uu.seUppsala University Publications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Arrendal, Johanna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Animal Ecology.
    Vilà, Carles
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Björklund, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Animal Ecology.
    Reliability of noninvasive genetic census of otters compared to field censuses2007In: Conservation Genetics, ISSN 1566-0621, E-ISSN 1572-9737, Vol. 8, no 5, p. 1097-1107Article in journal (Refereed)
    Abstract [en]

    Conservation and management actions are often highly dependent on accurate estimations of population sizes. However, these estimates are difficult to obtain for elusive and rare species. We compared two census methods for Eurasian otter: snow tracking and noninvasive genetic census based on the genotyping of faecal samples. With the noninvasive genetic census we detected the presence of almost twice as many otters as with snow tracking (23 and 10–15, respectively), and mark-recapture estimates based on the genetic census indicated that the real number of otters could be even higher. Our results indicate that snow tracking tends to underestimate the number of individuals and also that it is more susceptible to subjective assessment. We compared the strengths and weaknesses of the two methods.

  • 2.
    Arrendal, Johanna
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Animal Ecology. Zooekologi.
    Walker, CF
    Sundqvist, AK
    Hellborg, L
    Vila, Carles
    Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Animal Ecology.
    Genetic evaluation of an otter transocation program2004In: Conservation Genetics, Vol. 5, p. 79-88Article in journal (Refereed)
  • 3. Aspi, J
    et al.
    Roininen, E
    Ruokonen, M
    Kojola, I
    Vila, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evoutionary biology.
    Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population.2006In: Mol Ecol, ISSN 0962-1083, Vol. 15, no 6, p. 1561-76Article in journal (Refereed)
    Abstract [en]

    The Finnish wolf population (Canis lupus) was sampled during three different periods (1996-1998, 1999-2001 and 2002-2004), and 118 individuals were genotyped with 10 microsatellite markers. Large genetic variation was found in the population despite a recent demographic bottleneck. No spatial population subdivision was found even though a significant negative relationship between genetic relatedness and geographic distance suggested isolation by distance. Very few individuals did not belong to the local wolf population as determined by assignment analyses, suggesting a low level of immigration in the population. We used the temporal approach and several statistical methods to estimate the variance effective size of the population. All methods gave similar estimates of effective population size, approximately 40 wolves. These estimates were slightly larger than the estimated census size of breeding individuals. A Bayesian model based on Markov chain Monte Carlo simulations indicated strong evidence for a long-term population decline. These results suggest that the contemporary wolf population size is roughly 8% of its historical size, and that the population decline dates back to late 19th century or early 20th century. Despite an increase of over 50% in the census size of the population during the whole study period, there was only weak evidence that the effective population size during the last period was higher than during the first. This may be caused by increased inbreeding, diminished dispersal within the population, and decreased immigration to the population during the last study period.

  • 4. Bermejo, Magdalena
    et al.
    Rodríguez-Teijeiro, José Domingo
    Illera, Germán
    Barroso, Alex
    Vila, Carles
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionary Biology.
    Walsh, Peter D
    Ebola outbreak killed 5000 gorillas.2006In: Science, ISSN 1095-9203, Vol. 314, no 5805, p. 1564-Article in journal (Refereed)
    Abstract [en]

    Over the past decade, the Zaire strain of Ebola virus (ZEBOV) has repeatedly emerged in Gabon and Congo. Each human outbreak has been accompanied by reports of gorilla and chimpanzee carcasses in neighboring forests, but both the extent of ape mortality and the causal role of ZEBOV have been hotly debated. Here, we present data suggesting that in 2002 and 2003 ZEBOV killed about 5000 gorillas in our study area. The lag between neighboring gorilla groups in mortality onset was close to the ZEBOV disease cycle length, evidence that group-to-group transmission has amplified gorilla die-offs.

  • 5.
    Björnerfeldt, Susanne
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Webster, Matthew T.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Vilà, Carles
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Relaxation of selective constraint on dog mitochondrial DNA following domestication2006In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 16, no 8, p. 990-994Article in journal (Refereed)
    Abstract [en]

    The domestication of dogs caused a dramatic change in their way of life compared with that of their ancestor, the gray wolf. We hypothesize that this new life style changed the selective forces that acted upon the species, which in turn had an effect on the dog's genome. We sequenced the complete mitochondrial DNA genome in 14 dogs, six wolves, and three coyotes. Here we show that dogs have accumulated nonsynonymous changes in mitochondrial genes at a faster rate than wolves, leading to elevated levels of variation in their proteins. This suggests that a major consequence of domestication in dogs was a general relaxation of selective constraint on their mitochondrial genome. If this change also affected other parts of the dog genome, it could have facilitated the generation of novel functional genetic diversity. This diversity could thus have contributed raw material upon which artificial selection has shaped modern breeds and may therefore be an important source of the extreme phenotypic variation present in modern-day dogs.

  • 6.
    Hailer, Frank
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Helander, B.
    Folkestad, A. O.
    Ganusevich, S. A.
    Garstad, S.
    Hauff, P.
    Koren, C.
    Nygård, T.
    Volke, V.
    Vilà, Carles
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Ellegren, Hans
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline2006In: Biology Letters, ISSN 1744-9561, E-ISSN 1744-957X, Vol. 2, no 2, p. 316-319Article in journal (Refereed)
    Abstract [en]

    Most of the white-tailed eagle (Haliaeetus albicilla) populations in Europe experienced dramatic declines during the twentieth century. However, owing to intense conservation actions and the ban of DDT and other persistent pollutants, populations are currently recovering. We show that despite passing through demographic bottlenecks, white-tailed eagle populations have retained significant levels of genetic diversity. Both genetic and ringing data indicate that migration between populations has not been a major factor for the maintenance of genetic variability. We argue that the long generation time of eagles has acted as an intrinsic buffer against loss of genetic diversity, leading to a shorter effective time of the experienced bottleneck. Notably, conservation actions taken in several small sub-populations have ensured the preservation of a larger proportion of the total genetic diversity than if conservation had focused on the population stronghold in Norway. For conservation programmes targeting other endangered, long-lived species, our results highlight the possibility for local retention of high genetic diversity in isolated remnant populations.

  • 7.
    Leonard, JA
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evol Biol.
    Vila, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evol Biol.
    Wayne, RK
    From wild wolf to domestic dog2006In: The dog and its genome, Cold Spring Harbor Laboratory Press, New York , 2006Chapter in book (Other scientific)
  • 8.
    Muñoz-Fuentes, Violeta
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionary Biology.
    Green, Andy J
    Sorenson, Michael D
    Negro, Juan J
    Vila, Carles
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionary Biology.
    The ruddy duck Oxyura jamaicensis in Europe: natural colonization or human introduction?2006In: Mol Ecol, ISSN 0962-1083, Vol. 15, no 6, p. 1441-53Article in journal (Refereed)
    Abstract [en]

    Native to North America, ruddy ducks Oxyura jamaicensis now occur in 21 countries in the western Palaearctic (including Iceland) and their expanding population threatens the native white-headed duck, Oxyura leucocephala, through hybridization and possibly competition for food and nest sites. We used mitochondrial DNA sequences and nuclear microsatellites to test whether the European ruddy duck population is descended solely from the captive population in the UK, which traces to seven individuals imported from the USA in 1948, or, alternatively, has been augmented by natural dispersal of birds from North America. Limited genetic diversity in the European population is consistent with a founder population as small as seven birds. In addition, shifts in allele frequencies at several loci, presumably due to genetic drift in the founding population, result in significant differentiation between the European and North American populations. Despite the recent separation of these populations, almost all individuals could be unambiguously assigned based on their composite genotypes, to one of two distinct populations, one comprising all of the European ruddy ducks we sampled (including those from Iceland and captive birds in the UK) and the other comprising all North American samples. Our results confirm that the European ruddy duck population is likely to derive solely from the captive population in the UK and we find no evidence of recent arrivals from North America or of admixture between ruddy ducks from Europe and North America.

  • 9. Ramirez, O.
    et al.
    Altet, L.
    Enseñat, C.
    Vilà, Carles
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Sanchez, A.
    Ruiz, A.
    Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program2006In: Conservation Genetics, ISSN 1566-0621, E-ISSN 1572-9737, Vol. 7, no 6, p. 861-878Article in journal (Refereed)
    Abstract [en]

    The main goal of ex situ conservation programs is to improve the chances of long term survival of natural populations by founding and managing captive colonies that can serve as a source of individuals for future reintroductions or to reinforce existing populations. The degree in which a captive breeding program has captured the genetic diversity existing in the source wild population has seldom been evaluated. In this study we evaluate the genetic diversity in wild and captive populations of the Iberian wolf, Canis lupus signatus, in order to assess how much genetic diversity is being preserved in the ongoing ex situ conservation program for this subspecies. A sample of domestic dogs was also included in the analysis for comparison. Seventy-four wolves and 135 dogs were genotyped at 13 unlinked microsatellite loci. The results show that genetic diversity in Iberian wolves is comparable in magnitude to that of other wild populations of gray wolf. Both the wild and the captive Iberian wolf populations have a similarly high genetic diversity indicating that no substantial loss of diversity has occurred in the captive-breeding program. The effective number of founders of the program was estimated as similar to 16, suggesting that all founders in the studbook pedigree were genetically independent. Our results emphasize also the genetic divergence between wolves and domestic dogs and indicate that our set of 13 microsatellite loci provide a powerful diagnostic test to distinguish wolves, dogs and their hybrids.

  • 10.
    Vila, C
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evol Biol.
    Leonard, JA
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evol Biol.
    Origin of dog breed diversity2006In: The Behavioural biology of dogs, CAB Internation , 2006Chapter in book (Other scientific)
  • 11.
    Vila, C
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Leonard, JA
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Beja-Pereira, A
    Genetic documentation of horse and donkey domestication.2006In: Documenting Domestication: New Genetic and Archaeological Paradigms., University of California Press, Berkley , 2006Chapter in book (Other scientific)
  • 12. Wayne, RK
    et al.
    Leonard, JA
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Evol Biol.
    Vila, C
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Evol Biol.
    Genetic analysis of dog domestication2006In: Documenting Domestication: New genetic and archaeological paradigms, University of California Press, Berkeley , 2006Chapter in book (Other scientific)
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf