uu.seUppsala University Publications
Change search
Refine search result
1 - 45 of 45
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alarcón, H.
    et al.
    Hedlund, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Hagfeldt, Anders
    KTH, Fysikalisk kemi / Physical Chemistry.
    Boschloo, Gerrit K.
    KTH, Fysikalisk kemi / Physical Chemistry.
    Modification of nanostructured TiO2 electrodes by electrochemical Al3+ insertion: Effects on dye-sensitized solar cell performance2007In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, no 35, p. 13267-13274Article in journal (Refereed)
    Abstract [en]

    Nanostructured TiO2 films were modified by insertion with aluminum ions using an electrochemical process. After heat treatment these films were found suitable as electrodes in dye-sensitized solar cells. By means of a catechol adsorption test, as well as photoelectron spectroscopy (PES), it was demonstrated that the density of Ti atoms at the metal oxide/electrolyte interface is reduced after Al modification. There is, however, not a complete coverage of aluminum oxide onto the TiO2, but the results rather suggest either the formation of a mixed Al−Ti oxide surface layer or formation of a partial aluminum oxide coating. No new phase could, however, be detected. In solar cells incorporating Al-modified TiO2 electrodes, both electron lifetimes and electron transport times were increased. At high concentrations of inserted aluminum ions, the quantum efficiency for electron injection was significantly decreased. Results are discussed at the hand of different models:  A multiple trapping model, which can explain slower kinetics by the creation of additional traps during Al insertion, and a surface layer model, which can explain the reduced recombination rate, as well as the reduced injection efficiency, by the formation of a blocking layer.

  • 2.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    How the Negative Electrode Influences Interfacial and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathodes in Li-Ion Batteries2017In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 13, p. A3054-A3059Article in journal (Refereed)
    Abstract [en]

    The cycle life of LiNi1/3Co1/3Mn1/3O2 (NMC) based cells are significantly influenced by the choice of the negative electrode. Electrochemical testing and post mortem surface analysis are here used to investigate NMC electrodes cycled vs. either Li-metal, graphite or Li4Ti5O12 (LTO) as negative electrodes. While NMC-LTO and NMC-graphite cells show small capacity fading over 200 cycles, NMC-Li-metal cell suffers from rapid capacity fading accompanied with an increased voltage hysteresis despite the almost unlimited access of lithium. X-ray absorption near edge structure (XANES) results show that no structural degradation occurs on the positive electrode even after >200 cycles, however, X-ray photoelectron spectroscopy (XPS) results shows that the composition of the surface layer formed on the NMC cathode in the NMC-Li-metal cell is largely different from that of the other NMC cathodes (cycled in the NMC-graphite or NMC-LTO cells). Furthermore, it is shown that the surface layer thickness on NMC increases with the number of cycles, caused by continuous electrolyte degradation products formed at the Li-metal negative electrode and then transferred to NMC positive electrode.

  • 3.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Conference paper (Other academic)
  • 4.
    Björklund, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of counter electrode on the capacity fading in LiNi0.33Mn0.33Co0.33O2-based Li-ion battery cells2017Conference paper (Other academic)
  • 5.
    Boman, Mats
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berger, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Andersson, Yvonne
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Björefors, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ottosson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Corrosion of copper in water free from molecular oxygen2014In: Corrosion Engineering, Science and Technology, ISSN 1478-422X, E-ISSN 1743-2782, Vol. 49, no 6, p. 431-434Article in journal (Refereed)
    Abstract [en]

    The possibility of copper reacting with O-2-free water has been investigated by analysis of primary corrosion products, as well as by monitoring gas pressure change by time, in long term experiments for up to 6 months in a glove box environment. We establish hydrogen production, but being of the same magnitude irrespective whether copper is present or not. Although low, the hydrogen production rate is considerably larger than what would directly correspond to the amount of analysed copper oxidation products. Our analyses encompass the changes to the surface cleaned copper (99.9999%), the water phase and the Duran glass in contact with the water (ppt quality). We have used very sensitive methods (XPS, AES, ICP-MS, XRF) while keeping contamination risks to a minimum. We conclude that the oxidation rate of copper is very low, yielding only parts of a monolayer of Cu2O after 6 months of exposure at 50 degrees C together with an accompanying very low concentration of copper species (4-5 mu g L-1) in the water phase.

  • 6.
    Ciosek Högström, Katarzyna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Malmgren, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin Germany.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Aging of electrode/electrolyte interfaces in LiFePO4/graphite cells cycled with and without PMS additive2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 24, p. 12649-12660Article in journal (Refereed)
  • 7.
    Ciosek Högström, Katarzyna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Malmgren, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin Germany.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy2014In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 138, p. 430-436Article in journal (Refereed)
  • 8.
    Ciosek Högström, Katarzyna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Malmgren, Sara
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Thébault, Frédéric
    Chalmers university of technology.
    Johansson, Patrik
    Chalmers university of technology.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The influence of PMS-additive on the electrode/electrolyte interfaces in LiFePO4/graphite Li-ion batteries2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 45, p. 23476-23486Article in journal (Refereed)
    Abstract [en]

    The influence of a film-forming additive, propargyl methanesulfonate (PMS), on electrochemical performance and electrode/electrolyte interface composition of LiFePO4/graphite Li-ion batteries has been studied. Combined use of in-house X-ray photoelectron spectroscopy (XPS) and soft and hard X-ray photoelectron spectroscopy (PES) enabled nondestructive depth profiling at four different probing depths in the 2-50 nm range. Cells cycled with PMS and LiPF6 in ethylene carbonate/diethyl carbonate (EC/DEC) were compared to a reference sample cycled without PMS. In the first cycle, PMS cells showed a higher irreversible capacity, which is explained by formation of a thicker solid electrolyte interphase (SEI). After three cycles, the SET thicknesses were determined to be 19 and 25 nm for the reference and PMS samples, respectively. After the initial cycling, irreversible losses shown by the PMS cells were lower than those of the reference cell. This could be attributed to a different SET composition and lower differences in the amount of lithium between lithiated and delithiated electrodes for the PMS sample. It was suggested that PMS forms a triple-bonded radical on reduction, which further reacts with the electrolyte. The PMS additive was shown to influence the chemical composition at the positive electrode/electrolyte interface. Thicker interface layers with higher C-O and smaller LiF contributions were formed on LiFePO4 cycled with PMS.

  • 9. Edwards, Marten O. M.
    et al.
    Karlsson, Patrik G.
    Eriksson, Susanna Kaufmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Kahk, Juhan M.
    Villar-Garcia, Ignacio J.
    Payne, David J.
    Ahlund, John
    Increased photoelectron transmission in High-pressure photoelectron spectrometers using "swift acceleration"2015In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 785, p. 191-196Article in journal (Refereed)
    Abstract [en]

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al K alpha X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N-2 and H2O), and a front aperture diameter of 0.8 mm. The new design concept is based upon "swiftly" accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6-9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye sensitized solar cell photoelectrodes under a 2 mbar H2O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  • 10.
    Eriksson, Rickard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lasri, Karima
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Saadoune, Ismael
    LCME, University Cadi Ayyad, Marrakech, Morocco.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Electronic and Structural Changes in Ni0.5TiOPO4 Li-ion Battery Cells Upon First Lithiation and Delithiation, Studied by High-Energy X-ray Spectroscopies2015In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 18, p. 9692-9704Article in journal (Refereed)
  • 11. Eriksson, Susanna K.
    et al.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Axnanda, Stephanus
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, One Synchrotron Rd, Berkeley, CA 94720 USA..
    Crumlin, Ethan
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, One Synchrotron Rd, Berkeley, CA 94720 USA..
    Wilks, Regan
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Renewable Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany.;Helmholtz Zentrum Berlin Mat & Energie GmbH, Energy Mat In Situ Lab EMIL, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Odelius, Michael
    Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden..
    Eriksson, Anna I. K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Liu, Zhi
    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, One Synchrotron Rd, Berkeley, CA 94720 USA..
    Ahlund, John
    VG Scienta AB, Box 15120, S-75015 Uppsala, Sweden..
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Starr, David E.
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany..
    Baer, Marcus
    Helmholtz Zentrum Berlin Mat & Energie GmbH, Renewable Energy, Hahn Meitner Pl 1, D-14109 Berlin, Germany.;Helmholtz Zentrum Berlin Mat & Energie GmbH, Energy Mat In Situ Lab EMIL, Albert Einstein Str 15, D-12489 Berlin, Germany.;Brandenburg Tech Univ Cottbus Senftenberg, Inst Chem & Phys, Pl Deutsch Einheit 1, D-03046 Cottbus, Germany..
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    In-Situ Probing of H2O Effects on a Ru-Complex Adsorbed on TiO2 Using Ambient Pressure Photoelectron Spectroscopy2016In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 59, no 5-7, p. 583-590Article in journal (Refereed)
    Abstract [en]

    Dye-sensitized interfaces in photocatalytic and solar cells systems are significantly affected by the choice of electrolyte solvent. In the present work, the interface between the hydrophobic Ru-complex Z907, a commonly used dye in molecular solar cells, and TiO2 was investigated with ambient pressure photoelectron spectroscopy (AP-PES) to study the effect of water atmosphere on the chemical and electronic structure of the dye/TiO2 interface. Both laboratory-based Al K alpha as well as synchrotron-based ambient pressure measurements using hard X-ray (AP-HAXPES) were used. AP-HAXPES data were collected at pressures of up to 25 mbar (i.e., the vapor pressure of water at room temperature) showing the presence of an adsorbed water overlayer on the sample surface. Adopting a quantitative AP-HAXPES analysis methodology indicates a stable stoichiometry in the presence of the water atmosphere. However, solvation effects due to the presence of water were observed both in the valence band region and for the S 1s core level and the results were compared with DFT calculations of the dye-water complex.

  • 12.
    Eriksson, Susanna K
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Kahk, Juhan Matthias
    Villar-Garcia, Ignacio J
    Webb, Matthew J
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Grennberg, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Yakimova, Rositza
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hagfeldt, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edwards, Mårten O M
    Karlsson, Patrik G
    Backlund, Klas
    Ahlund, John
    Payne, David J
    A versatile photoelectron spectrometer for pressures up to 30 mbar2014In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 85, no 7, p. 075119-Article in journal (Refereed)
    Abstract [en]

    High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

  • 13.
    Fredin, Kristofer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Physical Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Schölin, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Plogmaker, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Gabrielsson, Erik
    Sun, Licheng
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Solid state dye-sensitized solar cells prepared by infiltrating a molten hole conductor into a mesoporous film at a temperature below 150 degrees C2011In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 161, no 21-22, p. 2280-2283Article in journal (Refereed)
    Abstract [en]

    Infiltration of a molten hole conductor in a mesoporous film at an elevated temperature exhibits good wetting performance and the procedure is therefore suitable as part of the preparation method for solid state dye-sensitized solar cells. Herein, we present a system prepared by infiltrating 4-(diethylamino)benzaldehyde-1,1)-diphenyl-hydrazone in its molten form at a temperature below 150 degrees C. The system displays a maximum photon-to-current conversion efficiency of about 35%, a value corresponding to an increase of about 5 times in comparison with a previously published system prepared by infiltrating a molten hole-conductor at a temperature exceeding 250 degrees C. By means of comparing charge transport and recombination with the results measured for a liquid analogue, we conclude that whereas the transport rates are similar, recombination is significantly more rapid in the solid-state device.

  • 14.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Surface and Interface Science.
    Electronic and Molecular Surface Structures of Dye-Sensitized TiO2 Interfaces2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The dye-sensitized solar cell is a promising solar cell technology. In these systems the key process for light to electricity conversion is molecular in nature and is initiated in dye molecules adsorbed at a semiconducting surface. This thesis focuses on the electronic and molecular surface structure of the dye/TiO2 interface, and the experimental results were obtained from surface sensitive X-ray based electron spectroscopic methods.

    Two families of dyes, triarylamine based organic dyes and ruthenium based inorganic dyes, were investigated. The effect of dye structural modications on the interfacial properties was studied, such as the surface concentrations, dye molecular surface orientation, molecular interactions, and energy level matching. Also, the impact of additional parameters such as the incorporation of coadsorbents and the solvents used for dye sensitization were studied and complementary photoelectrochemical characterization was used to demonstrate functional properties corresponding to changes in the molecular layers.

    The experiments provided information on how specic structural modications change the frontier electronic structure. The results also showed that the adsorption of the organic dye leads to submolecular electronic changes, and that the dye surface orientations in general favor effcient energy conversion. Moreover, effects of solvents and coadsorbents, on both energy level matching between the dye and the TiO2 substrate and the surfacemolecular structure were quantied.

    List of papers
    1. Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study
    Open this publication in new window or tab >>Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study
    Show others...
    2010 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 12, no 7, p. 1507-1517Article in journal (Refereed) Published
    Abstract [en]

    The electronic and molecular properties of three organic dye molecules with the general structure donor-linker-anchor have been investigated using core level photoelectron spectroscopy (PES). The molecules contain a diphenylaniline donor unit, a thiophene linker unit, and cyanoacrylic acid or rhodanine-3-acetic acid anchor units. They have been investigated both in the form of a multilayer and adsorbed onto nanoporous TiO2 and the experimental results were also compared with DFT calculations. The changes at the dye-sensitized TiO2 surface due to the modification of either the donor unit or the anchor unit was investigated and the results showed important differences in coverage as well as in electronic and molecular surface properties. By measuring the core level binding energies, the sub-molecular properties were characterized and the result showed that the adsorption to the TiO2 influences the energy levels of the sub-molecular units differently.

    National Category
    Physical Sciences Chemical Sciences
    Identifiers
    urn:nbn:se:uu:diva-128836 (URN)10.1039/b913548k (DOI)000274243200010 ()
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2017-12-12Bibliographically approved
    2. Mapping the frontier electronic structures of triphenylamine based organic dyes at TiO2 interfaces
    Open this publication in new window or tab >>Mapping the frontier electronic structures of triphenylamine based organic dyes at TiO2 interfaces
    Show others...
    2011 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 13, no 8, p. 3534-3546Article in journal (Refereed) Published
    Abstract [en]

    The frontier electronic structure of a series of organic dye molecules containing a triphenylamine moiety, a thiophene moiety and a cyanoacrylic acid moiety have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant photoelectron spectroscopy (RPES). The experimental results were compared to electronic structure calculations on the molecules which are used to confirm and enrich the assignment of the spectra. The approach allows us to experimentally measure and interpret the basic valence energy level structure in the dye, including the highest occupied energy level and how it depends on the interaction between the different units. Based on N1s X-ray absorption and emission spectra we also obtain insight into the structure of the excited states, the molecular orbital composition and dynamics. Together the results provide an experimentally determined energy level map useful in the design of these types of materials. Included is also results indicating femtosecond charge redistribution at the dye/TiO2 interface.

    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:uu:diva-128840 (URN)10.1039/c0cp01491e (DOI)000287041700060 ()21173950 (PubMedID)
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2017-12-12Bibliographically approved
    3. Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance
    Open this publication in new window or tab >>Rhodanine dyes for dye-sensitized solar cells: spectroscopy, energy levels and photovoltaic performance
    Show others...
    2009 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 11, no 1, p. 133-141Article in journal (Refereed) Published
    Abstract [en]

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum.Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiOredox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiOthe electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO 2 solar cells was investigated using electrolytes containing the iodide/triiodide2 with triiodide. Addition of 4-tert butylpyridine to2 conduction band potential.

    National Category
    Inorganic Chemistry
    Research subject
    Inorganic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-120847 (URN)10.1039/b812154k (DOI)000263278900011 ()
    Available from: 2010-03-16 Created: 2010-03-16 Last updated: 2017-12-12Bibliographically approved
    4. Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells
    Open this publication in new window or tab >>Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells
    Show others...
    2010 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 27, p. 11903-11910Article in journal (Refereed) Published
    Abstract [en]

    Different molecular layers on TiO2 were prepared by using the p-dimethylaniline triphenylamine based organic dye, D29, together with the coadsorbents decylphosphonic acid (DPA), dineohexyl bis(3,3-dimethylbutyl)phosphinic acid (DINHOP), and chenodeoxycholic acid (CDCA). The surface molecular structure of dye and coadsorbent layers on TiO2 was investigated by photoelectron spectroscopy (PES). A focus was to determine the surface molecular concentrations using characteristic photoelectron core levels. Dye-sensitized solar cells (DSCs) were prepared from the same substrate and were further characterized by photoelectrochemical methods. Together the investigation gives information on the arrangement of the mixed molecular layer and a first insight to the extent to which the coadsorbents exchange with dye molecules on the TiO2 surface for the examined conditions.

    National Category
    Chemical Sciences Physical Sciences
    Identifiers
    urn:nbn:se:uu:diva-128835 (URN)10.1021/jp102381x (DOI)000279507900031 ()
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2017-12-12Bibliographically approved
    5. Surface compostions of dye/TiO2 interfaces formed from ethanol, acetonitrile, and dichloromethane based solutions
    Open this publication in new window or tab >>Surface compostions of dye/TiO2 interfaces formed from ethanol, acetonitrile, and dichloromethane based solutions
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The molecular and electronic surface structure of three TiO2 surfaces sensitized with 3-(5-(4-(diphenyl amino) styryl) thiophen-2-yl)-2-cyanoacrylic acid (D5) using different solvents (acetonitrile, dicloromethane, and ethanol) was investigated by photoelectron spectroscopy. The results showed solvent dependence in surface coverage, dye surface structure and energy level matching. Corresponding basic results on photocurrent conversion and UV-vis absorption is also included. Together the results indicated surface aggregation when using dichloromethane as a solvent.

    Identifiers
    urn:nbn:se:uu:diva-128839 (URN)
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2011-04-06
    6. Electronic and molecular surface structure of Ru(tcterpy)(NCS)(3) and Ru(dcbpy)(2)(NCS)(2) adsorbed from solution onto nanostructured TiO2: A photoelectron spectroscopy study
    Open this publication in new window or tab >>Electronic and molecular surface structure of Ru(tcterpy)(NCS)(3) and Ru(dcbpy)(2)(NCS)(2) adsorbed from solution onto nanostructured TiO2: A photoelectron spectroscopy study
    2005 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 109, no 47, p. 22256-22263Article in journal (Refereed) Published
    Abstract [en]

    The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)(3) (BD) and Ru(dcbpY)(2)(NCS)(2) adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)(2)(NCS)(2) was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA(+)) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA(+) is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes.

    Identifiers
    urn:nbn:se:uu:diva-128834 (URN)10.1021/jp0525282 (DOI)000233684500027 ()
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2017-12-12
    7.
    The record could not be found. The reason may be that the record is no longer available or you may have typed in a wrong id in the address field.
    8. The Influence of Water on the Electronic and Molecular Surface Structures of Ru-dyes at Nanostructured TiO2
    Open this publication in new window or tab >>The Influence of Water on the Electronic and Molecular Surface Structures of Ru-dyes at Nanostructured TiO2
    Show others...
    (English)In: Article in journal (Other academic) Submitted
    Abstract [en]

    The influence of water on the surface electronic and molecular properties of three Ru-dyes adsorbed at nanostructured TiO2 was investigated using photoelectron spectroscopy (PES). The dyes investigated were the Ru(dcbpy)2 (NCS)2 in its acid (N3) and in its 2-fold deprotonated form (N719) as well as a similar dye (Z-907) containing the hydrophobic ligand 4,4-dinonyl-2,2-bipyridine. Trends in surface structures depending on water exposure were followed for the three dyes. The results showed that the hydrophobic chains of the Z-907 dye effectively inhibit surface reorganization while large changes in surface electronic and molecular structure was observed for the N3 and N719 molecular layers. Specifically, large effects involving the thiocyanate ligands were detected and the S2p and N1s core level spectra indicate that the changes involve mixing of only two dominating surface configurations. Moreover, the PES results also showed water induced changes in the energy level matching between the dye and the TiO2, and water induced desorption of the TBA+ counter ion. Basic photoelectrochemical trends depending on water exposure to dye sensitized solar cell systems were also verified.

    Identifiers
    urn:nbn:se:uu:diva-128841 (URN)
    Available from: 2010-07-26 Created: 2010-07-26 Last updated: 2016-04-20Bibliographically approved
    9. A Photoelectron Spectroscopy Study of Z-907 Co-adsorbed with DPA on Nanostructured TiO2 Surfaces
    Open this publication in new window or tab >>A Photoelectron Spectroscopy Study of Z-907 Co-adsorbed with DPA on Nanostructured TiO2 Surfaces
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The surface electronic and molecular properties of mixed dye/coadsorbent sensitized TiO2 surfaces was investigated using photoelectron spectroscopy (PES). The sensitization of the TiO2 was performed using the ruthenium based dye cis-disothiocyanato-(2,2-bipyridyl-4,4-dicarboxylic acid)-(2,2-bipyridyl-4,4-dinonyl) ruthenium(II) (Z-907) together with different concentrations of the coadsorbent decylphosphonic acid (DPA). The investigation showed large variations in surface concentration of Z-907 and DPA depending on the dye/coadsorbent ratio in solution, but that the relative amounts at the surface and in solution substantially differ. Generally the DPA coadsorbents exchange with dye Z-907 molecule and trends in the surface concentration show that each dye molecule is replaced by six coadsorbent molecules. The co-adsorption of DPA induced changes in the S2p spectra, indicating changes in the dye surface interaction. Still, investigation of the frontier electronic structure in the dye sensitized TiO2 surfaces show that co-adsorbtion of DPA do not alter the energy level matching between the dye and the TiO2.

    Identifiers
    urn:nbn:se:uu:diva-128842 (URN)
    Available from: 2010-07-26 Created: 2010-07-26
  • 15.
    Hahlin, Maria
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Odelius, M
    Magnuson, Martin
    Johansson, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
    Plogmaker, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Hagberg, D
    Sun, L
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Mapping the frontier electronic structures of triphenylamine basedorganic dyes at TiO2 interfaces2011In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 13, no 8, p. 3534-3546Article in journal (Refereed)
    Abstract [en]

    The frontier electronic structures of a series of organic dye molecules containing a triphenylamine moiety, a thiophene moiety and a cyanoacrylic acid moiety have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant photoelectron spectroscopy (RPES). The experimental results were compared to electronic structure calculations on the molecules, which are used to confirm and enrich the assignment of the spectra. The approach allows us to experimentally measure and interpret the basic valence energy level structure in the dye, including the highest occupied energy level and how it depends on the interaction between the different units. Based on N 1s X-ray absorption and emission spectra we also obtain insight into the structure of the excited states, the molecular orbital composition and dynamics. Together the results provide an experimentally determined energy level map useful in the design of these types of materials. Included are also results indicating femtosecond charge redistribution at the dye/TiO(2) interface.

  • 16.
    Hedlund, Maria
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik1.
    Johansson, Erik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Siegbahn, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Rensmo, Håkan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Effects of water in the Surface Adsorption of Dye molecules at Nanostructured TiO22006In: 16th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-16), 2006Conference paper (Other scientific)
    Abstract [en]

    The dye-sensitized solar cell is a promising new alternative to conventional solar cells. However these molecular solar cells may suffer from long term stability problems. Some of these problems are believed to be linked to the presence of water. Recently, dyes possessing long hydrophobic chains have been introduced, as an effort to come to terms with problems related to water [1]. In this study the Ru-dyes N3, N719 and 520DN (an analog containing hydrophobic chains) bound to TiO2, have after being exposed to water, been investigated by photoelectron spectroscopy (PES). PES was used to understand on a molecular level, how the introduction of water influences the molecular and electronic structure of these dye sensitized surfaces.

    In general, the surface sensitized with 520DN does not give signs of any major changes after being subjected to water. The investigation therefore found that the hydrophobic chains in the dye surface with 520DN effectively protect the molecular structure of the surface. However the surfaces of N3 and N719 do show large changes after exposing the surface to water. More specifically, it has been found that the outermost molecular orbitals (HOMO), which are vital for the function of the solar cell, are affected by water by shifting towards higher binding energies.

    Also, changes in the thiocyanate group can be found in the N3 and N719 dyes after being exposed to water. Specifically, the sulphur S2p energy levels have a substantially larger amount of a second spin-orbit split peak after being exposed to water. The nitrogen N1s peak relating to the thiocyanate group also changes shape. Moreover, in the case of N719, the counter ion TBA+ is not present on the dye sensitized surface after being subjected to water.

    Finally, the amount of dye on the TiO2 surfaces is also important for the efficiency of the solar cell. It was found that the coverage of N3 and N719 dye decreases when exposed to water, but the coverage of the 520DN dye remains the same.

  • 17.
    Johansson, Erik
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Hedlund, Maria
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Siegbahn, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Rensmo, Håkan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I.
    Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2 – A Photoelectron spectroscopy study2005In: Journal of Physical Chemistry B, Vol. 149, no 47, p. 22256-22263Article in journal (Refereed)
  • 18.
    Johansson, Erik
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik 1.
    Karlsson, Patrik
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik1.
    Hedlund, Maria
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik 1.
    Ryan, Declan
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik 1.
    Siegbahn, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Physics, Department of Physics. Department of Physics and Materials Science, Physics I. Fysik 1.
    PHOTOVOLTAIC AND INTERFACIAL PROPERTIES OF HETEROJUNCTIONS COMPRISING DYE-SENSITIZED DENSE TiO2 AND TRIARYLAMINE DERIVATIVES IN SOLID AND LIQUID STATE.1996Conference paper (Other scientific)
    Abstract [en]

    Different triarylamine derivatives have successfully been used as solid hole-conductor materials in dye-sensitized solar cells with efficiencies up to 4% [1-3]. In the present work TiO2/dye/ hole-conductor heterojunctions is assembled to form model systems for solid state DSSC and the interfacial structure at the molecular level. A series of triarylamine molecules is used to investigate the influence of small differences in the hole-conductor material structure on the photovoltaic and molecular surface properties. Both solid state and liquid state junctions with the triarylamine molecules were investigated. In the solid state heterojunctions the hole-conductor molecules were evaporated on the substrate and in the liquid state heterojunctions the hole-conductor molecules were solvated in an organic solvent. The photovoltaic properties of the heterojunction largely depend on the electron transfer rates at the interfaces between the different materials (semiconductor, dye and hole-conductor). Photoelectron Spectroscopy (PES) measurements was used to investigate the molecular and electronic interface structure. In the figure below the valence electronic structure of interfaces with the different hole-conductors are shown.

    From the valence PES the interaction and the energy level matching between the dyes and the hole-conductors is studied. The results show large differences in the energy matching of the different holconducting materials with respect to the dye molecules partly explaining the differences in efficiency. The valence structure also shows that when combining different materials their individual properties adjust slightly to their new environment. From the core level PES we observe differences molecular surface structure. Specifically it was found that the smaller holecondctors are able to penetrate the dye layer and contact the TiO2 surface.

  • 19.
    Johansson, Erik M. J.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Karlsson, Patrik G.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Hedlund, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Ryan, Declan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
    Photovoltaic and Interfacial Properties of Heterojunctions Containing Dye-sensitized Dense TiO2 and Triarylamine derivatives2007In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 19, no 8, p. 2071-2078Article in journal (Refereed)
    Abstract [en]

    A series of solid-state heterojunctions comprising a dense TiO2 film electrode as an electron conductor, a ruthenium polypyridine complex (Ru(dcbpy)2(NCS)2) as a light-absorbing dye, and different triarylamine derivatives as hole conductors were prepared, and their photovoltaic properties as well as the molecular and electronic interfacial structures were investigated. The photovoltaic properties were compared to systems containing the hole conductors dissolved in an organic solvent as well as to a system containing a liquid electrolyte containing the iodide/tri-iodide redox couple. Two of the solid-state heterojunctions showed conversion efficiencies close to those of the system containing the iodide/tri-iodide redox couple, while one system was clearly less efficient. To explain the differences in photovoltaic properties the electronic and molecular interfacial structures of the solid-state heterojunctions were investigated by photoelectron spectroscopy (PES). By valence level PES the electronic energy levels highest in energy for the dye and the hole conductors were mapped, and the differences in energy matching partly explain the trends in photovoltaic properties. Differences in the molecular surface structure of the heterojunctions were also observed from the N Is core level measurements. Specifically it was found that the smaller hole conductor, showing low photocurrent yield, is inserted into the dye layer.

  • 20.
    Kahk, J. Matthias
    et al.
    Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England..
    Villar-Garcia, Ignacio J.
    Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England..
    Grechy, Lorenza
    Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England..
    Bruce, Paul J. K.
    Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England..
    Vincent, Peter E.
    Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England..
    Eriksson, Susanna K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Ahlund, John
    VG Scienta AB, S-75015 Uppsala, Sweden..
    Edwards, Marten O. M.
    VG Scienta AB, S-75015 Uppsala, Sweden..
    Payne, David J.
    Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England..
    A study of the pressure profiles near the first pumping aperture in a high pressure photoelectron spectrometer2015In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 205, p. 57-65Article in journal (Refereed)
    Abstract [en]

    In a high-pressure photoelectron spectrometer, the sample is positioned close to a differential pumping aperture, behind which the pressure is several orders of magnitude lower than the pressure in the analysis chamber. To find the optimal sample position, where the path length of the photoelectrons through the high pressure region is minimized as far as possible without compromising knowledge of the actual pressure at the sample surface, an understanding of the pressure variations near the sample and the aperture is required. A computational fluid dynamics study has been carried out to examine the pressure profiles, and the results are compared against experimental spectra whose intensities are analyzed using the Beer-Lambert law. The resultant pressure profiles are broadly similar to the one previously derived from a simplistic molecular flow model, but indicate that as the pressure in the analysis chamber is raised, the region over which the pressure drop occurs becomes progressively narrower.

  • 21.
    Kotronia, Antonia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Asfaw, Habtom Desta
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The Cathode Electrolyte Interphase on Graphite Positive Electrode in Dual-ion Batteries Probed Using X-ray Photoelectron SpectroscopyManuscript (preprint) (Other academic)
  • 22.
    Källquist, Ida
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Naylor, Andrew J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Baur, Christian
    Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany.
    Chable, Johann
    Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany.
    Kullgren, Jolla
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Fichtner, Maximilian
    Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany;Karlsruhe Inst Technol, Inst Nanotechnol, Box 3640, D-76021 Karlsruhe, Germany.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes2019In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 31, no 16, p. 6084-6096Article in journal (Refereed)
    Abstract [en]

    The increased energy density in Li-ion batteries is particularly dependent on the cathode materials that so far have been limiting the overall battery performance. A new class of materials, Li-rich disordered rock salts, has recently been brought forward as promising candidates for next-generation cathodes because of their ability to reversibly cycle more than one Li-ion per transition metal. Several variants of these Li-rich cathode materials have been developed recently and show promising initial capacities, but challenges concerning capacity fade and voltage decay during cycling are yet to be overcome. Mechanisms behind the significant capacity fade of some materials must be understood to allow for the design of new materials in which detrimental reactions can be mitigated. In this study, the origin of the capacity fade in the Li-rich material Li2VO2F is investigated, and it is shown to begin with degradation of the particle surface that spreads inward with continued cycling.

  • 23.
    Lindgren, Fredrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Rehnlund, David
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Källquist, Ida
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Maibach, Julia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Breaking Down a Complex System: Interpreting PES Peak Positions for Cycled Li-ion Battery Electrodes2017In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, p. 27303-27312Article in journal (Refereed)
    Abstract [en]

    Photoelectron spectroscopy (PES) is an important technique for tracing and understanding the side reactions responsible for decreasing performance of Li-ion batteries. Interpretation of different spectral components is dependent on correct binding energy referencing and for battery electrodes this is highly complex. In this work, we investigate the effect on binding energy reference points in PES in correlation to solid electrolyte interphase (SEI) formation, changing electrode potentials and state of charge variations in Li-ion battery electrodes. The results show that components in the SEI have a significantly different binding energy reference point relative to the bulk electrode material (i.e. up to 2 eV). It is also shown that electrode components with electronically insulating/semi-conducting nature are shifted as a function of electrode potential relative to highly conducting materials. Further, spectral changes due to lithiation are highly depending on the nature of the active material and its lithiation mechanism. Finally, a strategy for planning and evaluating PES experiments on battery electrodes is proposed where some materials require careful choice of one or more internal reference points while others may be treated essentially without internal calibration.

  • 24.
    Maibach, Julia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Karlsruhe Inst Technol, Inst Appl Mat, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany.
    Källquist, Ida
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Andersson, Margit
    Max Iv Lab, Box 118, S-22100 Lund, Sweden.
    Urpelainen, Samuli
    Max Iv Lab, Box 118, S-22100 Lund, Sweden.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy2019In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 3080Article in journal (Refereed)
    Abstract [en]

    Operando ambient pressure photoelectron spectroscopy in realistic battery environments is a key development towards probing the functionality of the electrode/electrolyte interface in lithium-ion batteries that is not possible with conventional photoelectron spectroscopy. Here, we present the ambient pressure photoelectron spectroscopy characterization of a model electrolyte based on 1M bis(trifluoromethane)sulfonimide lithium salt in propylene carbonate. For the first time, we show ambient pressure photoelectron spectroscopy data of propylene carbonate in the liquid phase by using solvent vapor as the stabilizing environment. This enables us to separate effects from salt and solvent, and to characterize changes in electrolyte composition as a function of probing depth. While the bulk electrolyte meets the expected composition, clear accumulation of ionic species is found at the electrolyte surface. Our results show that it is possible to measure directly complex liquids such as battery electrolytes, which is an important accomplishment towards true operando studies.

  • 25.
    Maibach, Julia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lindgren, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Eriksson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Electric potential gradient at the buried interface between Lithium-ion battery electrodes and the SEI observed using photoelectron spectroscopy2016In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 7, no 10, p. 1775-1780Article in journal (Refereed)
    Abstract [en]

    The buried interface between the bulk electrode material and the solid electrolyte interphase (SEI) in cycled Li-ion battery anodes is suggested to incorporate an electric potential gradient. This suggestion is based on photoelectron spectroscopy (PES) results from different anode materials that all show relative binding energy shifts between the components of the SEI and the active anode. Implications of this electric potential gradient on binding energy reference points in PES as well as on charge-transfer kinetics in Li-ion batteries are discussed. Specifically, we show that the separation of surface layer and bulk material spectral contributions (depth profiling) is crucial for consistent data interpretation. We conclude that previous interpretations of lithiation as cause for changes in PES spectra may need to be revised.

  • 26.
    Maibach, Julia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Xu, Chao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Eriksson, Susanna K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Ahlund, John
    Gustafsson, Torbjron
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Hakan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system2015In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 86, no 4, article id 044101Article in journal (Refereed)
    Abstract [en]

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO4 in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N-2 environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  • 27.
    Malmgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ciosek, Katarzyna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gorgoi, Mihaela
    Helmholtz Zentrum Berlin für Materialien und Energie GmbH.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy2013In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 97, p. 23-32Article in journal (Refereed)
    Abstract [en]

    Electrode/electrolyte interface depth profiling was performed on lithiated graphite and delithiated lithium iron phosphate electrodes after electrochemical cycling in a balanced full cell configuration containing a carbonate based LiPF6 electrolyte. The profiling was performed by synchrotron radiation based hard X‑ray photoelectron spectroscopy, HAXPES, and soft X‑ray photoelectron spectroscopy, SOXPES. In this way, the probing depth was varied over a wide range in the order of 2-50 nm. Both more surface and more bulk sensitive investigations than possible using traditional in-house X‑ray photoelectron spectroscopy (XPS) could thus be performed. The composition and morphology of the lithiated graphite anode/electrolyte interface (solid electrolyte interphase, SEI) and the delithiated lithium iron phosphate cathode/electrolyte interface (solid permeable interface, SPI) were compared. In the vicinity of the highly reductive graphite active material in the SEI, low binding energy components like Li2O were found while no obvious composition gradients were observed in the SPI. Both in the cathode SPI and the anode SEI, significant amounts of C-O and P‑F containing compounds were found to deposit during cycling. Evidence for mixing of the porous binder and other SEI/SPI components was observed in both the anode and cathode electrode/electrolyte interfaces. The lithiated graphite SEI was estimated to be of the order of two tens of nanometers, while the cathode SPI thickness was estimated to a few nanometers only. 

  • 28.
    Malmgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ciosek, Katarzyna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Plogmaker, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Kühn, Julius
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Consequences of Air Exposure on the Lithiated Graphite SEI2013In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 105, p. 83-91Article in journal (Refereed)
    Abstract [en]

    In the present work, consequences of air exposure on the surface composition of one of the most reactive lithium-ion battery components, the lithiated graphite, was investigated using 280–835 eV soft X-ray photoelectron spectroscopy (SOXPES) as well as 1486.7 eV X-ray photoelectron spectroscopy (XPS) (∼2 and ∼10 nm probing depth, respectively). Different depth regions of the solid electrolyte interphase (SEI) of graphite cycled vs. LiFePO4 were thereby examined. Furthermore, the air sensitivity of samples subject to four different combinations of pre-treatments (washed/unwashed and exposed to air before or after vacuum treatment) was explored. The samples showed important changes after exposure to air, which were found to be largely dependent on sample pre-treatment. Changes after exposure of unwashed samples exposed before vacuum treatment were attributed to reactions involving volatile species. On washed, air exposed samples, as well as unwashed samples exposed after vacuum treatment, effects attributed to lithium hydroxide formation in the innermost SEI were observed and suggested to be associated with partial delithiation of the surface region of the lithiated graphite electrode. Moreover, effects that can be attributed to LiPF6 decomposition were observed. However, these effects were less pronounced than those attributed to reactions involving solvent species and the lithiated graphite.

  • 29.
    Malmgren, Sara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ciosek, Katarzyna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Plogmaker, Stefan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Kühn, Julius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Consequences of air exposure on the lithiated graphite SEI2013In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 105, p. 83-91Article in journal (Refereed)
    Abstract [en]

    In the present work, consequences of air exposure on the surface composition of one of the most reactive lithium-ion battery components, the lithiated graphite, was investigated using 280-835 eV soft X-ray photoelectron spectroscopy (SOXPES) as well as 1486.7 eV X-ray photoelectron spectroscopy (XPS) (similar to 2 and similar to 10 nm probing depth, respectively). Different depth regions of the solid electrolyte interphase (SEI) of graphite cycled vs. LiFePO4 were thereby examined. Furthermore, the air sensitivity of samples subject to four different combinations of pre-treatments (washed/unwashed and exposed to air before or after vacuum treatment) was explored. The samples showed important changes after exposure to air, which were found to be largely dependent on sample pre-treatment. Changes after exposure of unwashed samples exposed before vacuum treatment were attributed to reactions involving volatile species. On washed, air exposed samples, as well as unwashed samples exposed after vacuum treatment, effects attributed to lithium hydroxide formation in the innermost SEI were observed and suggested to be associated with partial delithiation of the surface region of the lithiated graphite electrode. Moreover, effects that can be attributed to LiPF6 decomposition were observed. However, these effects were less pronounced than those attributed to reactions involving solvent species and the lithiated graphite. 

  • 30.
    Massel, Felix
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Ahmadi, Sareh
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Liu, Y.-S
    Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA, USA.
    Guo, J.-H.
    Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, CA, USA.
    Edvinsson, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Duda, Laurent
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Transition metal doping effects in Co-phosphate catalysts for water splitting studied with XAS2018In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, p. 3-7Article in journal (Refereed)
    Abstract [en]

    Metal oxides as oxygen evolution reaction (OER) catalysts for water splitting are ubiquitous in research and application. Pure and doped (or hybrid) Co oxide systems are of particular interest due to their good efficiency. However, the electronic effects of different dopants are still unclear in many of these systems. We present a study of doped Co-phosphate (P-i) films deposited electrochemically from aqueous solutions of neutral pH using an X-ray absorption spectroscopy (XAS), a technique that can reveal important information about catalytically active states. These hybrid films, obtained from solutions containing both Co ions and another transition metal (TM) ion (TM = Mn, Fe, Ni), were analyzed with XAS at the TM L-edges and the O K-edge. We find that a large concentration of Co3+-ions in the films and a low-lying edge of the O 2p conduction band (CB) are good indicators for the OER efficiency of the films. Our results show that native Co-P-i is close to optimal for the OER activity at low deposition potential. However, Mn- and Ni-doped systems have promising properties when deposited at higher potentials because these ions tend to stabilize the Co3+-state in the films as well as the position of the O 2p-edge CB (a few tenths of 1 eV), in contrast to native Co-Pi films.

  • 31.
    Massel, Felix
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Hikima, Kazuhiro
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Suzuki, Kota
    Hirayama, Masaaki
    Xu, Chao
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Liu, Yi-Sheng
    Guo, Jinghua
    Kanno, Ryoji
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Duda, Laurent
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Excess lithium in transition metal layers of epitaxially grown thin film cathodes of Li2MnO3 leads to rapid loss of covalency during first battery cycleIn: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455Article in journal (Other academic)
    Abstract [en]

    We have investigated the initial-cycle battery behavior of epitaxial thin films of Li2MnO3-cathodes by employing resonant inelastic X-ray scattering (RIXS) at the O K- and Mn L3-edges. Thin films (25 nm thickness) with Li/Mn-ratios of 2.06 (stoichiometric) and 2.27 (over-stoichiometric), respectively, were epitaxially grown by pulsed laser deposition and electrochemically cycled as battery cathodes in half-cell setup, stopped at potentials for full charge (delithiation) and complete discharge (relithiation), respectively, for X-ray analysis. Using RIXS, we find that significant anionic reactions take place in both materials upon initial delithiation. However, no signatures of localized oxygen holes are found in O K-RIXS of the Li2MnO3 regardless of Li/Mn-ratio. Instead, the top of the oxygen valence band is depleted of electrons forming delocalized empty states upon delithiation. Mn L-RIXS of the over-stoichiometric cathode material shows a progressive loss of charge transfer state intensity during the first battery cycle, revealing a more rapid loss of Mn--O covalency in the over-stoichiometric material.

  • 32.
    Naylor, Andrew J.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Maibach, Julia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Källquist, Ida
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Makkos, Eszter
    University of Bath, Department of Chemistry.
    Roberts, Matthew
    University of Oxford, Department of Materials.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Islam, Saiful
    University of Bath, Department of Chemistry.
    Bruce, Peter
    University of Oxford, Department of Materials.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Energy-tuned photoelectron spectroscopy of lithium-ion battery cathodes: revealing oxygen redox activity and investigating new materials2018In: ECS Meeting Abstracts MA2018-02 AiMES 2018 Meeting, 2018Conference paper (Other academic)
  • 33.
    Nordh, Tim
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Younesi, Reza
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Duarte, Roberto Felix
    Helmholz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany.
    Tengstedt, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Scania CV AB, S-15187 Sodertalje, Sweden.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Manganese in the SEI layer of Li4Ti5O12 studied using combined NEXAFS and HAXPES techniques2016In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 6, p. 3206-3213Article in journal (Refereed)
    Abstract [en]

    A combination of hard X-ray photoelectron spectroscopy (HAXPES) and near edge X-ray absorption fine structure (NEXAFS) are here used to investigate the presence and chemical state of crossover manganese deposited on Li-ion battery anodes. The synchrotron based experimental techniques-using HAXPES and NEXAFS analysis on the same sample in one analysis chamber-enabled us to acquire complementary sets of information. The Mn crossover and its influence on the anode interfacial chemistry has been a topic of controversy in the literature. Cells comprising lithium manganese oxide (LiMn2O4, LMO) cathodes and lithium titanate (Li4Ti5O12, LTO) anodes were investigated using LP40 (1 M LiPF6, EC:DEC 1:1) electrolyte. LTO electrodes at lithiated, delithiated, and open circuit voltage (OCV-stored) states were analyzed to investigate the potential dependency of the manganese oxidation state. It was primarily found that a solid surface layer was formed on the LTO electrode and that this layer contains deposited Mn from the cathode. The results revealed that manganese is present in the ionic state, independent of the lithiation of the LTO electrode. The chemical environment of the deposited manganese could not be assigned to simple compounds such as fluorides or oxides, indicating that the state of manganese is in a more complex form.

  • 34.
    Oscarsson, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Johansson, Erik M. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Eriksson, Susanna K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
    Lindblad, Rebecka
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Eriksson, Anna I. K.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Zia, Azhar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Coadsorption of Dye Molecules at TiO2 Surfaces: A Photoelectron Spectroscopy Study2016In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 120, no 23, p. 12484-12494Article in journal (Refereed)
    Abstract [en]

    The effects of coadsorbing the amphiphilic ruthenium-based dye Z907 (cis-bis(isothiocyanato)(2,20-bipyridy1-4,40-dicarboxylato)(4,40-dinony1-20-bipyridy1)-ruthenium(II)) with the coadsorbent DPA (n-decylphosphonic acid) and with the organic dye D35 ((E)-3-(5-(4-(bis(2',4'-dibutoxybiphenyl-4-yl)amino)phenyl)thiophen-2-yl)-2-cyanoacrylic acid) on mesoporous TiO2 were investigated using photoelectron spectroscopy (PES). Z907 is expected to adsorb to the TiO2 surface via the carboxylic acid groups. However, Z907 also shows signs of interacting with the TiO2 via the sulfur of the thiocyanate groups, and this interaction is affected by both the addition of DPA and D35. DPA, when added, exchanges with Z907 at the TiO2 surface, and each Z907 is replaced by six DPA molecules, but it does not affect the energy level alignment between Z907 and TiO2 substantially. Adding D35 to Z907 induces changes in the adsorption configuration of Z907 by the means of suppressing the interaction of the thiocyanate ligands and the TiO2 surface. The HOMO level of Z907 is shifted by the addition of D35. Coadsorbing Z907 with D35 thus gives changes at a molecular level, meaning that this is an example of collaborative sensitization.

  • 35.
    Ottosson, Mikael
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berastegui, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Andersson, Yvonne
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Korvela, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Berger, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Response to the comments by P. Szakalos, T. angstrom kermark and C. Leygraf on the paper "Copper in ultrapure water, a scientific issue under debate"2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 142, p. 308-311Article in journal (Other academic)
  • 36.
    Ottosson, Mikael
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Boman, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Berastegui, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Andersson, Yvonne
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Hedlund, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Korvela, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Berger, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Copper in ultrapure water, a scientific issue under debate2017In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 122, p. 53-60Article in journal (Refereed)
    Abstract [en]

    The corrosion properties of copper in ultrapure water have been studied experimentally by submerging copper samples (99.9999%) in pure water for up to 29 months. The surface was first electropolished at ambient temperature, then exposed to hydrogen gas treatment at 300-400 degrees C, thereby reducing the bulk hydrogen content to 0.03 ppm. These copper samples, the water and the glassware were all then subjected to precise chemical analysis. Great care was taken to avoid contamination. After exposure, only similar to 6 mu g/L copper had accumulated in the water phase. Electron spectroscopy could not detect Cu2O or any other oxidation products containing copper.

  • 37.
    Philippe, Bertrand
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjörn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry. Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Siegbahn, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Photoelectron Spectroscopy for Lithium Battery Interface Studies2016In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 163, no 2, p. A178-A191Article in journal (Refereed)
    Abstract [en]

    Photoelectron spectroscopy (PES) has become an important tool for investigating Li-ion battery materials, in particular for analyzing interfacial structures and reactions. Since the methodology was introduced in the battery research area, PES has undergone a dramatic development regarding photon sources, sample handling and electron energy analyzers. This includes the possibility to use synchrotron radiation with increased intensity and the possibility to vary the photon energy. The aim of the present paper is to describe how PES can be used to investigate battery interfaces and specifically highlight how synchrotron based PES has been implemented to address different questions useful for the development of the Li-ion batteries. We also present some recent developments of the techniques, which have the potential to further push the limits for the use of photoelectron spectroscopy in battery research.

  • 38.
    Valvo, Mario
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Rehnlund, David
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Lafont, Ugo
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries2014In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, no 25, p. 9574-9586Article in journal (Refereed)
    Abstract [en]

    The generation of a distribution of nanoparticles upon conversion reaction of thin Cu2O layers is demonstrated to produce a wide electrochemical potential window, as well as a distinctive capacity increase in large area three-dimensional electrodes. Cu nanopillars with a 10-15 nm Cu2O coating containing traces of nanocrystattine Fe2O3 yield capacities up to 0.265 mA h cm(-2) (at 61 mA g(-1)), excellent cycling for more than 300 cycles and an electroactive potential window larger than 2 V. due to the size effects caused by the various Cu/Cu2O nanopartictes formed during conversion/deconversion. These 3D Li-ion battery electrodes based on etectrodeposited Cu nanopillars spontaneously coated with a Cu2O layer are compatible with current densities of 16 A g(-1) (i.e. 61 C rates) after aerosol-assisted infiltration with an iron acetate solution followed by low-temperature pyrolysis. The capacity of the composite material increases by 67% during 390 cycles due to the growth of the electroactive area during the electrochemical milling of Cu2O forced by its repeated conversion/de-conversion. The latter generates a distribution of nanoparticles with different sizes and redox potentials, which explains the broad potential window, as well as the significant capacity contribution from double layer charging. These 3D electrodes should be well-suited for Li-ion microbatteries and Li-ion batteries in general, since they combine high capacities per footprint area with excellent power capabilities. More importantly, such electrodes grant access to fundamental understanding of the electrochemical behaviour of these active materials providing new insights into both conversion mechanisms and nanostructured interfaces more in general.

  • 39.
    Xu, Chao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Sun, Bing
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Gustafsson, Torbjorn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Brandell, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study2014In: JOURNAL OF MATERIALS CHEMISTRY A, ISSN 2050-7488, Vol. 2, no 20, p. 7256-7264Article in journal (Refereed)
    Abstract [en]

    The first characterization studies of the interface layer formed between a Li-ion battery electrode and a solid polymer electrolyte (SPE) are presented here. SPEs are well known for their electrochemical stability and excellent safety, and thus considered good alternatives to conventional liquid/gel electrolytes in high-energy density battery devices. This work comprises studies of solid electrolyte interphase (SEI) formation in SPE-based graphite|Li cells using X-ray photoelectron spectroscopy (XPS). SPEs based on high molecular weight poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt are studied. Large amounts of LiOH are observed, and the XPS results indicate a correlation with moisture contamination in the SPEs. The water contents are quantitatively determined to be in the range of hundreds of ppm in the pure PEO as well as in the polymer electrolytes, which are prepared by a conventional SPE preparation method using different batches of PEO and at different drying temperatures. Moreover, severe salt degradation is observed at the graphite-SPE interface after the 1st discharge, while the salt is found to be more stable at the Li-SPE interface or when using LiTFSI-based liquid electrolyte equivalents.

  • 40.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Björefors, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Johansson, Patrik
    Department of Applied Physics, Chalmers University of Technology.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study2013In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 25, no 1, p. 77-84Article in journal (Refereed)
    Abstract [en]

    The chemical stability of the Li-O2 battery components (cathode and electrolyte) in contact with lithiumperoxide (Li2O2) was investigated using X-ray photoelectron spectroscopy (XPS). XPS is a versatile method to detect amorphous as well as crystalline decomposition products of both salts and solvents. Two strategies were employed. First, cathodes including carbon, α‑MnO2 catalyst, and Kynar binder (PVdF-HFP) were exposed to Li2O2 and LiClO4 in propylenecarbonate (PC) or (tetraethylene glycol dimethyl ether) TEGDME electrolytes. The results indicated that Li2O2 degrades TEGDME to carboxylate containing species and that the decomposition products in turn degraded the Kynar binder. The α‑MnO2 catalyst was unaffected. Second, Li2O2 model surfaces were kept in contact with different electrolytes to investigate the chemical stability, and also the resulting surface layer on Li2O2. Further, the XPS experiments revealed that the Li salts LiPF6, LiBF4, and LiClO4 decomposed to form LiF or LiCl together with P-O or B-O bond containing compounds when exposed to Li2O2. PC decomposed to carbonate and ether based species. The degradation of the electrolytes increased from short to long exposure time indicating that the surface layer on Li2O2 became thicker by increasing time. Overall, it was shown that a mixture of ethylene carbonate and diethyl carbonate (EC/DEC) is more robust in contact with Li2O2 compared to PC.

  • 41.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Degradation Products on Li-Negative Electrode and the Carbon Cathode in Li-O2 Batteries2012Conference paper (Refereed)
  • 42.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Surface Characterization of the Carbon Cathode and the Lithium Anode of Li-O2 Batteries using LiClO4 or LiBOB salts2013In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, no 4, p. 1333-1341Article in journal (Refereed)
    Abstract [en]

    The surface compositions of a MnO2 catalyst containing carbon cathode and a Li anode in a Li–O2 battery were investigated using synchrotron-based photoelectron spectroscopy (PES). Electrolytes comprising LiClO4 or LiBOB salts in PC or EC:DEC (1:1) solvents were used for this study. Decomposition products from LiClO4 or LiBOB were observed on the cathode surface when using PC. However, no degradation of LiClO4 was detected when using EC/DEC. We have demonstrated that both PC and EC/DEC solvents decompose during the cell cycling to form carbonate and ether containing compounds on the surface of the carbon cathode. However, EC/DEC decomposed to a lesser degree compared to PC. PES revealed that a surface layer with a thickness of at least 1–2 nm remained on the MnO2 catalyst at the end of the charged state. It was shown that the detachment of Kynar binder influences the surface composition of both the carbon cathode and the Li anode of Li–O2 cells. The PES results indicated that in the charged state the SEI on the Li anode is composed of PEO, carboxylates, carbonates, and LiClO4 salt.

  • 43.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Roberts, Matthew
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The SEI Layer Formed on Lithium Metal in the Presence of Oxygen: A Seldom Considered Component in the Development of the Li-O2 battery2013In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 225, p. 40-45Article in journal (Refereed)
    Abstract [en]

    The SEI layer formed on metallic Li which has been used as an anode in a Li-O2 battery is studied for the first time. We have used XPS to monitor the surface composition of the lithium electrode and have identified the various chemical species present. The XPS results indicated that the composition of the SEI layer is affected by the presence of oxygen and is unstable during cycling. We also observed decomposition products from the binder material used in the cathode on the surface of the lithium anode. This new SEI layer has an increased resistance affecting the lithium deposition which is essential for battery operation.

  • 44.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Treskow, Marcel
    Department of Applied Physics, Chalmers University of Technology.
    Scheers, Johan
    Department of Applied Physics, Chalmers University of Technology.
    Johansson, Patrik
    Department of Applied Physics, Chalmers University of Technology.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-€“O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES)2012In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 35, p. 18597-18604Article in journal (Refereed)
    Abstract [en]

    Li-O2 cells composed of a carbon cathode containing an α-MnO2 nanowire catalyst and a Kynar (PVDF-HFP) binder were cycled with different electrolytes containing 0.5 M LiB(CN)4 salt in polyethylene glycol dimethyl ether (PEGDME) or tetraethylene glycol dimethyl ether (Tetraglyme) solvents. All cells exhibited fast capacity fading. To explain this, the surface chemistry of the carbon electrodes were investigated by synchrotron based hard X-ray photoelectron spectroscopy (HAXPES) using two photon energies of 2300 and 6900 eV. It is shown that the LiB(CN)4 salt and Kynar binder were degraded during cycling, forming a layer composed of salt and binder residues on the cathode surface. The degradation mechanism of the salt differed in the two tested solvents and, consequently, different types of boron compounds were formed during cycling. Larger amounts of the degraded salt was observed using Tetraglyme as the solvent. With a nonfluorined Li-salt, the observed formation of LiF, which might be a reason for the observed blockage of pores in the cathode and for the observed capacity fading, must be due to Kynar binder decomposition. The amount of LiF formed in the PEGDME cell was larger than that formed in the Tetraglyme cell. The results indicate that not only the electrolyte solvent, but also electrolyte salt as well as the binder used for the porous cathode must be carefully considered when building a successful rechargeable Li-O2 battery.

  • 45.
    Younesi, Reza
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Urbonaite, Sigita
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Edström, Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Hahlin, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    The Cathode Surface Composition of a Cycled Li–O2 Battery: A Photoelectron Spectroscopy Study2012In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 39, p. 20673-20680Article in journal (Refereed)
    Abstract [en]

    A layer of reaction products, dominantly built up of C and O in the form of ethers and lithium alkyl carbonates, is formed on the surface of the carbon cathode during discharge of a Li–O2 battery in an electrolyte of 1 M LiPF6 in PC. The results are based on a detailed surface analysis combining the use of in house X-ray photoelectron spectroscopy (XPS) and synchrotron based hard X-ray photoelectron spectroscopy (HAXPES). The Li–O2 batteries were investigated at uncycled state (stored), after the first discharge, after the first charge, and at the end of life (discharge state). The results showed little to no Li2O2 and/or Li2O among the discharge products. The surface layers on the cathode were dominantly removed during charging of the battery. At the end of battery life, no complete discharge product layer is formed. The cathodes showed a strong indication of binder decomposition during cycling of the Li–O2 cell. Overall, the results obtained in this investigation show that the whole cathode formulation as well as the electrolyte composition need a completely new approach for the realization of a recyclable Li–O2 battery.

1 - 45 of 45
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf