labeled at 90 +/- 5 degrees C using conventional or microwave heating reaching 90% of Ga-68 incorporation after 5 and 2 min respectively, when the concentration of the precursor was 2.5 mu M. The compound having 2,2', 2 ''-(1,4,7-triazonane1,4,7-triyl)triacetic acid (NOTA) as the chelator could be labeled at room temperature within 5 min using 2.5 mu M peptide precursor. Two of the compounds contained a poly (ethylene glycol) (PEG) linker to the chelator. The biodistribution of the analogues was studied in male rats.

  • 5.
    Blom, Elisabeth
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Monazzam, Azita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Razifar, Pasha
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Centre for Image Analysis. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
    Nair, Manoj
    Razifar, Payam
    Vanderheyden, Jean-Luc
    Krivoshein, Arcadius V.
    Backer, Marina
    Backer, Joseph
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Synthesis and characterization of scVEGF-PEG-[68Ga]NOTA and scVEGF-PEG-[68Ga]DOTA PET tracers2011In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 54, no 11, p. 685-692Article in journal (Refereed)
    Abstract [en]

    Vascular endothelial growth factor (VEGF) signaling via vascular endothelial growth factor receptor 2 (VEGFR-2) on tumor endothelial cells is a critical driver of tumor angiogenesis. Novel anti-angiogenic drugs target VEGF/VEGFR-2 signaling and induce changes in VEGFR-2 prevalence. To monitor VEGFR-2 prevalence in the course of treatment, we are evaluating (68)Ga positron emission tomography imaging agents based on macrocyclic chelators, site-specifically conjugated via polyethylene glycol (PEG) linkers to engineered VEGFR-2 ligand, single-chain (sc) VEGF. The (68)Ga-labeling was performed at room temperature with NOTA (2,2', 2 ''-(1,4,7-triazonane-1,4,7-triyl) triacetic acid) conjugates or at 90 degrees C by using either conventional or microwave heating with NOTA and DOTA (2,2', 2 '', 2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid) conjugates. The fastest (similar to 2min) and the highest incorporation (>90%) of (68)Ga into conjugate that resulted in the highest specific radioactivity (similar to 400MBq/nmol) was obtained with microwave heating of the conjugates. The bioactivity of the NOTA-and DOTA-containing tracers was validated in 3-D tissue culture model of 293/KDR cells engineered to express high levels of VEGFR-2. The NOTA-containing tracer also displayed a rapid accumulation (similar to 20s after intravenous injection) to steady-state level in xenograft tumor models. A combination of high specific radioactivity and maintenance of functional activity suggests that scVEGF-PEG-[(68)Ga] NOTA and scVEGF-PEG-[(68)Ga] DOTA might be promising tracers for monitoring VEGFR-2 prevalence and should be further explored.

  • 6.
    Borges, João Batista
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Ulin, Johan
    Maripuu, Enn
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Widström, Charles
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Ventilation Distribution Studies Comparing Technegas and "Gallgas" Using (GaCl3)-Ga-68 as the Label2011In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 52, no 2, p. 206-209Article in journal (Refereed)
    Abstract [en]

    Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using Ga-68-labeled pseudogas or "Gallgas" with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.

  • 7.
    Bulenga, T. N.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dosimetry of 68Ga and 177Lu labeled Exendin4-impact on feasibility of repeated PET imaging and radiotherapy2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S293-S293, article id OP607Article in journal (Other academic)
  • 8. Eriksson, B.
    et al.
    Eriksson, O.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Selvaraju, R.
    Kandeel, F.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Detection of metastatic insulinoma by positron emission tomography with [68Ga]Exendin-4-a case report2014In: Wiener Klinische Wochenschrift, ISSN 0043-5325, E-ISSN 1613-7671, Vol. 126, no S3, p. S152-S152Article in journal (Other academic)
  • 9.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Carlsson, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Blom, Elisabeth
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation2012In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 39, no 3, p. 415-421Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION:

    Islet transplantation is a promising treatment for type 1 diabetes mellitus, but the fate of the cells after intraportal infusion is unclear. It is therefore imperative to develop novel techniques for noninvasive imaging and quantification of events following islet transplantation.

    METHODS:

    Small islet-like microbeads, avidin-covered agarose resins (AARs), were used as a model system for islet transplantation. Capability for specific [(68)Ga]Ga-DOTA-(PEG)(2)-biotin uptake and retention for either AARs or human islets conjugated with avidin by means of a heparin scaffold was studied in vitro. Biodistribution of the novel positron emission tomography (PET) tracer [(68)Ga]Ga-DOTA-(PEG)(2)-biotin was evaluated in mice treated by intraportal transplantation of AARs by μPET/computed tomography and ex vivo organ distribution and compared with control mice.

    RESULTS:

    AARs had high capability to bind [(68)Ga]Ga-DOTA-(PEG)(2)-biotin, close to 50% of administrated tracer/μl in vitro (>0.25 MBq/μl). Avidin-tagged human islets could bind on average 2.2% of administered tracer/μl. Specificity (>90%) and retention (>90% after 1 h) were high for both AARs and avidin-tagged islets. Hepatic tracer uptake and retention were increased in mice transplanted with AARs [standardized uptake value (SUV)=2.6] compared to the untreated group (SUV=1.4). In vivo uptake of tracer to AARs was blocked by preadministration of unlabeled biotin.

    CONCLUSIONS:

    Avidin-tagged islet-like objects can be tracked in hepatic volume after intraportal transplantation by using [(68)Ga]Ga-DOTA-(PEG)(2)-biotin and PET.

  • 10.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Selvaraju, Ram Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Species differences in pancreatic binding of DO3A-VS-Cys40-Exendin42017In: Acta Diabetologica, ISSN 0940-5429, E-ISSN 1432-5233, Vol. 54, no 11, p. 1039-1045Article in journal (Refereed)
    Abstract [en]

    AIMS: Radiolabeled Exendin-4 has been proposed as suitable imaging marker for pancreatic beta cell mass quantification mediated by Glucagon-like peptide-1 receptor (GLP-1R). However, noticeable species variations in basal pancreatic uptake as well as uptake reduction degree due to selective beta cell ablation were observed.

    METHODS: -Exendin4 Positron Emission Tomography (PET) in the same species. In vitro, ex vivo, and in vivo data formed the basis for calculating the theoretical in vivo contribution of each pancreatic compartment.

    RESULTS: -Exendin4.

    CONCLUSIONS: IPR as well as the exocrine GLP-1R density is the main determinants of the species variability in pancreatic uptake. Thus, the IPR in human is an important factor for assessing the potential of GLP-1R as an imaging biomarker for pancreatic beta cells.

  • 11.
    Eriksson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Selvaraju, Ram K
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Kandeel, Fouad
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Detection of Metastatic Insulinoma by Positron Emission Tomography with [(68)Ga]Exendin-4 -: a case report2014In: Journal of Clinical Endocrinology and Metabolism, ISSN 0021-972X, E-ISSN 1945-7197, Vol. 99, no 5, p. 1519-1524Article in journal (Refereed)
    Abstract [en]

    Context:

    Insulinomas are the most common cause of endogenous hyperinsulinaemic hypoglycaemia in non-diabetic adult patients. They are usually benign and curative surgery is the "gold standard" treatment if they can be localized. Malignant insulinomas are seen in less than 10% and their prognosis is poor. The Glucagon Like Peptide-1 receptor (GLP-1R) is markedly upregulated in insulinomas - especially benign lesions which are difficult to localize with current imaging techniques.

    Objective:

    To assess the possibility of the detection of primary and metastatic insulinoma by PET using [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 ([(68)Ga]Exendin-4) in a patient with severe hypoglycemia.

    Design:

    Dynamic and static PET/CT examination of a patient using [68Ga]Exendin-4.

    Setting:

    Uppsala University Hospital, Uppsala, Sweden.

    Patients:

    A patient presented with hypoglycemia requiring continuous intravenous glucose infusions. A pancreatic insulinoma was suspected and an exploratory laparotomy was urgently performed. At surgery, a tumor in the pancreatic tail with an adjacent metastasis was found and a distal pancreatic resection (plus splenectomy) and removal of lymph node was performed. Histopathology showed a WHO grade II insulinoma. Postoperatively hypoglycemia persisted but a PET/CT examination using the neuroendocrine marker [(11)C]-5-hydroxy-L-tryptophan was negative.

    Interventions:

    The patient was administered with [(68)Ga]Exendin-4 and examined by dynamic PET over the liver and pancreas.

    Main Outcome Measures:

    N/A

    Results:

    The stable GLP-1 analogue Exendin-4 was labeled with (68)Ga for PET imaging of GLP-1R expressing tumors. The patient was examined by [(68)Ga]Exendin-4-PET/CT which confirmed several small GLP-1R positive lesions in the liver and a lymph node that could not be conclusively identified by other imaging techniques. The results obtained from the [(68)Ga]Exendin-4-PET/CT examination provided the basis for continued systemic treatment.

    Conclusion:

    The results of the [(68)Ga]Exendin-4-PET/CT examination governed the treatment strategy of this particular patient and demonstrated the potential of this technique for future management of patients with this rare, but potentially fatal disease.

  • 12.
    Eriksson, Oskar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Coagulation and inflammation science. Uppsala University, Science for Life Laboratory, SciLifeLab. Antaros Med AB, Uppsala, Sweden.
    Bossart, M.
    Sanofi Aventis, Frankfurt, Germany..
    Haack, T.
    Sanofi Aventis, Frankfurt, Germany..
    Laitinen, I.
    Sanofi Aventis, Frankfurt, Germany..
    Larsen, P.
    Sanofi Aventis, Frankfurt, Germany..
    Plettenburg, O.
    Helmholtz Zentrum, Munich, Germany..
    Johansson, L.
    Antaros Med AB, Molndal, Sweden..
    Pierrou, S.
    Antaros Med AB, Molndal, Sweden..
    Wagner, M.
    Sanofi Aventis, Frankfurt, Germany..
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala PET Ctr, Uppsala, Sweden..
    First-in-class PET tracer for the glucagon receptor2017In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 60, p. S400-S400Article in journal (Other academic)
  • 13.
    Espes, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Selvaraju, Ramkumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Krajcovic, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Turku PET center, Faculty of Natural Sciences and Technology, Åbo Akademi, Turku, Finland.
    Quantification of Beta-Cell Mass in Intramuscular Islet Grafts using Radiolabeled Exendin-42016In: Transplantation Direct, ISSN 2373-8731, Vol. 2, no 8, article id e93Article in journal (Refereed)
    Abstract [en]

    Background: There is an increasing interest in alternative implantation sites to the liver for islet transplantation. Intramuscular implantation has even been tested clinically. Possibilities to monitor [beta]-cell mass would be of huge importance not only for the understanding of islet engraftment but also for the decision of changing the immunosuppressive regime. We have therefore evaluated the feasibility of quantifying intramuscular [beta]-cell mass using the radiolabeled glucagon like peptide-1 receptor agonist DO3A-VS-Cys40-Exendin-4.

    Methods: One hundred to 400 islets were transplanted to the abdominal muscle of nondiabetic mice. After 3 to 4 weeks, 0.2 to 0.5 MBq [177Lu]DO3A-VS-Cys40-Exendin-4 was administered intravenously. Sixty minutes postinjection abdominal organs and graft bearing muscle were retrieved, and the radioactive uptake measured in a well counter within 10 minutes. The specific uptake in native and transplanted islets was assessed by autoradiography. The total insulin-positive area of the islet grafts was determined by immunohistochemistry.

    Results: Intramuscular islet grafts could easily be visualized by this tracer, and the background uptake was very low. There was a linear correlation between the radioactivity uptake and the number of transplanted islets, both for standardized uptake values and the total radiotracer uptake in each graft (percentage of injected dose). The quantified total insulin area of surviving [beta] cells showed an even stronger correlation to both standardized uptake values (R = 0.96, P = 0.0002) and percentage of injected dose (R = 0.88, P = 0.0095). There was no correlation to estimated [alpha] cell mass.

    Conclusions: [177Lu]DO3A-VS-Cys40-Exendin-4 could be used to quantify [beta]-cell mass after experimental intramuscular islet transplantation. This technique may well be transferred to the clinical setting by exchanging Lutetium-177 radionuclide to a positron emitting Gallium-68.

  • 14.
    Fani, Melpomeni
    et al.
    Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
    Peitl, Petra Kolenc
    Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms2017In: Pharmaceuticals, ISSN 1424-8247, E-ISSN 1424-8247, Vol. 10, no 1, article id E30Article, review/survey (Refereed)
    Abstract [en]

    Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.

  • 15.
    Hall, Håkan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Blom, Elisabeth
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Ulin, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Monazzam, Azita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Påhlman, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Colorectal Surgery.
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Wanders, Alkwin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    McBride, William
    Goldenberg, David M
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    In vitro autoradiography of carcinoembryonic antigen in tissue from patients with colorectal cancer using multifunctional antibody TF2 and 67/68Ga-labeled haptens by pretargeting2012In: American journal of nuclear medicine and molecular imaging, ISSN 2160-8407, Vol. 2, no 2, p. 141-150Article in journal (Refereed)
    Abstract [en]

    The carcinoembryonic antigen (CEA) was visualized in vitro in tissue from patients with colorectal cancer with trivalent bispecific antibody TF2 and two hapten molecules, [67/68Ga]Ga-IMP461 and [67/68Ga]Ga-IMP485 by means of pretargeting. Colorectal cancer tissue samples obtained from surgery at Uppsala University Hospital, were frozen fresh and cryosectioned. The two hapten molecules comprising 1,4,7-triazacyclononanetriacetic acid chelate moiety (NOTA) were labeled with 67Ga or 68Ga. The autoradiography was conducted by incubating the tissue samples with the bispecific antibody TF2, followed by washing and incubation with one of the radiolabeled hapten molecules. After washing, drying and exposure to phosphor imager plates, the autoradiograms were analyzed and compared to standard histochemistry (hematoxylin-eosin). Pronounced binding was found in the tissue from colorectal cancer using the bispecific antibody TF2 and either of the haptens [67/68Ga]Ga-IMP461 and [67/68Ga]Ga-IMP485. Distinct binding was also detected in the epithelium of most samples of neighboring tissue, taken at a minimum of 10 cm from the site of the tumor. It is concluded that pretargeting CEA with the bispecific antibody TF2 followed by the addition of 67/68Ga-labeled hapten is extremely sensitive for visualizing this marker for colorectal cancer. This methodology is therefore a very specific complement to other histochemical techniques in the diagnosis of biopsies or in samples taken from surgery. Use of the pretargeting technique in vivo may also be an advance in diagnosing patients with colorectal cancer, either using 67Ga and SPECT or 68Ga and PET.

  • 16.
    Haylock, Anna-Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery. Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden..
    Nilvebrant, Johan
    Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Mortensen, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Nestor, Marika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Falk, Ronny
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers2017In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 8, no 39, p. 65152-65170Article in journal (Refereed)
    Abstract [en]

    Aim: The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients.

    Materials and methods: Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I.

    Results: Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p. i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor.

    Conclusion: The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging.

  • 17.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Jahn, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Andersson, Camilla
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PET Ctr, Uppsala, Sweden.
    Comparison of Ga-68-DOTATATE and Lu-177-DOTATATE kinetics in neuroendocrine tumors2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S276-S277Article in journal (Other academic)
  • 18.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Parametric Net Influx Rate Images of 68Ga-DOTATOC and 68Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast2017In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 58, no 5, p. 744-749Article in journal (Refereed)
    Abstract [en]

    (68)Ga-DOTATOC and (68)Ga-DOTATATE are radiolabelled somatostatin analogs used for diagnosis of somatostatin receptor expressing neuroendocrine tumors (NETs) and SUV -measurements are suggested for treatment monitoring. However, changes in net-influx rate (Ki) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing Ki at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric Ki images by comparison to volume of interest based methods and to assess image contrast in terms of tumor-to-liver ratio.

    METHODS: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h post injection of (68)Ga-DOTATOC and (68)Ga-DOTATATE on consecutive days. Parametric Ki images were computed using a basis function method (BFM) implementation of the two tissue irreversible compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor Ki values were determined for 50% isocontour VOIs and compared to Ki values based on non-linear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and Ki images and tumor-to-liver ratios were calculated in order to evaluate image contrast. Correlation and agreement between VOI-based and parametric Ki values were assessed using regression and Bland-Altman analysis.

    RESULTS: Correlation (R2) between NLR-based and parametric image-based (BFM) tumor Ki values was 0.98 (slope 0.81) and 0.97 (slope 0.88) for (68)Ga-DOTATOC and (68)Ga DOTATATE, respectively. For Patlak analysis, correlation between NLR-based and parametric based (Patlak) tumor Ki were 0.95 (slope 0.71) and 0.92 (slope 0.74) for (68)Ga-DOTATOC and (68)Ga-DOTATATE, respectively. There was no bias between NLR and parametric based Ki-values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric BFM-Ki images, and 2.3 and 3.0 times in the Patlak images, than in the whole-body images for (68)Ga-DOTATOC and (68)Ga-DOTATATE, respectively.

    CONCLUSION: A high correlation and agreement between NLR- and parametric based Ki values was found, showing that parametric net influx rate images are quantitatively accurate. In addition, tumor-to-liver contrast was superior in the parametric Ki images compared to whole-body images both for (68)Ga-DOTATOC and (68)Ga DOTATATE.

  • 19.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Validation of parametric net influx rate images of Ga-68-DOTATOC and Ga-68-DOTATATE2015In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 42, no S1, p. S232-S232Article in journal (Other academic)
  • 20.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Imaging Ctr, Uppsala, Sweden..
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Med Phys, Uppsala, Sweden..
    Comparison of PET/CT and PET/MR-based Ga-68-DOTATOC standardized uptake values2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S447-S447Article in journal (Refereed)
  • 21.
    Ilan, Ezgi
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Low tracer availability of Ga-68-DOTATOC and Ga-68-DOTATATE in blood for patients with high SSTR density leads to non-linear correlation between SUV and K-i2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S279-S279Article in journal (Other academic)
  • 22.
    Jahn, Ulrika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ilan, Ezgi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Garske-Román, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PetCtr, Uppsala, Sweden.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Imaging Ctr, PetCtr, Uppsala, Sweden.
    Fröss-Baron, Katarzyna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    177Lu-DOTATATE Peptide Receptor Radionuclide Therapy; Gender Differences in Small Intestinal and Pancreatic Neuroendocrine Tumors2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S61-S62Article in journal (Other academic)
  • 23.
    Lavén, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Velikyan, Irina
    Djodjic, Majda
    Ljung, Jenny
    Berglund, Oskar
    Markides, Karin
    Långström, Bengt
    Wallenborg, Susanne
    Imaging of peptide adsorption to microfluidic channels in a plastic compact disc using a positron emitting radionuclideIn: Lab on a ChipArticle in journal (Refereed)
  • 24.
    Lavén, Martin
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Wallenborg, Susanne
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Bergström, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Djodjic, Majda
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Ljung, Jenny
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Berglund, Oskar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Edenwall, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Markides, Karin E.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Långström, Bengt
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Radionuclide Imaging of Miniaturized Chemical Analysis Systems2004In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 76, no 23, p. 7102-7108Article in journal (Refereed)
    Abstract [en]

    We propose radionuclide imaging as a valuable tool for the study of molecular interactions in miniaturized systems for chemical analysis. Sensitive and quantitative imaging can be performed with compounds labeled with short-lived positron-emitting radionuclides, such as C-11 and Ga-68, within selected parts of the system. Radionuclide imaging is not restricted to transparent materials since the relatively energetic positrons can penetrate high optical density materials. Experimentally, a radiotracer is introduced into the object of study, which is subsequently placed on a phosphor storage plate. After exposure, the plate is scanned with a laser and a digital, quantitative image can be reconstituted. To demonstrate the concept, three types of microstructures suited for integration in chemical analysis systems were imaged with C-11- and Ga-68-labeled tracers. The influence of factors such as geometry of the object and type of radionuclide on resolution and sensitivity was investigated. The resolution ranged from 0.9 to 2.7 mm (fwhm). Measuring low amounts of radioactivity in the three structures, 2-20 Bq could be detected, which corresponded to 2.3-500 amol or 2.4-110 pM tracer. The imaging approach was applied to study analyte concentration and sample dilution effects on the performance of a capillary extraction column integrated in an automated LC-ESI-MS system. The utility of the technique was further illustrated by imaging of microchannels in a zeonor plastic compact disk and in a poly(dimethylsiloxane) material for the study of nonspecific peptide adsorption.

  • 25. Lendvai, Gabor
    et al.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
    Bergström, Mats
    Laryea, Daniel
    Välilä, Maria
    Salomäki, Satu
    Långström, Bengt
    Roivainen, Anne
    Biodistribution of 68Ga-labelled phosphodiester, phosphorothioate, and 2'-O-methyl phosphodiester oligonucleotides in normal rats2005In: European Journal of Pharmaceutical Sciences, Vol. 26, p. 26-38Article in journal (Refereed)
  • 26.
    Lindman, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Wennborg, Anders
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Non-invasive determination of HER2-expression in metastatic breast cancer by using Ga-68-ABY025 PET/CT.2015In: Journal of Clinical Oncology, ISSN 0732-183X, E-ISSN 1527-7755, Vol. 33, no 15Article in journal (Other academic)
  • 27.
    Lindström, Elin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Regula, Naresh Kumar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Alhuseinalkhudhur, Ali
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, PET Ctr, Uppsala, Sweden.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp, Med Phys, Uppsala, Sweden.
    Regularized reconstruction of digital time-of-flight Ga-68-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients2019In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 9, no 12, p. 3476-3484Article in journal (Refereed)
    Abstract [en]

    Accurate localization of recurrent prostate cancer (PCa) is critical, especially if curative therapy is intended. With the aim to optimize target-to-background uptake ratio in Ga-68-PSMA-11 PET, we investigated the image quality and quantitative measures of regularized reconstruction by block-sequential regularized expectation maximization (BSREM).

    Methods:

    The study encompassed retrospective reconstruction and analysis of 20 digital time-of-flight (TOF) PET/CT examinations acquired 60 min post injection of 2 MBq/kg of Ga-68-PSMA-11 in PCa patients with biochemical relapse after primary treatment. Reconstruction by ordered-subsets expectation maximization (OSEM; 3 iterations, 16 subsets, 5 mm gaussian postprocessing filter) and BSREM (beta-values of 100-1600) were used, both including TOF and point spread function (PSF) recovery. Background variability (BV) was measured by placing a spherical volume of interest in the right liver lobe and defined as the standard deviation divided by the mean standardized uptake value (SUV). The image quality was evaluated in terms of signal-to-noise ratio (SNR) and signal-to-background ratio (SBR), using SUVmax of the lesions. A visual assessment was performed by four observers.

    Results:

    OSEM reconstruction produced images with a BV of 15%, whereas BSREM with a beta-value above 300 resulted in lower BVs than OSEM (36% with beta 100, 8% with beta 1300). Decreasing the acquisition duration from 2 to 1 and 0.5 min per bed position increased BV for both reconstruction methods, although BSREM with beta-values equal to or higher than 800 and 1200, respectively, kept the BV below 15%. In comparison of BSREM with OSEM, the mean SNR improved by 25 to 66% with an increasing beta-value in the range of 200-1300, whereas the mean SBR decreased with an increasing beta-value, ranging from 0 to 125% with a beta-value of 100 and 900, respectively. Decreased acquisition duration resulted in beta-values of 800 to 1000 and 1200 to 1400 for 1 and 0.5 min per bed position, respectively, producing improved image quality measures compared with OSEM at a full acquisition duration of 2 min per bed position. The observer study showed a slight overall preference for BSREM beta 900 although the interobserver variability was high.

    Conclusion:

    BSREM image reconstruction with beta-values in the range of 400-900 resulted in lower BV and similar or improved SNR and SBR in comparison with OSEM.

  • 28.
    Lubberink, Mark
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Lindskog, K.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wennborg, A.
    Feldwisch, J.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Nilsson, Greger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Olofsson, H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Radiation dosimetry and tracer kinetic analysis of Ga-68-ABY025 Affibody in breast cancer patients2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S292-S293, article id OP606Article in journal (Other academic)
  • 29.
    Mitran, Bogdan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lindeberg, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Influence of chelators on biodistribution and targeting properties of GRPR antagonist2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S320-S320, article id PW012Article in journal (Other academic)
  • 30.
    Monazzam, Azita
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Lau, Joey
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Li, Su-Chen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Razmara, Masoud
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Skogseid, Britt
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Increased Expression of GLP-1R in Proliferating Islets of Men1 Mice is Detectable by [Ga-68]Ga-DO3A-VS-Cys(40)- Exendin-4/PET2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 748Article in journal (Refereed)
    Abstract [en]

    Multiple endocrine neoplasia type 1 (MEN1) is an endocrine tumor syndrome caused by heterozygous mutations in the MEN1 tumor suppressor gene. The MEN1 pancreas of the adolescent gene carrier frequently contain diffusely spread pre-neoplasias and microadenomas, progressing to macroscopic and potentially malignant pancreatic neuroendocrine tumors (P-NET), which represents the major death cause in MEN1. The unveiling of the molecular mechanism of P-NET which is not currently understood fully to allow the optimization of diagnostics and treatment. Glucagon-like peptide 1 (GLP-1) pathway is essential in islet regeneration, i.e. inhibition of β-cell apoptosis and enhancement of β-cell proliferation, yet involvement of GLP-1 in MEN1 related P-NET has not yet been demonstrated. The objective of this work was to investigate if normal sized islets of Men1 heterozygous mice have increased Glucagon-like peptide-1 receptor (GLP-1R) expression compared to wild type islets, and if this increase is detectable in vivo with positron emission tomography (PET) using [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 (68Ga-Exendin-4). 68Ga-Exendin-4 showed potential for early lesion detection in MEN1 pancreas due to increased GLP1R expression.

  • 31. Nalin, Lovisa
    et al.
    Selvaraju, Ram K
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Berglund, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Andréasson, Susanne
    Wikstrand, Anna
    Rydén, Anneli
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Kandeel, Fouad
    Nyman, Görel
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Jensen-Waern, Marianne
    Positron emission tomography imaging of the glucagon-like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no 9, p. 1800-1810Article in journal (Refereed)
    Abstract [en]

    Purpose

    The glucagon-like peptide-1 receptor (GLP-1R) has been proposed as a target for molecular imaging of beta cells. The feasibility of non-invasive imaging and quantification of GLP-1R in pancreas using the positron emission tomography (PET) tracer [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 in non-diabetic and streptozotocin (STZ)–induced diabetic pigs treated with insulin was investigated.

    Methods

    Non-diabetic (n = 4) and STZ-induced diabetic pigs (n = 3) from the same litter were examined. Development of diabetes was confirmed by blood glucose values, clinical examinations and insulin staining of pancreatic sections post mortem. Tissue perfusion in the pancreas and kidneys was evaluated by [15O]water PET/computed tomography (CT) scans. The in vivo receptor specificity of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 was assessed by administration of either tracer alone or by competition with 3–6.5 μg/kg of Exendin-4. Volume of distribution and occupancy in the pancreas were quantified with a single tissue compartment model.

    Results

    [15O]water PET/CT examinations showed reduced perfusion in the pancreas and kidneys in diabetic pigs. [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 uptake in the pancreas of both non-diabetic and diabetic pigs was almost completely abolished by co-injection of unlabeled Exendin-4 peptide. [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 uptake did not differ between non-diabetic and diabetic pigs. In all animals, administration of the tracer resulted in an immediate increase in the heart rate (HR).

    Conclusion

    Pancreatic uptake of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 was not reduced by destruction of beta cells in STZ-induced diabetic pigs.

  • 32.
    Orlova, Anna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Varasteh, Zohreh
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Lindeberg, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Influence of chelators on targeting properties of In-111 and Ga-68 labeled GRPR antagonist2015In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 58, p. S88-S88Article in journal (Other academic)
  • 33.
    Retamal, Jaime
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Departament de Medicina Intensiva, Pontificia Universidad Católica de Chile, Santiago, Chile.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Suarez-Sipmann, Fernando
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spai.
    Borges, João Batista
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Pulmonary Divison, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
    Feinstein, Ricardo
    The Swedish National Veterinary Institute, Sweden.
    Jalkanen, Sirpa
    MediCity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Roivainen, Anne
    Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Turku Center for Disease Modelling, University of Turku, Furku, Finland.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Feasibility of 68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome2016In: American Journal of Nuclear Medicine and Molecular Imaging, ISSN 2160-8407, Vol. 6, no 1, p. 18-31Article in journal (Refereed)
    Abstract [en]

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [(15)O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting (68)Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([(68)Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [(68)Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [(68)Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [(68)Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion.

  • 34.
    Sandberg, Dan T
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Wennborg, Anders
    Affibody AB, Solna, Sweden.
    Feldwisch, Joachim
    Affibody AB, Solna, Sweden.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Intra-image referencing for simplified assessment of HER2-expression in breast cancer metastases using the Affibody molecule ABY-025 with PET and SPECT.2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, no 8, p. 1337-1346Article in journal (Refereed)
    Abstract [en]

    PURPOSE: In phase I/II-studies radiolabelled ABY-025 Affibody molecules identified human epidermal growth factor receptor 2 (HER2) expression in breast cancer metastases using PET and SPECT imaging. Here, we wanted to investigate the utility of a simple intra-image normalization using tumour-to-reference tissue-ratio (T/R) as a HER2 status discrimination strategy to overcome potential issues related to cross-calibration of scanning devices.

    METHODS: Twenty-three women with pre-diagnosed HER2-positive/negative metastasized breast cancer were scanned with [(111)In]-ABY-025 SPECT/CT (n = 7) or [(68)Ga]-ABY-025 PET/CT (n = 16). Uptake was measured in all metastases and in normal spleen, lung, liver, muscle, and blood pool. Normal tissue uptake variation and T/R-ratios were established for various time points and for two different doses of injected peptide from a total of 94 whole-body image acquisitions. Immunohistochemistry (IHC) was used to verify HER2 expression in 28 biopsied metastases. T/R-ratios were compared to IHC findings to establish the best reference tissue for each modality and each imaging time-point. The impact of shed HER2 in serum was investigated.

    RESULTS: Spleen was the best reference tissue across modalities, followed by blood pool and lung. Spleen-T/R was highly correlated to PET SUV in metastases after 2 h (r = 0.96, P < 0.001) and reached an accuracy of 100% for discriminating IHC HER2-positive and negative metastases at 4 h (PET) and 24 h (SPECT) after injection. In a single case, shed HER2 resulted in intense tracer retention in blood. In the remaining patients shed HER2 was elevated, but without significant impact on ABY-025 biodistribution.

    CONCLUSION: T/R-ratios using spleen as reference tissue accurately quantify HER2 expression with radiolabelled ABY-025 imaging in breast cancer metastases with SPECT and PET. Tracer binding to shed HER2 in serum might affect quantification in the extreme case.

  • 35.
    Sandström, Karl
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Haylock, Anna-Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Spiegelberg, Diana
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Kareem, Heewa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Nestor, Marika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Improved Tumor-to-Organ Ratios of a Novel 67Ga-Human Epidermal Growth Factor Radionuclide Conjugate with Preadministered Antiepidermal Growth Factor Receptor Affibody Molecules2011In: Cancer Biotherapy and Radiopharmaceuticals, ISSN 1084-9785, E-ISSN 1557-8852, Vol. 26, no 5, p. 593-601Article in journal (Refereed)
    Abstract [en]

    The over-expression of the epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis. Targeted nuclear imaging of the EGFR expression could improve the diagnostics in patients with HNSCC. However, the high expression of EGFR in normal organs may conceal the tumor uptake and therefore limit the use.

    In this study, we have assessed the biodistribution of a novel hEGF radionuclide conjugate after pre-injection with anti-EGFR Affibody molecules. hEGF was conjugated with p-SCN-Bn-NOTA and labeled with 67Ga. The biodistribution of [67Ga]Ga-NOTA-Bn-NCS-hEGF in nude mice with EGFR-expressing xenografts was evaluated either alone or 45 minutes after pre-injection with one of the anti-EGFR Affibody molecules ZEGFR:1907, (ZEGFR:1907)2 or (ZEGFR:955)2.

    The novel radioimmunoconjugate, [67Ga]Ga-NOTA-Bn-NCS-hEGF demonstrated high stability in vitro and specific binding to hEGF in vitro and in vivo. Pre-injection with anti-EGFR Affibody molecules improved the tumor-to-organ ratio in the liver, salivary glands and colon. Overall, the dimeric high affinity Affibody molecule (ZEGFR:1907)2 exhibited the best results.

    These findings show that pre-blocking with an anti-EGFR Affibody molecule is a promising tool that could improve the outcome of radionuclide-based imaging of EGFR-expressing tumors.

  • 36.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lindskog, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irma
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Wennborg, Anders
    Affibody AB, Solna, Sweden..
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Affibody AB, Solna, Sweden..
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Biodistribution and Radiation Dosimetry of the Anti-HER2 Affibody Molecule Ga-68-ABY-025 in Breast Cancer Patients2016In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 57, no 6, p. 867-871Article in journal (Refereed)
    Abstract [en]

    Ga-68-ABY-025 is a radiolabeled Affibody molecule for in vivo diagnosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer tumors with PET. The aim of the present work was to measure the biodistribution and estimate the radiation dosimetry of Ga-68-ABY-025 for 2 different peptide mass doses in a single group of patients using dynamic and serial whole-body PET/CT. Methods: Eight patients with metastatic breast cancer were included. Each patient underwent an abdominal 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 4 h after injection of a low peptide dose (LD) and a high peptide dose (HD), with approximately the same amount of radioactivity, in separate investigations 1 wk apart. As input to the absorbed dose calculations, volumes of interest were drawn on all clearly identifiable source organs: liver, kidneys, spleen, descending aorta, and upper large intestine. Absorbed doses were calculated using OLINDA/EXM, version 1.1. Results: Of the major organs, the highest radionuclide uptake at 1, 2, and 4 h after injection was observed in the kidneys and liver. The highest absorbed organ doses were seen in the kidneys, followed by the liver for both LD and HD Ga-68-ABY-025. Absorbed doses to liver and kidneys were slightly but significantly higher for LD. Total effective dose was 0.030 +/- 0.003 mSv/MBq for LD and 0.028 +/- 0.002 mSv/MBq for HD. Conclusion: The effective dose for a typical 200-MBq administration of Ga-68-ABY-025 is 6.0 mSv for LD and 5.6 mSv for HD. Therefore, from a radiation dosimetry point of view, HD is preferred for PET/CT evaluation of HER2-expressing breast cancer tumors. These effective doses are somewhat higher than earlier published values for other Ga-68-labeled tracers, such as 0.021 +/- 0.003 mSv/MBq for Ga-68-DOTATATE and Ga-68-DOTATOC, mainly because of higher uptake in liver and kidney.

  • 37.
    Sandström, Mattias
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Oncology.
    Lundqvist, Hans
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sundin, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Medical Physics.
    Comparative Biodistribution and Radiation Dosimetry of Ga-68-DOTATOC and Ga-68-DOTATATE in Patients with Neuroendocrine Tumors2013In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 54, no 10, p. 1755-1759Article in journal (Refereed)
    Abstract [en]

    Ga-68-DOTATOC and Ga-68-DOTATATE are 2 radiolabeled somatostatin analogs for in vivo diagnosis of neuroendocrine tumors with PET. The aim of the present work was to measure their comparative biodistribution and radiation dosimetry. Methods: Ten patients diagnosed with neuroendocrine tumors were included. Each patient underwent a 45-min dynamic and 3 whole-body PET/CT scans at 1, 2, and 3 h after injection of each tracer on consecutive days. Absorbed doses were calculated using OLINDA/EXM 1.1. Results: Data from 9 patients could be included in the analysis. Of the major organs, the highest uptake at 1, 2, and 3 h after injection was observed in the spleen, followed by kidneys and liver. For both tracers, the highest absorbed organ doses were seen in the spleen and urinary bladder wall, followed by kidney, adrenals, and liver. The absorbed doses to the liver and gallbladder wall were slightly but significantly higher for Ga-68-DOTATATE. The total effective dose was 0.021 +/- 0.003 mSv/MBq for both tracers. Conclusion: The effective dose for a typical 100-MBq administration of Ga-68-DOTATATE and Ga-68-DOTATOC is 2.1 mSv for both tracers. Therefore, from a radiation dosimetry point of view, there is no preference for either tracer for PET/CT evaluation of somatostatin receptor-expressing tumors.

  • 38.
    Selvaraju, Ram K.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wu, Zhanhong
    Todorov, Ivan
    Shively, Jack
    Kandeel, Fouad
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    In Vivo Imaging of the Glucagonlike Peptide 1 Receptor in the Pancreas with Ga-68-Labeled DO3A-Exendin-42013In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 54, no 8, p. 1458-1463Article in journal (Refereed)
    Abstract [en]

    The glucagonlike peptide 1 receptor (GLP-1R) is mainly expressed on beta-cells in the Wets of Langerhans and is therefore an attractive target for imaging of the beta-cell mass. In the present study, Ga-68-labeled exendin-4 was evaluated for PET imaging and quantification of GLP-1R in the pancreas. Methods: Dose escalation studies of Ga-68-labeled 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetyl (DO3A)-exendin-4 were performed in rats (organ distribution) and cynomolgus monkeys (PET/CT imaging) to determine the GLP-1R-specific tissue uptake in vivo. Pancreatic uptake (as determined by organ distribution) in healthy rats was compared with that in diabetic rats. GLP-1R occupancy in the cynomolgus pancreas was quantified with a 1-tissue-compartment model. Results: In rodents, uptake in the pancreas was decreased from the baseline by up to 90% (P < 0.0001) by coadministration of DO3A-exendin-4 at 100 mu g/kg. Pancreatic uptake in diabetic animals was decreased by more than 80% (P < 0.001) compared with that in healthy controls, as measured by organ distribution. GLP-1R occupancy in the cynomolgus pancreas after coinjection of DO3A-exendin-4 at 0.15-20 mu g/kg ranged from 49% to 97%, as estimated by compartment modeling. Conclusion: These results strongly support the notion that Ga-68-DO3A-exendin-4 uptake in the pancreas is mediated by specific receptor binding. In addition, pancreatic uptake was decreased by selective destruction of beta-cells. This result suggests that GLP-1R can be quantified in vivo, which has major implications for the prospect of imaging of native beta-cells.

  • 39. Selvaraju, Ram Kumar
    et al.
    Bulenga, Thomas N
    Espes, Daniel
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine oncology.
    Estrada, Sergio
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Eriksson, Olof
    Dosimetry of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in rodents, pigs, non-human primates and human - repeated scanning in human is possible.2015In: American journal of nuclear medicine and molecular imaging, ISSN 2160-8407, Vol. 5, no 3, p. 259-69Article in journal (Refereed)
    Abstract [en]

    Quantitative PET imaging with [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 has potential use in diabetes and cancer. However, the radiation dose to the kidneys has been a concern for the possibility of repeated imaging studies in humans. Therefore, we investigated the dosimetry of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 based on the biodistribution data in rats, pigs, non-human primates (NHP) and a human.Organ distribution of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in rats (Male Lewis; n=12; 30, 60, and 80 min) was measured ex vivo. The dynamic uptake of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in the abdomen was assessed by PET/CT scanning of pigs (male; n = 4, 0-60 min), NHP (Female; cynomolgus; n=3; 0-90 min), and human (female; n=1; 0-40, 100, 120 min).The organ distribution data in each species were extrapolated to those of a human, assuming similar distribution between the species. Residence times were assessed by trapezoidal approximation of the kinetic data. Organ doses (mGy/MBq) and the whole body effective dose (mSv/MBq), was extrapolated by using the OLINDA/EXM 1.1 software. The extrapolated human whole body effective dose was 0.017 ± 0.004 (rats), 0.014 ± 0.004 (pigs), 0.017 ± 0.004 (NHP), and 0.016 (human) mSv/MBq. The absorbed dose to the kidneys was limiting:0.33 ± 0.06 (rats), 0.28±0.05 (pigs), 0.65 ± 0.11 (NHP), and 0.28 (human) mGy/MBq, which corresponded to the maximum yearly administered amounts of 455 (rat), 536 (pig), 231 (NHP), and 536 (human) MBq before reaching the yearly kidney limiting dose of 150 mGy. More than 200 MBq of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 can be administered yearly in a human, allowing for repeated (2-4 times) scanning. This potentially enables longitudinal clinical PET imaging studies of the GLP-1R in the pancreas, transplanted islets, or insulinoma.

  • 40.
    Selvaraju, Ram Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Nalin, L.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Berglund, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Andreasson, S.
    Wikstrand, A.
    Ryden, A.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Kandeel, F.
    Nyman, G.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Jensen-Waern, M.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Positron Emission Tomography imaging of the glucagon like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S394-S394, article id P128Article in journal (Other academic)
  • 41.
    Selvaraju, Ram Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Nalin, Lovisa
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Berglund, Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Ryden, Anneli
    Kandeel, Fouad
    Nyman, Gorel
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Jensen-Waern, Marianne
    PET imaging of the GLP-1 receptor in healthy and streptozotocin-induced diabetic pigs2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no Suppl. 1, p. 387-Article in journal (Refereed)
  • 42.
    Selvaraju, Ram Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Asplund, Veronika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Wu, Zhanhong
    Todorov, Ivan
    Shively, Jack
    Kandeel, Fouad
    Eriksson, Barbro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrine Tumor Biology.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Pre-clinical evaluation of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 for imaging of insulinoma2014In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 41, no 6, p. 471-476Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION: Insulinoma is the most common form of pancreatic endocrine tumors responsible for hyperinsulinism in adults. These tumors overexpress glucagon like peptide-1 (GLP-1) receptor, and biologically stable GLP-1 analogs have therefore been proposed as potential imaging agents. Here, we evaluate the potential of a positron emission tomography (PET) tracer, [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4, for imaging and quantification of GLP-1 receptors (GLP-1R) in insulinoma.

    METHODS: [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 was evaluated for binding to GLP-1R by in vitro autoradiography binding studies in INS-1 tumor from xenografts. In vivo biodistribution was investigated in healthy control mice, INS-1 xenografted and PANC1 xenografted immunodeficient mice at two different doses of peptide: 2.5μg/kg (baseline) and 100μg/kg (block). In vivo imaging of [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 in xenografted mice was evaluated by small animal PET/CT using a direct comparison with the clinically established insulinoma marker [(11)C]5-hydroxy-tryptophan ([(11)C]5-HTP).

    RESULTS: GLP-1 receptor density could be quantified in INS-1 tumor biopsies. [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 showed significant uptake (p≤0.05) in GLP1-R positive tissues such as INS-1 tumor, lungs and pancreas upon comparison between baseline and blocking studies. In vivo imaging showed concordant results with higher tumor-to-muscle ratio in INS-1 xenografted mice compared with [(11)C]5-HTP.

    CONCLUSION: [(68)Ga]Ga-DO3A-VS-Cys(40)-Exendin-4 has high affinity and specificity for GLP-1R expressed on insulinoma in vitro and in vivo.

  • 43.
    Selvaraju, Ram Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Espes, Daniel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Carlsson, Per-Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Endocrinology, Diabetes and Metabolism.
    Todorov, I.
    Wu, Z.
    Shively, J.
    Johansson, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Kandeel, F.
    Korsgren, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Pancreatic uptake of [68Ga]DO3A-Exendin4 is mediated by the GLP-1 receptor2012In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 39, no S2, p. S195-S195Article in journal (Other academic)
  • 44.
    Selvaraju, Ram Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Eriksson, Olof
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Dosimetry of [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 in rat, non-human primate and human2014In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 55, no Suppl. 1Article in journal (Refereed)
  • 45.
    Sundin, Anders
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Garske-Roman, Ulrike
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Granberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Eriksson, B.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Lundquist, Hans
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Comparison of [68Ga]-DOTA-TOC and [68Ga]-DOTA-TATE: Aspects on quantification in neuroendocrine tumour therapy monitoring2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S490-S490, article id P460Article in journal (Other academic)
  • 46.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Wennborg, Anders
    Feldwisch, Joachim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [(68)Ga]ABY-025 Affibody PET/CT2016In: Theranostics, ISSN 1838-7640, E-ISSN 1838-7640, Vol. 6, no 2, p. 262-271Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Positron Emission Tomography (PET) imaging of HER2 expression could potentially be used to select patients for HER2-targed therapy, predict response based on uptake and be used for monitoring. In this phase I/II study the HER2-binding Affibody molecule ABY-025 was labeled with (68)Ga-gallium ([(68)Ga]ABY-025) for PET to study effect of peptide mass, test-retest variability and correlation of quantified uptake in tumors to histopathology.

    EXPERIMENTAL DESIGN: Sixteen women with known metastatic breast cancer and on-going treatment were included and underwent FDG PET/CT to identify viable metastases. After iv injection of 212±46 MBq [(68)Ga]ABY-025 whole-body PET was performed at 1, 2 and 4 h. In the first 10 patients (6 with HER2-positive and 4 with HER2-negative primary tumors), [(68)Ga]ABY-025 PET/CT with two different doses of injected peptide was performed one week apart. In the last six patients (5 HER2-positive and 1 HER2-negative primary tumors), repeated [(68)Ga]ABY-025 PET were performed one week apart as a test-retest of uptake in individual lesions. Biopsies from 16 metastases in 12 patients were collected for verification of HER2 expression by immunohistochemistry and in-situ hybridization.

    RESULTS: Imaging 4h after injection with high peptide content discriminated HER2-positive metastases best (p<0.01). PET SUV correlated with biopsy HER2-scores (r=0.91, p<0.001). Uptake was five times higher in HER2-positive than in HER2-negative lesions with no overlap (p=0.005). The test-retest intra-class correlation was r=0.996. [(68)Ga]ABY-025 PET correctly identified conversion and mixed expression of HER2 and targeted treatment was changed in 3 of the 16 patients.

    CONCLUSION: [(68)Ga]ABY-025 PET accurately quantifies whole-body HER2-receptor status in metastatic breast cancer.

  • 47.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Wennborg, A.
    Feldwisch, J.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Nilsson, Greger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Olofsson, H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Medical Radiation Sciences.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET.
    Carlsson, Jörgen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Lindman, Henrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Oncology.
    Measuring HER2-expression in metastatic breast cancer using 68Ga-ABY025 PET/CT2014In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 41, no S2, p. S226-S226, article id OP298Article in journal (Other academic)
  • 48.
    Sörensen, Jens
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Wennborg, Anders
    Feldwisch, Joachim
    Sandberg, Dan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Olofsson, Helena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Carlsson, Jorgen
    Lindman, Henrik
    Accuracy of [Ga-68]ABY-025 PET/CT for determination of HER2-expression in metastatic breast cancer2015In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 56, no 3Article in journal (Other academic)
  • 49.
    Tolmachev, Vladimir
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Sandström, Mattias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Section of Medical Physics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
    A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue2010In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 37, no 7, p. 1356-1367Article in journal (Refereed)
    Abstract [en]

    PURPOSE: Overexpression of HER2 receptors is a prognostic and predictive biomarker in breast cancer and a number of other malignancies. Radionuclide molecular imaging of HER2 overexpression may influence patient management making treatment more personalized. Earlier, (111)In-DOTA-Z(HER2:342-pep2) (ABY-002) Affibody molecule demonstrated excellent imaging of HER2-expressing xenografts in mice shortly after injection. The use of the positron-emitting nuclide (68)Ga instead of (111)In might increase both the sensitivity of HER2 imaging and accuracy of expression quantification. The goal of this study was to prepare and characterize (68)Ga-labelled ABY-002. METHODS: (68)Ga labelling of ABY-002 was optimized. In vitro cell binding and procession of (68)Ga-ABY-002 was evaluated. Biodistribution and tumour targeting of (68)Ga-ABY-002 and (111)In-ABY-002 was compared in vivo by paired-label experiments. RESULTS: ABY-002 was incubated with (68)Ga at 90 degrees C for 10 min resulting in a radiochemical labelling yield of over 95%. Capacity for specific binding to HER2-expressing cells was retained. In vivo, both (68)Ga-ABY-002 and (111)In-ABY-002 demonstrated specific targeting of SKOV-3 xenografts and high-contrast imaging. Background radioactivity in blood, lungs, gastrointestinal tract and muscle fell more rapidly for (68)Ga-ABY-002 compared with (111)In-ABY-002 favouring imaging shortly after injection. For (68)Ga-ABY-002, a tumour uptake of 12.4 +/- 3.8%ID/g and a tumour to blood ratio of 31 +/- 13 were achieved at 2 h post-injection. CONCLUSION: (68)Ga-ABY-002 is easy to label and provides high-contrast imaging within 2 h after injection. This makes it a promising candidate for clinical molecular imaging of HER2 expression in malignant tumours.

  • 50.
    Varasteh, Zohreh
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Rosestedt, Maria
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Lindeberg, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Section of Nuclear Medicine and PET. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Larhed, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    The effect of macrocyclic chelators on the targeting properties of the 68Ga-labeled gastrin releasing peptide receptor antagonist PEG2-RM262015In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 42, no 5, p. 446-454Article in journal (Refereed)
    Abstract [en]

    Introduction

    Overexpression of gastrin-releasing peptide receptors (GRPR) has been reported in several cancers. Bombesin (BN) analogs are short peptides with a high affinity for GRPR. Different BN analogs were evaluated for radionuclide imaging and therapy of GRPR-expressing tumors. We have previously investigated an antagonistic analog of BN (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to NOTA via a PEG2 spacer (NOTA-PEG2-RM26) labeled with 68Ga, 111In and Al18F. 68Ga-labeled NOTA-PEG2-RM26 showed high tumor-to-organ ratios.

    Methods

    The influence of different macrocyclic chelators (NOTA, NODAGA, DOTA and DOTAGA) on the targeting properties of 68Ga-labeled PEG2-RM26 was studied in vitro and in vivo.

    Results

    All conjugates were labeled with generator-produced 68Ga with high yields and demonstrated high stability and specific binding to GRPR. The IC50 values of natGa-X-PEG2-RM26 (X = NOTA, DOTA, NODAGA, DOTAGA) were 2.3 ± 0.2, 3.0 ± 0.3, 2.9 ± 0.3 and 10.0 ± 0.6 nM, respectively. The internalization of the conjugates by PC-3 cells was low. However, the DOTA-conjugated analog demonstrated a higher internalization rate compared to other analogs. GRPR-specific uptake was found in receptor-positive normal tissues and PC-3 xenografts for all conjugates. The biodistribution of the conjugates was influenced by the choice of the chelator moiety. Although all radiotracers cleared rapidly from the blood, [68Ga]Ga-NOTA-PEG2-RM26 showed significantly lower uptake in lung, muscle and bone compared to the other analogs. The uptake in tumors (5.40 ± 1.04 %ID/g at 2 h p.i.) and the tumor-to-organ ratios (25 ± 3, 157 ± 23 and 39 ± 4 for blood, muscle and bone, respectively) were significantly higher for the NOTA-conjugate than the other analogs.

    Conclusions

    Chelators had a clear influence on the biodistribution and targeting properties of 68Ga-labeled antagonistic BN analogs. Positively charged [68Ga]Ga-NOTA-PEG2-RM26 provided a low kidney radioactivity uptake, high affinity, high tumor uptake and high image contrast.

12 1 - 50 of 95
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf