uu.seUppsala University Publications
Change search
Refine search result
1 - 30 of 30
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Andersen, Thomas L.
    et al.
    Friis, Stig D.
    Audrain, Helene
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Skrydstrup, Troels
    Efficient C-11-Carbonylation of Isolated Aryl Palladium Complexes for PET: Application to Challenging Radiopharmaceutical Synthesis2015In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 137, no 4, p. 1548-1555Article in journal (Refereed)
    Abstract [en]

    We describe the successful implementation of palladium-aryl oxidative addition complexes as stoichiometric reagents in carbonylation reactions with (CO)-C-11 to produce structurally challenging, pharmaceutically relevant compounds. This method enables the first C-11-carbonyl labeling of an approved PET tracer, [C-11]raclopride, for the dopamine D2/D3 receptor by carbonylation with excellent radiochemical purity and yield. Two other molecules, [C-11]olaparib and [C-11]JNJ 31020028, were efficiently labeled in this manner. The technique distinguishes itself from existing methods by the markedly improved purity profiles of the tracer molecules produced and provides access to complex structures in synthetically useful yields, hereby offering a viable alternative to other C-11-labeling strategies.

  • 2.
    Andersen, Thomas L.
    et al.
    Aarhus Univ, Carbon Dioxide Activat Ctr CADIAC, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark..
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Christoffersen, Heidi F.
    Aarhus Univ, Carbon Dioxide Activat Ctr CADIAC, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark..
    Audrain, Helene
    Aarhus Univ Hosp, Dept Nucl Med, DK-8000 Aarhus, Denmark.;Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Skrydstrup, Troels
    Aarhus Univ, Carbon Dioxide Activat Ctr CADIAC, Dept Chem, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark..
    Application of Methyl Bisphosphine-Ligated Palladium Complexes for Low Pressure N-C-11-Acetylation of Peptides2017In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 56, no 16, p. 4549-4553Article in journal (Refereed)
    Abstract [en]

    A mild and effective method is described for C-11-labeling of peptides selectively at the N-terminal nitrogen or at internal lysine positions. The presented method relies on the use of specific biphosphine palladium-methyl complexes and their high reactivity towards amino-carbonylation of amine groups in the presence [C-11] carbon monoxide. The protocol facilitates the production of native N-C-11-acetylated peptides, without any structural modifications and has been applied to a selection of bioactive peptides.

  • 3.
    Bergman, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brandt, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Synthesis of 11C-Labelled Ureas by Palladium(II)-Mediated Oxidative Carbonylation2017In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 22, no 10, article id 1688Article in journal (Refereed)
    Abstract [en]

    Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [C-11] carbon monoxide. Starting with amines and [C-11] carbon monoxide, both symmetrical and unsymmetrical C-11-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [C-11] carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/mu mol-319 GBq/mu mol). DFT calculations were found to support a reaction mechanism proceeding through an C-11-labelled isocyanate intermediate.

  • 4.
    Dahl, Kenneth
    et al.
    Karolinska Institute, Stockholm, Sweden.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    11C-Acetylation of Amines with [11C]Methyl Iodide with Bis(cyclopentadienyldicarbonyliron) as the CO Source2017In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 38, p. 5785-5788Article in journal (Refereed)
    Abstract [en]

    We describe herein a novel approach for the direct 11C-acetylation of amines. The carbonylative protocol is palladium-mediated, uses bis(cyclopentadienyldicarbonyliron) as the CO source, and [11C]methyl iodide or [11C]methyl iodide-D3 as a radioactive precursor. A set of functionalized primary and secondary amines was 11C-labelled in radiochemical yields ranging from 7–85 %. The potential use of this method for positron emission tomography radiotracer production was additionally demonstrated by the radiosynthesis of [11C]lacosamide, [11C]melatonine, and [11C]acecainide in 44–55 % RCY.

  • 5.
    Dahl, Kenneth
    et al.
    Karolinska Insititute, Ctr Psychiat Res, Karolinska Hosp, Dept Clin Neurosci, SE-17176 Stockholm, Sweden..
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    C-11-Carbonylation through in Situ Generated C-11-Benzoyl Chlorides with Tetrabutylammonium Chloride as Chloride Source2017In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 18, p. 2648-2651Article in journal (Refereed)
    Abstract [en]

    Aromatic C-11-containing acids, amides, esters, and aldehydes were obtained through a novel C-11-carbonylative reaction. In the two-step process, aryl iodides are first reacted with (CO)-C-11 and tetrabutylammonium chloride in a palladium-mediated reaction to yield C-11-benzoyl chlorides in situ. The crude mixture is then further treated with either a hydroxide, amine, alcohol, or a hydride in a second vial to furnish the final C-11-carbonyl product. The monodentate ligand tri-tert-butylphosphonium tetrafluoroborate was proven to be crucial for obtaining high radiochemical yields (RCY). A wide range of C-11-containing carbonyl compounds were successfully radiolabeled in moderate to excellent RCYs, ranging from 41-93%. The synthetic retinoic acid tamibarotene was obtained in a RCY of 89%, whereas the Boc-protected procainamide was labelled in 68% RCY, which is a significantly increase (2-3 fold) in RCY compared to other published methods.

  • 6.
    Datta, Gopal K.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Dackenberg, Jakob
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nilsson, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. ORGFARM.
    Hallberg, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Enantiopure 2-Aryl-2-Methyl Cyclopentanones by an Asymmetric Chelation-Controlled Heck Reaction Using Aryl Bromides: Increased Preparative Scope and Effect of Ring Size on Reactivity and Selectivity2008In: Tetrahedron: asymmetry, ISSN 0957-4166, E-ISSN 1362-511X, Vol. 19, no 9, p. 1120-1126Article in journal (Refereed)
    Abstract [en]

    Quaternary 2-aryl-2-methyl cyclopentanones were obtained in 85–94% ee via Pd(0)-catalyzed chelation-controlled asymmetric arylation of a cyclopentenyl ether with aryl bromides and subsequent hydrolysis. Two new cyclohexenyl ethers were synthesized and evaluated as Heck substrates with both aryl iodides and bromides under different reaction conditions. Arylations of the six-membered vinyl ether 1-methyl-2-(S)-(cyclohex-1-enyloxymethyl)-pyrrolidine with aryl bromides were achieved with t-Bu3P-promoted palladium catalysis using either classical or microwave heating. Isolated Heck products were also obtained in high diastereoselectivities (94–98% de).

  • 7.
    Elgland, M.
    et al.
    Linkopings Univ, IFM Dept Biol Chem & Phys, S-58183 Linkoping, Sweden..
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Fyrner, T.
    Linkopings Univ, IFM Dept Biol Chem & Phys, S-58183 Linkoping, Sweden..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Nilsson, K. Peter R.
    Linkopings Univ, IFM Dept Biol Chem & Phys, S-58183 Linkoping, Sweden..
    Konradsson, P.
    Linkopings Univ, IFM Dept Biol Chem & Phys, S-58183 Linkoping, Sweden..
    beta-Configured clickable [F-18] FDGs as novel F-18-fluoroglycosylation tools for PET2017In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 41, no 18, p. 10231-10236Article in journal (Refereed)
    Abstract [en]

    In oncology and neurology the F-18-radiolabeled glucose analogue 2-deoxy-2-[F-18]fluoro-D-glucose ([F-18]FDG) is by far the most commonly employed metabolic imaging agent for positron emission tomography (PET). Herein, we report a novel synthetic route to beta-configured mannopyranoside precursors and a chemoselective F-18-fluoroglycosylation method that employ two b-configured [F-18]FDG derivatives equipped with either a terminal azide or alkyne aglycon respectively, for use as a CuAAC clickable tool set for PET. The b-configured precursors provided the corresponding [F-18]FDGs in a radiochemical yield of 77-88%. Further, the clickability of these [F-18]FDGs was investigated by click coupling to the suitably functionalized Fmoc-protected amino acids, Fmoc-N-(propargyl)-glycine and Fmoc-3-azido-L-alanine, which provided the F-18-fluoroglycosylated amino acid conjugates in radiochemical yields of 75-83%. The F-18-fluoroglycosylated amino acids presented herein constitute a new and interesting class of metabolic PET radiotracers.

  • 8.
    Elgland, Mathias
    et al.
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Fyrner, Timmy
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Konradsson, Peter
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Nilsson, Peter
    Linkoping Univ, Dept Phys Chem & Biol IFM, Linkoping, Sweden.
    Synthesis of beta-configured clickable [18F]FDGs as novel 18F-fluoroglycosylation tools for PET in vivo imaging2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 9.
    Gonzalez, Miguel A. Cortes
    et al.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Gomez, Antonio Bermejo
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden;Karolinska Inst, AstraZeneca PET Ctr, SE-17176 Stockholm, Sweden.
    Meyer, Denise N.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Schou, Magnus
    Karolinska Inst, AstraZeneca PET Ctr, SE-17176 Stockholm, Sweden.
    Szabo, Kalman J.
    Stockholm Univ, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    [18F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 34, p. 4286-4289Article in journal (Refereed)
    Abstract [en]

    Operationally simple radiosynthesis and purification of [F-18]fluoro-benziodoxole was developed starting from a cyclotron produced [F-18]F- precursor, [F-18]TBAF, and tosyl-benziodoxole. The synthetic utility of [F-18]fluoro-benziodoxole was demonstrated by electrophilic fluorocyclization of o-styrilamides proceeding with high RCC (typically 50-90%) and high molar activity (up to 396 GBq mol(-1)).

  • 10.
    Heurling, Kerstin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Moreno, Anaisa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala Univ, Uppsala, Sweden..
    Kullberg, Joel
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Rosqvist, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging. Univ Uppsala Hosp, Uppsala, Sweden..
    Eriksson, J. P.
    Univ Uppsala Hosp, Uppsala, Sweden..
    Nordeman, Patrik
    Univ Uppsala Hosp, Uppsala, Sweden..
    Sprycha, M.
    Univ Uppsala Hosp, Uppsala, Sweden..
    Wilking, H.
    Univ Uppsala Hosp, Uppsala, Sweden..
    Edner, A. Gronowski
    Univ Uppsala Hosp, Uppsala, Sweden..
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Uppsala, Sweden..
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Univ Uppsala Hosp, Uppsala, Sweden..
    Risérus, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism.
    Impact of overfeeding with saturated and polyunsaturated fat on hepatic [C-11]palmitate uptake and fat content using PET-MR2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S448-S448Article in journal (Refereed)
  • 11.
    Jonasson, My
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp..
    Comasco, Erika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neuro-psycho-pharmacology.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Wilking, H.
    Uppsala Univ Hosp..
    De Grauw, Haro
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neuro-psycho-pharmacology.
    Takahashi, K.
    RIKEN Ctr Life Sci Technol..
    Antoni, G.
    Uppsala Univ Hosp..
    Sundström Poromaa, Inger
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala Univ Hosp..
    Tracer kinetic analysis of [C-11] Cetrozole as a PET tracer for aromatase in the human brain2017In: Journal of Cerebral Blood Flow and Metabolism, ISSN 0271-678X, E-ISSN 1559-7016, Vol. 37, p. 71-72Article in journal (Other academic)
  • 12.
    Mane, Rajendra S
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, Luke R
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Palladium-Catalyzed Carbonylative Synthesis of N-Cyanobenzamides from Aryl Iodides/Bromides and Cyanamide2013In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 54, no 50, p. 6912-6915Article in journal (Refereed)
    Abstract [en]

    A novel and convenient protocol for the synthesis of N-cyanobenzamides starting from readily available aryl halides and cyanamide via palladium-catalyzed aminocarbonylation has been developed. The protocol utilizes Mo(CO)6 as the CO source or CO(gas) and affords the desired N-cyanobenzamides in moderate to good yields.

  • 13.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Development of Palladium-Promoted 11C/12C-Carbonylations and Radiosynthesis of Amyloid PET Ligands2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the first part of this thesis, palladium(0)-catalyzed and -mediated carbonylations are discussed. Paper I describes a new method for the safe, efficient use of a solid carbon monoxide source in the synthesis of primary and secondary benzamides. In total, 35 benzamides were synthesized from aryl iodides (20 examples, 69-97% yield) and aryl bromides (15 examples, 32-93% yield). Reduction-prone groups were used successfully in the reactions. In paper II, the same protocol was adopted for the palladium(0)-catalyzed synthesis of N-cyanobenzamides from aryl iodides/bromides, carbon monoxide and cyanamide. In total, 22 N-cyanobenzamides were synthesized (42-88% yield). The radiosynthesis of [11C]N-cyanobenzamides is discussed in paper III. In total, 22 compounds were synthesized from various aryl halides in 28-79% decay corrected radiochemical yield. The protocol was then applied to the radiosynthesis of [11C]N-cyanobenzamide analogs of flufenamic acid and dazoxibene.

    In the second part of this thesis, compounds of interest in relation to amyloid diseases are discussed. Paper IV describes the solid-phase synthesis of BACE-1 enzyme inhibitors containing secondary and tertiary hydroxyl as the transition state isostere. In total, 22 inhibitors were synthesized. The most potent compound (IC50= 0.19 µM) was co-crystallized at the active site of the enzyme to reveal a new binding mode. In paper V, the evaluation of a potent BACE-1 inhibitor as a potential radiotracer for use in PET is described. The radiolabeled [11C]BSI-IV was obtained in 29±12% decay corrected radiochemical yield by a three-component palladium(0)-mediated aminocarbonylation. Its properties as a potential PET tracer were investigated in vitro by autoradiography and in vivo in rats using small animal PET-CT. A new class of amyloid-binding PET ligands is described in paper VI. Three polythiophenes were labeled with carbon-11 or fluorine-18 (26-43% decay-corrected radiochemical yield). The in vitro studies showed that these ligands bind specifically to amyloid deposits. In vivo PET showed low uptake in the organs of interest in healthy rats and a monkey. These results suggest the labeled thiophenes derivatives could be useful as PET tracers for the study of amyloid diseases.

    List of papers
    1. Aminocarbonylations Employing Mo(CO)(6) and a Bridged Two-Vial System: Allowing the Use of Nitro Group Substituted Aryl Iodides and Aryl Bromides
    Open this publication in new window or tab >>Aminocarbonylations Employing Mo(CO)(6) and a Bridged Two-Vial System: Allowing the Use of Nitro Group Substituted Aryl Iodides and Aryl Bromides
    2012 (English)In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 77, no 24, p. 11393-11398Article in journal (Refereed) Published
    Abstract [en]

    A bridged two-vial system aminocarbonylation protocol where Mo(CO)(6) functions as an external in situ solid source of CO has been developed. For the first time both nitro group containing aryl/heteroaryl iodides and bromides gave good to excellent yields in the Mo(CO)(6)-mediated and palladium(0)-catalyzed conversion to benzamides, while the identical one-vessel protocol afforded extensive reduction of the nitro functionality. The above-mentioned bridged two-compartment protocol furnished good results with both primary amines and secondary amines and sluggish aniline nucleophiles at 65-85 °C reaction temperatures.

    National Category
    Medicinal Chemistry Natural Sciences
    Identifiers
    urn:nbn:se:uu:diva-189519 (URN)10.1021/jo302322w (DOI)000312564900046 ()23205569 (PubMedID)
    Funder
    Knut and Alice Wallenberg FoundationSwedish Research Council
    Available from: 2013-01-02 Created: 2013-01-02 Last updated: 2018-01-11Bibliographically approved
    2. Palladium-Catalyzed Carbonylative Synthesis of N-Cyanobenzamides from Aryl Iodides/Bromides and Cyanamide
    Open this publication in new window or tab >>Palladium-Catalyzed Carbonylative Synthesis of N-Cyanobenzamides from Aryl Iodides/Bromides and Cyanamide
    2013 (English)In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 54, no 50, p. 6912-6915Article in journal (Refereed) Published
    Abstract [en]

    A novel and convenient protocol for the synthesis of N-cyanobenzamides starting from readily available aryl halides and cyanamide via palladium-catalyzed aminocarbonylation has been developed. The protocol utilizes Mo(CO)6 as the CO source or CO(gas) and affords the desired N-cyanobenzamides in moderate to good yields.

    National Category
    Organic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-212521 (URN)10.1016/j.tetlet.2013.10.040 (DOI)000327285300028 ()
    Available from: 2013-12-11 Created: 2013-12-11 Last updated: 2017-12-06Bibliographically approved
    3. Pd-mediated Carbonylative Synthesis of 11C-N-Cyanobenzamides
    Open this publication in new window or tab >>Pd-mediated Carbonylative Synthesis of 11C-N-Cyanobenzamides
    (English)Manuscript (preprint) (Other academic)
    National Category
    Organic Chemistry
    Research subject
    Chemistry with specialization in Organic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-213862 (URN)
    Available from: 2014-01-05 Created: 2014-01-05 Last updated: 2014-02-06
    4. Investigation of alpha-phenylnorstatine and alpha-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors
    Open this publication in new window or tab >>Investigation of alpha-phenylnorstatine and alpha-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors
    Show others...
    2011 (English)In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 19, no 1, p. 145-155Article in journal (Refereed) Published
    Abstract [en]

    Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on α-phenylnorstatine, α-benzylnorstatine, iso-serine, and β-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC50 = 0.19 μM) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.

    Keywords
    α-Benzylnorstatine, α-Phenylnorstatine, Alzheimer's disease, BACE-1 inhibitors, tert-Hydroxyl, Transition state mimic
    National Category
    Pharmaceutical Sciences
    Identifiers
    urn:nbn:se:uu:diva-109026 (URN)10.1016/j.bmc.2010.11.042 (DOI)000285724800014 ()21183353 (PubMedID)
    Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2018-01-13Bibliographically approved
    5. 11C-Labeling of a Potent Hydroxyethylamine BACE-1 Inhibitor and Evaluation in vitro and in vivo
    Open this publication in new window or tab >>11C-Labeling of a Potent Hydroxyethylamine BACE-1 Inhibitor and Evaluation in vitro and in vivo
    Show others...
    2014 (English)In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 41, no 6, p. 536-543Article in journal (Refereed) Published
    Abstract [en]

    Introduction: The enzyme beta-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-p, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo. Methods: (11)[C]-N-1-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-y1)-5-(N-methylmethylsulfonamido)-N-3-((R)-1-phenylethyl)isophthalamide, a p-secretase inhibitor, denoted here as [C-11]BSIIV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [C-11]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats. Results: The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21-26%. [C-11]BSI-IV was obtained in 29 +/- 12% decay corrected radiochemical yield (n = 12) with a specific activity of 790 +/- 155 GBq/umol at the end of synthesis with a radiochemical purity of >99%. The predinical studies showed that [C-11]BSI-IV has a rapid metabolism in rat with excretion to the small intestines. Conclusion: [C-11]BSI-IV was obtained in sufficient amount and purity to enable predinical investigation. The predinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [C-11]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.

    National Category
    Organic Chemistry Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-213860 (URN)10.1016/j.nucmedbio.2014.03.024 (DOI)000336946400014 ()
    Available from: 2014-01-05 Created: 2014-01-05 Last updated: 2018-01-11Bibliographically approved
    6. 11C and 18F Radiolabeling of Tetra and Pentathiophenes as PET-Ligands for Misfolded Protein Aggregates
    Open this publication in new window or tab >>11C and 18F Radiolabeling of Tetra and Pentathiophenes as PET-Ligands for Misfolded Protein Aggregates
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Cardiac and Cardiovascular Systems Surgery Medicinal Chemistry Organic Chemistry
    Research subject
    Medicinal Chemistry; Chemistry with specialization in Organic Chemistry
    Identifiers
    urn:nbn:se:uu:diva-213861 (URN)
    Available from: 2014-01-05 Created: 2014-01-05 Last updated: 2018-01-11
  • 14.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Chow, Shiao Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, A. F.
    Univ Leeds, St James Univ Hosp, England.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Palladium-mediated C-11-carbonylations using aryl halides and cyanamide2017In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 15, no 22, p. 4875-4881Article in journal (Refereed)
    Abstract [en]

    A robust and high-yielding radiochemical synthesis of C-11-N-cyanobenzamides using a palladium-mediated aminocarbonylation with C-11-CO, aryl halides and cyanamide is described. The bidentate ligand 1,1'-bis(diphenylphosphino)ferrocene provided C-11-N-cyanobenzamides from aryl-iodides, bromides, triflates and even chlorides in 28-79% radiochemical yield after semi-preparative HPLC. To further highlight the utility of this method, novel C-11-N-cyanobenzamide analogs of flufenamic acid, meflanamic acid, dazoxiben and tamibarotene were synthesized in 34-71% radiochemical yields.

  • 15.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Odell, Luke
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    C-11-Labeling of a potent hydroxyethylamine BACE-1 inhibitor and evaluation in vitro and in vivo2014In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 41, no 6, p. 536-543Article in journal (Refereed)
    Abstract [en]

    Introduction

    The enzyme β-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-β, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo.

    Methods

    11[C]-N1-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethyl-sulfonamido)-N3-((R)-1-phenylethyl)isophthalamide, a β-secretase inhibitor, denoted here as [11C]BSI-IV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [11C]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats.

    Results

    The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21–26%. [11C]BSI-IV was obtained in 29 ± 12% decay corrected radiochemical yield (n = 12) with a specific activity of 790 ± 155 GBq/μmol at the end of synthesis with a radiochemical purity of > 99%. The preclinical studies showed that [11C]BSI-IV has a rapid metabolism in rat with excretion to the small intestines.

    Conclusion

    11[C]BSI-IV was obtained in sufficient amount and purity to enable preclinical investigation. The preclinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [11C]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.

  • 16.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Odell, Luke R
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    11C-Labeling of a Potent Hydroxyethylamine BACE-1 Inhibitor and Evaluation in vitro and in vivo2014In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 41, no 6, p. 536-543Article in journal (Refereed)
    Abstract [en]

    Introduction: The enzyme beta-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-p, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo. Methods: (11)[C]-N-1-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-y1)-5-(N-methylmethylsulfonamido)-N-3-((R)-1-phenylethyl)isophthalamide, a p-secretase inhibitor, denoted here as [C-11]BSIIV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [C-11]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats. Results: The halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21-26%. [C-11]BSI-IV was obtained in 29 +/- 12% decay corrected radiochemical yield (n = 12) with a specific activity of 790 +/- 155 GBq/umol at the end of synthesis with a radiochemical purity of >99%. The predinical studies showed that [C-11]BSI-IV has a rapid metabolism in rat with excretion to the small intestines. Conclusion: [C-11]BSI-IV was obtained in sufficient amount and purity to enable predinical investigation. The predinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [C-11]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.

  • 17.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Friis, Stig D.
    Interdisciplinary Nanosci Ctr INANO, Aarhus, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark..
    Andersen, Thomas L.
    Interdisciplinary Nanosci Ctr INANO, Aarhus, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark..
    Audrain, Helene
    Aarhus Univ Hosp, Dept Nucl Med, DK-8000 Aarhus, Denmark.;Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark..
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Skrydstrup, Troels
    Interdisciplinary Nanosci Ctr INANO, Aarhus, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus, Denmark..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Chemical Conversion of (CO2)-C-11 to (CO)-C-11 via Silacarboxylic Acids: Applications in Palladium-Mediated Carbonylations2015In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 58, p. S383-S383Article in journal (Other academic)
  • 18.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Friis, Stig D.
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Carbon Dioxide Activat Ctr CADIAC, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark..
    Andersen, Thomas L.
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Carbon Dioxide Activat Ctr CADIAC, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark..
    Audrain, Helene
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Carbon Dioxide Activat Ctr CADIAC, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark..
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Skrydstrup, Troels
    Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, Carbon Dioxide Activat Ctr CADIAC, DK-8000 Aarhus C, Denmark.;Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Rapid and Efficient Conversion of (CO2)-C-11 to (CO)-C-11 through Silacarboxylic Acids: Applications in Pd-Mediated Carbonylations2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 49, p. 17601-17604Article in journal (Refereed)
    Abstract [en]

    Herein, we present a new rapid, efficient, and low-cost radiosynthetic protocol for the conversion of (CO2)-C-11 to (CO)-C-11 and its subsequent application in Pd-mediated reactions of importance for PET applications. This room-temperature methodology, using readily available chemical reagents, is carried out in simple glass vials, thus eliminating the need for expensive and specialized high-temperature equipment to access (CO)-C-11. With this fast and near-quantitative conversion of (CO2)-C-11 into (CO)-C-11, aryl and heteroaryl iodides were easily converted into a broad selection of biologically active amides in radiochemical yields ranging from 29-84 %.

  • 19.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Hammarstrom, Per
    Nilsson, Peter R.
    Back, Marcus
    Johansson, Leif B. G.
    Westermark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
    Westermark, Gunilla T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    C-11 and F-18 radiolabeling of tetra and pentatiophenes as PET-ligands for misfolded protein aggregates2013In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 56, no S1, p. S35-S35Article in journal (Other academic)
  • 20.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Johansson, Leif B. G.
    Linkoping Univ, Dept Chem, IFM, S-58183 Linkoping, Sweden..
    Back, Marcus
    Linkoping Univ, Dept Chem, IFM, S-58183 Linkoping, Sweden..
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Hall, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET-MRI Platform.
    Sjölander, Daniel
    Linkoping Univ, Dept Chem, IFM, S-58183 Linkoping, Sweden..
    Westermark, Gunilla T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Cell Biology.
    Westermark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Nilsson, Lars
    Univ Oslo, Dept Pharmacol, N-0316 Oslo, Norway..
    Hammarström, Per
    Linkoping Univ, Dept Chem, IFM, S-58183 Linkoping, Sweden..
    Nilsson, K. Peter R.
    Linkoping Univ, Dept Chem, IFM, S-58183 Linkoping, Sweden..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    C-11 and F-18 Radiolabeling of Tetra- and Pentathiophenes as PET-Ligands for Amyloid Protein Aggregates2016In: ACS Medicinal Chemistry Letters, ISSN 1948-5875, E-ISSN 1948-5875, Vol. 7, no 4, p. 368-373Article in journal (Refereed)
    Abstract [en]

    Three oligothiophenes were evaluated as PET ligands for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver, and spleen. To verify the specificity of the oligothiophenes toward amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, a in vivo monkey PET-CT study showed very low uptake in the brain, pancreas, and heart of the healthy animal indicating low nonspecific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.

  • 21.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, Luke R
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Aminocarbonylations Employing Mo(CO)(6) and a Bridged Two-Vial System: Allowing the Use of Nitro Group Substituted Aryl Iodides and Aryl Bromides2012In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 77, no 24, p. 11393-11398Article in journal (Refereed)
    Abstract [en]

    A bridged two-vial system aminocarbonylation protocol where Mo(CO)(6) functions as an external in situ solid source of CO has been developed. For the first time both nitro group containing aryl/heteroaryl iodides and bromides gave good to excellent yields in the Mo(CO)(6)-mediated and palladium(0)-catalyzed conversion to benzamides, while the identical one-vessel protocol afforded extensive reduction of the nitro functionality. The above-mentioned bridged two-compartment protocol furnished good results with both primary amines and secondary amines and sluggish aniline nucleophiles at 65-85 °C reaction temperatures.

  • 22.
    Nordeman, Patrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Yngve, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Wilking, Helena
    Gustavsson, Sven Åke
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Automated GMP-production of α-[11 C]methyl-L-tryptophan using a tracer production system (TPS)2018In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 61, no 14, p. 1106-1109Article in journal (Refereed)
    Abstract [en]

    The radiosynthesis and GMP validation of [11 C]AMT for human use are described. Three consecutive batches were produced giving 940-3790 MBq (4%-17% RCY, decay corrected, based on [11 C]CO2 ) of the tracer. The molar activity at the end of synthesis was 19 to 35 GBq/μmol, the radiochemical purity was ≥98%, and the enantiomeric purity was >99%. While the synthesis method was automated using a new generation of synthesis equipment, tracer production system developed in house, the method should be readily applicable to other synthesis platforms with minor modifications.

  • 23.
    Odell, Luke R.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Åkerbladh, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Schembri, Luke S
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Roslin, Sara
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Eriksson, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Carbonylations beyond aryl-X: Development of new multicomponent reactions2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 24.
    Roslin, Sara
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Dahl, Kenneth
    Massachusetts Gen Hosp, Div Nucl Med & Mol Imaging, Boston, MA 02114 USA; Harvard Med Sch, Dept Radiol, Boston, MA USA.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Reaction of 11C‐benzoyl chlorides with metalloid reagents: 11C‐labeling of benzyl alcohols, benzaldehydes, and phenylketones from [11C]CO2018In: Journal of Labelled Compounds and Radiopharmaceuticals, ISSN 0362-4803, Vol. 61, no 5, p. 447-454Article in journal (Refereed)
    Abstract [en]

    In this article, we describe the carbon‐11 (11C, t1/2 = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-€step synthesis in which 11C-€carbon monoxide is used in an initial palladium-€mediated reaction to produce 11C-€benzoyl chloride as a key intermediate. In the second step, the obtained 11C-€benzoyl chloride is further treated with a metalloid reagent to furnish the final 11C-€labeled product. Benzyl alcohols were obtained in moderated to high non‐isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11C-€benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11C-€phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides.

  • 25.
    Roy, Tamal
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Rydfjord, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Sävmarker, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Palladium-catalyzed carbonylation of aryl bromides using microwave heating and bis[CP-Fe(II)-(CO)2] as a carbon monoxide source2018In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 59, no 13, p. 1230-1232Article in journal (Refereed)
    Abstract [en]

    A palladium-catalyzed, microwave assisted carbonylative reaction is described for the synthesis of benzamides from aryl bromides and primary or secondary amines. The developed method uses bis(cyclopentadienyldicarbonyliron) as a solid source of carbon monoxide to produce a diverse set of secondary and tertiary amides in 42-82% yield.

  • 26.
    Strand, Joanna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
    Site-specific radioiodination of HER2-targeting affibody molecules using iodophenetylmaleimide decreases renal uptake of radioactivity2012In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 39, no S2, p. S419-S419Article in journal (Other academic)
  • 27.
    Strand, Joanna
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity2015In: ChemistryOpen, ISSN 2191-1363, Vol. 4, no 2, p. 174-182Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of I-125-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high tumor uptake but low radioactivity retention in kidneys. We hypothesized that the use of 4-iodophenethylmaleimide (IPEM) would further reduce renal retention of radioactivity because of higher lipophilicity of radiometabolites. An anti-human epidermal growth factor receptor type2 (HER2) Affibody molecule (Z(HER2:2395)) was labeled using I-125-IPEM with an overall yield of 45 +/- 3%. I-125-IPEM-Z(HER2:2395) bound specifically to HER2-expressing human ovarian carcinoma cells (SKOV-3 cell line). In NMRI mice, the renal uptake of I-125-IPEM-Z(HER2:2395) (24 +/- 2 and 5.7 +/- 0.3%IAg(-1)at 1 and 4 h after injection, respectively) was significantly lower than uptake of I-125-IHPEM-Z(HER2:2395) (50 +/- 8 and 12 +/- 2%IAg(-1)at 1 and 4 h after injection, respectively). In conclusion, the use of a more lipophilic linker for the radioiodination of Affibody molecules reduces renal radioactivity.

  • 28.
    Wångsell, Fredrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Sävmarker, Jonas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Jansson, Katarina
    Lindberg, Jimmy
    Rosenquist, Åsa
    Samuelsson, Bertil
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
    Investigation of alpha-phenylnorstatine and alpha-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors2011In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 19, no 1, p. 145-155Article in journal (Refereed)
    Abstract [en]

    Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on α-phenylnorstatine, α-benzylnorstatine, iso-serine, and β-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC50 = 0.19 μM) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.

  • 29.
    Yngve, Ulrika
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Marklund, Niklas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurosurgery.
    Auberson, Yves
    Novartis Inst BioMed Res, Basel, Switzerland..
    Machauer, Rainer
    Novartis Inst BioMed Res, Basel, Switzerland..
    Briard, Emmanuelle
    Novartis Inst BioMed Res, Basel, Switzerland..
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Tracing BACE: Synthesis and evaluation of beta-secretase inhibitors as ligands for PET imaging2015In: Journal of labelled compounds & radiopharmaceuticals, ISSN 0362-4803, E-ISSN 1099-1344, Vol. 58, p. S51-S51Article in journal (Other academic)
  • 30.
    Åkerbladh, Linda
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Nordeman, Patrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Wejdemar, Matyas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Odell, Luke R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Larhed, Mats
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Synthesis of 4-Quinolones via a Carbonylative Sonogashira Cross-Coupling Using Molybdenum Hexacarbonyl as a CO Source2015In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 80, no 3, p. 1464-1471Article in journal (Refereed)
    Abstract [en]

    A palladium-catalyzed CO gas-free carbonylative Sonogashira/cyclization sequence for the preparation of functionalized 4-quinolones from 2-iodoanilines and alkynes via two different protocols is described. The first method (A) yields the cyclized products after only 20 min of microwave (MW) heating at 120 degrees C. The second method (B) is a gas-free one-pot two-step sequence which runs at room temperature, allowing the use of sensitive substituents (e.g., nitro and bromide groups). For both protocols, molybdenum hexacarbonyl was used as a solid source of CO.

1 - 30 of 30
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf