Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Avgränsa sökresultatet
1 - 44 av 44
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Akram, Talia
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE-C)-PIEAS, Faisalabad, Pakistan.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Zakaria, Muhammad
    Tariq, Muhammad
    Baig, Shahid M.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Aberrant splicing due to a novel RPS7 variant causes Diamond-Blackfan Anemia associated with spontaneous remission and meningocele2020Ingår i: International Journal of Hematology, ISSN 0925-5710, E-ISSN 1865-3774, Vol. 112, nr 6, s. 894-899Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Diamond-Blackfan Anemia (DBA) is a congenital pure red cell aplasia caused by heterozygous variants in ribosomal protein genes. The hematological features associated with DBA are highly variable and non-hematological abnormalities are common. We report herein on an affected mother and her daughter presenting with transfusion-dependent anemia. The mother showed mild physical abnormalities and entered spontaneous remission at age 13 years. Her daughter was born with occipital meningocele. Exome sequencing of DNA from the mother revealed a heterozygous novel splice site variant (NM_001011.4:c.508-3T > G) in the Ribosomal Protein S7 gene (RPS7) inherited by the daughter. Functional analysis of the RPS7 variant expressed from a mini-gene construct revealed that the exon 7 acceptor splice site was replaced by a cryptic splice resulting in a transcript missing 64 bp of exon 7 (p.Val170Serfs*8). Our study confirms a pathogenic effect of a novel RPS7 variant in DBA associated with spontaneous remission in the mother and meningocele in her daughter, thus adding to the genotype-phenotype correlations in DBA.

  • 2.
    Badhai, Jitendra
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Fröjmark, Anne-Sophie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Davey, Edward J.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Ribosomal protein S19 and S24 insufficiency cause distinct cell cycle defects in Diamond-Blackfan anemia2009Ingår i: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1792, nr 10, s. 1036-1042Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Diamond-Blackfan anemia (DBA) is a severe congenital anemia characterized by a specific decrease of erythroid precursors. The disease is also associated with growth retardation, congenital malformations, a predisposition for malignant disease and heterozygous mutations in either of the ribosomal protein (RP) genes RPS7, RPS17, RPS19, RPS24, RPL5, RPL11 and RPL35a. We show herein that primary fibroblasts from DBA patients with truncating mutations in RPS19 or in RPS24 have a marked reduction in proliferative capacity. Mutant fibroblasts are associated with extended cell cycles and normal levels of p53 when compared to w.t. cells. RPS19 mutant fibroblasts accumulate in the G1 phase, whereas the RPS24 mutant cells show an altered progression in the S phase resulting in reduced levels in the G2/M phase. RPS19 deficient cells exhibit reduced levels of Cyclin-E, CDK2 and retinoblastoma (Rb) protein supporting a cell cycle arrest in the G1 phase. In contrast, RPS24 deficient cells show increased levels of the cell cycle inhibitor p21 and a seemingly opposing increase in Cyclin-E, CDK4 and CDK6. In combination, our results show that RPS19 and RPS24 insufficient fibroblasts have an impaired growth caused by distinct blockages in the cell cycle. We suggest this proliferative constraint to be an important contributing mechanism for the complex extra-hematological features observed in DBA.

  • 3.
    Badhai, Jitendra
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Fröjmark, Anne-Sophie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Razzaghian, Hamid Reza
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Davey, Edward
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Posttranscriptional down-regulation of small ribosomal subunit proteinscorrelates with reduction of 18S rRNA in RPS19 deficiency2009Ingår i: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 583, nr 12, s. 2049-2053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ribosomal protein S19 (RPS19) is mutated in patients with Diamond-Blackfan anemia (DBA). We hypothesized that decreased levels of RPS19 lead to a coordinated down-regulation of other ribosomal (r-)proteins at the subunit level. We show that small interfering RNA (siRNA) knock-down of RPS19 results in a relative decrease of small subunit (SSU) r-proteins (S20, S21 and S24) when compared to large subunit (LSU) r-proteins (L3, L9, L30 and L38). This correlates with a relative decrease in 18S rRNA with respect to 28S rRNA. The r-protein mRNA levels remain relatively unchanged indicating a post transcriptional regulation of r-proteins at the level of subunit formation.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 4.
    Barrio, Alvaro Martinez
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Centrum för bioinformatik.
    Eriksson, Oskar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Badhai, Jitendra
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Fröjmark, Anne-Sophie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Bongcam-Rudloff, Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Centrum för bioinformatik.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Targeted Resequencing and Analysis of the Diamond-Blackfan Anemia Disease Locus RPS192009Ingår i: PLoS ONE, ISSN 1932-6203, Vol. 4, nr 7, s. e6172-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: The Ribosomal protein S19 gene locus (RPS19) has been linked to two kinds of red cell aplasia, Diamond-Blackfan Anemia (DBA) and Transient Erythroblastopenia in Childhood (TEC). Mutations in RPS19 coding sequences have been found in 25% of DBA patients, but not in TEC patients. It has been suggested that non-coding RPS19 sequence variants contribute to the considerable clinical variability in red cell aplasia. We therefore aimed at identifying non-coding variations associated with DBA or TEC phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We targeted a region of 19'980 bp encompassing the RPS19 gene in a cohort of 89 DBA and TEC patients for resequencing. We provide here a catalog of the considerable, previously unrecognized degree of variation in this region. We identified 73 variations (65 SNPs, 8 indels) that all are located outside of the RPS19 open reading frame, and of which 67.1% are classified as novel. We hypothesize that specific alleles in non-coding regions of RPS19 could alter the binding of regulatory proteins or transcription factors. Therefore, we carried out an extensive analysis to identify transcription factor binding sites (TFBS). A series of putative interaction sites coincide with detected variants. Sixteen of the corresponding transcription factors are of particular interest, as they are housekeeping genes or show a direct link to hematopoiesis, tumorigenesis or leukemia (e.g. GATA-1/2, PU.1, MZF-1). CONCLUSIONS: Specific alleles at predicted TFBSs may alter the expression of RPS19, modify an important interaction between transcription factors with overlapping TFBS or remove an important stimulus for hematopoiesis. We suggest that the detected interactions are of importance for hematopoiesis and could provide new insights into individual response to treatment.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 5.
    Dahlqvist, Johanna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Reumatologi.
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Tiwari, Neha
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Törmä, Hans
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Badhai, Jitendra
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Pujol, Ramon
    van Steensel, Maurice A. M.
    Brinkhuizen, Tjinta
    Gijezen, Lieke
    Chaves, Antonio
    Tadini, Gianluca
    Vahlquist, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    A single-nucleotide deletion in the POMP 5' UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis2010Ingår i: American Journal of Human Genetics, ISSN 0002-9297, E-ISSN 1537-6605, Vol. 86, nr 4, s. 596-603Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    KLICK syndrome is a rare autosomal-recessive skin disorder characterized by palmoplantar keratoderma, linear hyperkeratotic papules, and ichthyosiform scaling. In order to establish the genetic cause of this disorder, we collected DNA samples from eight European probands. Using high-density genome-wide SNP analysis, we identified a 1.5 Mb homozygous candidate region on chromosome 13q. Sequence analysis of the ten annotated genes in the candidate region revealed homozygosity for a single-nucleotide deletion at position c.-95 in the proteasome maturation protein (POMP) gene, in all probands. The deletion is included in POMP transcript variants with long 5' untranslated regions (UTRs) and was associated with a marked increase of these transcript variants in keratinocytes from KLICK patients. POMP is a ubiquitously expressed protein and functions as a chaperone for proteasome maturation. Immunohistochemical analysis of skin biopsies from KLICK patients revealed an altered epidermal distribution of POMP, the proteasome subunit proteins alpha 7 and beta 5, and the ER stress marker CHOP. Our results suggest that KLICK syndrome is caused by a single-nucleotide deletion in the 5' UTR of POMP resulting in altered distribution of POMP in epidermis and a perturbed formation of the outermost layers of the skin. These findings imply that the proteasome has a prominent role in the terminal differentiation of human epidermis.

  • 6.
    Fatima, Ambrin
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Aga Khan Univ, Dept Biol & Biomed Sci, Karachi 74000, Pakistan..
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Koshimizu, Eriko
    Yokohama City Univ, Dept Human Genet, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan..
    Gonzalez, Carolina Maya
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Keren, Boris
    Sorbonne Univ, Pitie Salpetriere Hosp, AP HP, Ctr Mol & Chromosomal Genet, 47-83 Blvd Hop, F-75013 Paris, France..
    Mignot, Cyril
    Sorbonne Univ, Pitie Salpetriere Hosp, AP HP, Ctr Mol & Chromosomal Genet, 47-83 Blvd Hop, F-75013 Paris, France..
    Akram, Talia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Natl Inst Biotechnol & Genet Engn, Human Mol Genet Lab, Faisalabad 38000, Pakistan..
    Ali, Zafar
    Natl Inst Biotechnol & Genet Engn, Human Mol Genet Lab, Faisalabad 38000, Pakistan..
    Miyatake, Satoko
    Yokohama City Univ, Dept Human Genet, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan.;Yokohama City Univ Med, Clin Genet Dept, Yokohama, Kanagawa 2360004, Japan..
    Tanigawa, Junpei
    Osaka Univ, Dept Pediat, Grad Sch Med, Suita, Osaka 5650871, Japan..
    Koike, Takayoshi
    NHO Shizuoka Inst Epilepsy & Neurol Disorders, Natl Epilepsy Ctr, Shizuoka 4208688, Japan..
    Kato, Mitsuhiro
    Showa Univ, Dept Pediat, Sch Med, Tokyo 1428666, Japan..
    Murakami, Yoshiko
    Osaka Univ, Res Inst Microbial Dis, Suita, Osaka 5650871, Japan..
    Abdullah, Uzma
    PMAS Arid Agr Univ, Univ Inst Biochem & Biotechnol, Rawalpindi 46301, Pakistan..
    Ali, Muhammad Akhtar
    Univ Punjab, Sch Biol Sci, Lahore 54590, Pakistan..
    Fadoul, Rein
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Laan, Loora
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Castillejo-Lopez, Casimiro
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Liik, Maarika
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Rostedt Punga: Klinisk neurofysiologi.
    Jin, Zhe
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Birnir, Bryndis
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Matsumoto, Naomichi
    Yokohama City Univ, Dept Human Genet, Grad Sch Med, Yokohama, Kanagawa 2360004, Japan..
    Baig, Shahid M.
    Natl Inst Biotechnol & Genet Engn, Human Mol Genet Lab, Faisalabad 38000, Pakistan.;Aga Khan Univ, Dept Biol & Biomed Sci, Karachi 74000, Pakistan..
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Monoallelic and bi-allelic variants in NCDN cause neurodevelopmental delay, intellectual disability, and epilepsy2021Ingår i: American Journal of Human Genetics, ISSN 0002-9297, E-ISSN 1537-6605, Vol. 108, nr 4, s. 739-748Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Fatima, Ambrin
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Akram, Talia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan..
    Gonzalez, Carolina Maya
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Incontinentia pigmenti: Generation of an IKBKG deficient human iPSC line (KICRi002-A-1) on a 46,XY background using CRISPR/Cas92020Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 44, artikel-id 101739Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Incontinentia pigmenti (IP) is an X-linked dominant neuroectodermal dysplasia caused by loss-of-function mutations in the IKBKG gene. Using CRISPR/Cas9 technology, we generated an IKBKG knock-out iPSC line (KICRi002-A-1) on a 46,XY background. The iPSC line showed a normal karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and no IKBKG mRNA expression could be detected. Our line offers a useful resource to elucidate mechanisms caused by IKBKG deficiency that leads to disrupted male fetal development and for drug screening to improve treatment of female patients with IP.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Fatima, Ambrin
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Akram, Talia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan..
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Generation of a human Neurochondrin deficient iPSC line KICRi002-A-3 using CRISPR/Cas92020Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 44, artikel-id 101758Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The role of Neurochondrin (NCDN) in humans is not well understood. Mice with a conditional Ncdn knock-out show epileptic seizures, depressive-like behaviours and impaired spatial learning. Using CRISPR/Cas9, we generated a Neurochondrin deficient human iPSC line KICRi002-A-3 carrying a homozygous 752 bp deletion / 2 bp insertion in the NCDN gene. The iPSC line maintained a normal 46,XY karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and Neurochondrin expression was not detectable. The iPSC line offers a valuable resource to study the role of Neurochondrin during human neurogenesis.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Fröjmark, Anne-Sophie
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Badhai, Jitendra
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Thuveson, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Medicinsk genetik.
    Cooperative effect of ribosomal protein s19 and Pim-1 kinase on murine c-Myc expression and myeloid/erythroid cellularity2010Ingår i: Journal of Molecular Medicine, ISSN 0946-2716, E-ISSN 1432-1440, Vol. 88, nr 1, s. 39-46Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Diamond Blackfan anemia (DBA) is a bone marrow failure syndrome associated with heterozygous mutations in the ribosomal protein S19 (RPS19) gene in a subgroup of patients. One of the interacting partners with RPS19 is the oncoprotein PIM-1 kinase. We intercrossed Rps19+/- and Pim-1-/- mice strains to study the effect from the disruption of both genes. The double mutant (Rps19+/-Pim-1-/-) mice display normal growth with increased peripheral white- and red blood cell counts when compared to the w.t. mice (Rps19+/+Pim-1+/+). Molecular analysis of bone marrow cells in Rps19+/-Pim-1-/- mice revealed up-regulated levels of c-Myc and the anti-apoptotic factors Bcl2, BclXL and Mcl-1. This is associated with a reduction of the apoptotic factors Bak and Caspase 3 as well as the cell cycle regulator p21. Our findings suggest that combined Rps19 insufficiency and Pim-1 deficiency promote murine myeloid cell growth through a deregulation of c-Myc and a simultaneous up-regulation of anti-apoptotic Bcl proteins.

  • 10.
    Fröjmark, Anne-Sophie
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Entesarian, Miriam
    Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Kilander, Michaela B C
    Gabrikova, Dana
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nawaz, Sadia
    Baig, Shahid M
    Schulte, Gunnar
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mutations in frizzled 6 cause isolated autosomal-recessive nail dysplasia2011Ingår i: American Journal of Human Genetics, ISSN 0002-9297, E-ISSN 1537-6605, Vol. 88, nr 6, s. 852-860Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inherited and isolated nail malformations are rare and heterogeneous conditions. We identified two consanguineous pedigrees in which some family members were affected by isolated nail dysplasia that suggested an autosomal-recessive inheritance pattern and was characterized by claw-shaped nails, onychauxis, and onycholysis. Genome-wide SNP array analysis of affected individuals from both families showed an overlapping and homozygous region of 800 kb on the long arm of chromosome 8. The candidate region spans eight genes, and DNA sequence analysis revealed homozygous nonsense and missense mutations in FZD(6), the gene encoding Frizzled 6. FZD(6) belongs to a family of highly conserved membrane-bound WNT receptors involved in developmental processes and differentiation through several signaling pathways. We expressed the FZD(6) missense mutation and observed a quantitative shift in subcellular distribution from the plasma membrane to the lysosomes, where the receptor is inaccessible for signaling and presumably degraded. Analysis of human fibroblasts homozygous for the nonsense mutation showed an aberrant response to both WNT-3A and WNT-5A stimulation; this response was consistent with an effect on both canonical and noncanonical WNT-FZD signaling. A detailed analysis of the Fzd(6)(-/-) mice, previously shown to have an altered hair pattern, showed malformed claws predominantly of the hind limbs. Furthermore, a transient Fdz6 mRNA expression was observed in the epidermis of the digital tips at embryonic day 16.5 during early claw morphogenesis. Thus, our combined results show that FZD6 mutations can result in severe defects in nail and claw formation through reduced or abolished membranous FZD(6) levels and several nonfunctional WNT-FZD pathways.

  • 11.
    Kele, Malin
    et al.
    Karolinska Inst, Dept Neurosci, Retziusvag 8, S-17177 Stockholm, Sweden..
    Day, Kelly
    Karolinska Inst, Dept Neurosci, Retziusvag 8, S-17177 Stockholm, Sweden..
    Ronnholm, Harriet
    Karolinska Inst, Dept Neurosci, Retziusvag 8, S-17177 Stockholm, Sweden..
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Falk, Anna
    Karolinska Inst, Dept Neurosci, Retziusvag 8, S-17177 Stockholm, Sweden..
    Generation of human iPS cell line CTL07-II from human fibroblasts, under defined and xeno-free conditions2016Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 17, nr 3, s. 474-478Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    CTL07-II is a healthy feeder-free and characterized human induced pluripotent stem (iPS) cell line. Cultured under xeno-free and defined conditions. The line is generated from healthy human fibroblasts with non-integrating Sendai virus vectors encoding the four Yamanaka factors, OCT4, SOX2, KLF4 and cMYC. The generated iPS cells are free from reprogramming vectors and their purity, karyotypic stability and pluripotent capacity is confirmed.

    Ladda ner fulltext (pdf)
    fulltext
  • 12. Kilander, Michaela B. C.
    et al.
    Petersen, Julian
    Andressen, Kjetil Wessel
    Ganji, Ranjani Sri
    Levy, Finn Olav
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Bryja, Vitezslav
    Schulte, Gunnar
    Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 62014Ingår i: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 28, nr 5, s. 2293-2305Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Frizzleds (FZDs) are classified as G-protein-coupling receptors, but how signals are initiated and specified through heterotrimeric G proteins is unknown. FZD(6) regulates convergent extension movements, and its C-terminal Arg511Cys mutation causes nail dysplasia in humans. We investigated the functional relationship between FZD(6), Disheveled (DVL), and heterotrimeric G proteins. Live cell imaging combined with fluorescence recovery after photobleaching (FRAP) revealed that inactive human FZD(6) precouples to G(i1) and G(q) but not to G(oA),G(s), and G(12) proteins. G-protein coupling is measured as a 10-20% reduction in the mobile fraction of fluorescently tagged G proteins on chemical receptor surface cross-linking. The FZD(6) Arg511Cys mutation is incapable of G-protein precoupling, even though it still binds DVL. Using both FRAP and Forster resonance energy transfer (FRET) technology, we showed that the FZD(6)-G(i1) and FZD-G(q) complexes dissociate on WNT-5A stimulation. Most important, G-protein precoupling of FZD(6) and WNT-5A-induced signaling to extracellular signal-regulated kinase1/2 were impaired by DVL knockdown or overexpression, arguing for a strict dependence of FZD(6)-G-protein coupling on DVL levels and identifying DVL as a master regulator of FZD/G-protein signaling. In summary, we propose a mechanistic connection between DVL and G proteins integrating WNT, FZD, G-protein, and DVL function.Kilander, M. B. C., Petersen, J., Andressen, K. W., Ganji, R. S. Levy, F. O., Schuster, J., Dahl N., Bryja, V., Schulte, G. Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6.

  • 13.
    Klar, Joakim
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Piontek, Jörg
    Milatz, Susanne
    Tariq, Muhammad
    Jameel, Muhammad
    Breiderhoff, Tilman
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Fatima, Ambrin
    Asif, Maria
    Sher, Muhammad
    Mäbert, Katrin
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Fromm, Anja
    Baig, Shahid M
    Günzel, Dorothee
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage2017Ingår i: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, nr 7, artikel-id e1006897Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Klar, Joakim
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Khan, Tahir Naeem
    Jameel, Muhammad
    Mäbert, Katrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Forsberg, Lars A.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Baig, Shehla Anjum
    Baig, Shahid Mahmood
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Whole exome sequencing identifies LRP1 as a pathogenic gene in autosomal recessive keratosis pilaris atrophicans2015Ingår i: Journal of Medical Genetics, ISSN 0022-2593, E-ISSN 1468-6244, Vol. 52, nr 9, s. 599-606Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background Keratosis pilaris atrophicans (KPA) is a group of rare genodermatoses characterised by perifollicular keratosis and inflammation that progresses to atrophy and scars of the facial skin. Keratosis pilaris of extensor areas of limbs is a common associated finding. Most cases with KPA are sporadic and no consistent inheritance pattern has been documented.

    Methods A large consanguineous Pakistani pedigree segregating autosomal recessive KPA of a mixed type was subject to autozygosity mapping and whole exome sequencing. Quantification of mRNA and protein levels was performed on fibroblasts from affected individuals. Cellular uptake of the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) ligand alpha 2-macroglobulin (alpha M-2) was quantified using fluorescence confocal microscopy.

    Results Genetic analyses identified a unique homozygous missense variant (K1245R) in the LRP1 in all affected family members. LRP1 encodes the LRP1, a multifunctional cell surface receptor with endocytic functions that belongs to the LDL receptor family. The LRP1 mRNA and LRP1 protein levels in fibroblasts of affected individuals were markedly reduced when compared with controls. Similarly, the LRP1-mediated cellular uptake of alpha M-2 was reduced in patient fibroblasts.

    Conclusions This is the first report on LRP1 as a pathogenic gene for autosomal recessive KPA and keratosis pilaris. The inflammatory characteristics of the KPA entity in our family suggest a link to the immune-regulatory functions of LRP1.

  • 15.
    Kvarnung, Malin
    et al.
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Shahsavani, Mansoureh
    Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden;Karolinska Inst, Biomed, Dept Neurosci, Stockholm, Sweden.
    Taylan, Fulya
    Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Moslem, Mohsen
    Karolinska Inst, Biomed, Dept Neurosci, Stockholm, Sweden.
    Breeuwsma, Nicole
    Karolinska Inst, Biomed, Dept Neurosci, Stockholm, Sweden.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Jin, Zhe
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Birnir: Molekylär fysiologi och neurovetenskap.
    Nilsson, Daniel
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Lieden, Agne
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Anderlid, Britt-Marie
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Nordenskjold, Magnus
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Lundberg, Elisabeth Syk
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Birnir, Bryndis
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Birnir: Molekylär fysiologi och neurovetenskap.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Nordgren, Ann
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Lindstrand, Anna
    Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden;Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.
    Falk, Anna
    Karolinska Inst, Biomed, Dept Neurosci, Stockholm, Sweden.
    Ataxia in Patients With Bi-Allelic NFASC Mutations and Absence of Full-Length NF1862019Ingår i: Frontiers in Genetics, E-ISSN 1664-8021, Vol. 10, artikel-id 896Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The etiology of hereditary ataxia syndromes is heterogeneous, and the mechanisms underlying these disorders are often unknown. Here, we utilized exome sequencing in two siblings with progressive ataxia and muscular weakness and identified a novel homozygous splice mutation (c.3020-1G > A) in neurofascin (NFASC). In RNA extracted from fibroblasts, we showed that the mutation resulted in inframe skipping of exon 26, with a deprived expression of the full-length transcript that corresponds to NFASC isoform NF186. To further investigate the disease mechanisms, we reprogrammed fibroblasts from one affected sibling to induced pluripotent stem cells, directed them to neuroepithelial stem cells and finally differentiated to neurons. In early neurogenesis, differentiating cells with selective depletion of the NF186 isoform showed significantly reduced neurite outgrowth as well as fewer emerging neurites. Furthermore, whole-cell patch-clamp recordings of patient-derived neuronal cells revealed a lower threshold for openings, indicating altered Na+ channel kinetics, suggesting a lower threshold for openings as compared to neuronal cells without the NFASC mutation. Taken together, our results suggest that loss of the full-length NFASC isoform NF186 causes perturbed neurogenesis and impaired neuronal biophysical properties resulting in a novel early-onset autosomal recessive ataxia syndrome.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 16.
    Kyriakopoulou, Christina
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Larsson, Pontus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Liu, Lei
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Schuster, Jens
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Söderbom, Fredrik
    Kirsebom, Leif A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Virtanen, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    U1-like snRNAs lacking complementarity to canonical 5' splice sites2006Ingår i: RNA: A publication of the RNA Society, ISSN 1355-8382, E-ISSN 1469-9001, Vol. 12, nr 9, s. 1603-1611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have detected a surprising heterogeneity among human spliceosomal U1 small nuclear RNA (snRNA). Most interestingly, we have identified three U1 snRNA variants that lack complementarity to the canonical 5' splice site (5'SS) GU dinucleotide. Furthermore, we have observed heterogeneity among the identified variant U1 snRNA genes caused by single nucleotide polymorphism (SNP). The identified snRNAs were ubiquitously expressed in a variety of human tissues representing different stages of development and displayed features of functional spliceosomal snRNAs, i.e., trimethylated cap structures, association with Sm proteins and presence in nuclear RNA-protein complexes. The unanticipated heterogeneity among spliceosomal snRNAs could contribute to the complexity of vertebrates by expanding the coding capacity of their genomes.

  • 17.
    Laan, Loora
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Shahsavan, Mansoureh
    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Kele, Malin
    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Zakaria, Muhammad
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Annerén, Göran
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Falk, Anna
    Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors2020Ingår i: Clinical Epigenetics, E-ISSN 1868-7083, Vol. 12, artikel-id 9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages.

    Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling.

    Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.

    Ladda ner fulltext (pdf)
    fulltext
  • 18. Lizano, Esther
    et al.
    Schuster, Jens
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Mueller, Martin
    Kelso, Janet
    Mörl, Mario
    A splice variant of the human CCA-adding enzyme with modified activity2007Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 366, nr 4, s. 1258-1265Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The human CCA-adding enzyme (tRNA nucleotidyltransferase) is an essential enzyme that catalyzes the addition of the CCA terminus to the 3′ end of tRNA precursors, a reaction which is a fundamental prerequisite for mature tRNAs to become aminoacylated and to participate in protein biosynthesis. To date only one form of this enzyme has been identified in humans. Here, we describe the sequence and activity of a splice variant of the human CCA-adding enzyme identified in public cDNA databases. The in silico analyses performed on this splice variant indicate that there is conservation of the alternative splice donor site among species and indicate that it seems to be used in vivo. Moreover, the recombinantly expressed protein is active in vitro and accepts tRNA transcripts as substrates incorporating the dinucleotide sequence CC to their 3′ end, in contrast to the activity of the full length enzyme. These findings strongly suggest that the splice variant of the human CCA-adding enzyme is expressed in the cell although the in vivo function remains unclear.

  • 19.
    Mansouri, Mahmoud Reza
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Badhai, Jitendra
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Stattin, Eva-Lena
    Lösel, Ralf
    Wehling, Martin
    Carlsson, Birgit
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Hovatta, Outi
    Karlström, Per Olof
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa.
    Golovleva, Irina
    Toniolo, Daniela
    Bione, Silvia
    Peluso, John
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure2008Ingår i: Human molecular genetics, ISSN 1460-2083, Vol. 17, nr 23, s. 3776-83Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Premature ovarian failure (POF) is characterized by hypergonadotropic hypogonadism and amenorrhea before the age of 40. The condition has a heterogeneous background but genetic factors are demonstrated by the occurrence of familial cases. We identified a mother and daughter with POF both of whom carry an X;autosome translocation [t(X;11)(q24;q13)]. RNA expression studies of genes flanking the X-chromosome breakpoint revealed that both patients have reduced expression levels of the gene Progesterone Receptor Membrane Component-1 (PGRMC1). Mutation screening of 67 females with idiopathic POF identified a third patient with a missense mutation (H165R) located in the cytochrome b5 domain of PGRMC1. PGRMC1 mediates the anti-apoptotic action of progesterone in ovarian cells and it acts as a positive regulator of several cytochrome P450 (CYP)-catalyzed reactions. The CYPs are critical for intracellular sterol metabolism, including biosynthesis of steroid hormones. We show that the H165R mutation associated with POF abolishes the binding of cytochrome P450 7A1 (CYP7A1) to PGRMC1. In addition, the missense mutation attenuates PGRMC1's ability to mediate the anti-apoptotic action of progesterone in ovarian cells. These findings suggest that mutant or reduced levels of PGMRC1 may cause POF through impaired activation of the microsomal cytochrome P450 and increased apoptosis of ovarian cells.

  • 20.
    Pijuan-Galito, Sara
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Tamm, Christoffer
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Forsberg, Lars A.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Merry, Catherine L. R.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Univ Nottingham, Wolfson Ctr Stem Cells, Stem Cell Glycobiol Grp, Tissue Engn & Modelling Room A59, Nottingham NG7 2RD, England.
    Annerén, Cecilia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. GE Healthcare Biosci AB, Bjorkgatan 30, S-75184 Uppsala, Sweden.
    Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture2016Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 7, artikel-id 12170Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reliable, scalable and time-efficient culture methods are required to fully realize the clinical and industrial applications of human pluripotent stem (hPS) cells. Here we present a completely defined, xeno-free medium that supports long-term propagation of hPS cells on uncoated tissue culture plastic. The medium consists of the Essential 8 (E8) formulation supplemented with inter-alpha-inhibitor (I alpha I), a human serum-derived protein, recently demonstrated to activate key pluripotency pathways in mouse PS cells. IaI efficiently induces attachment and long-term growth of both embryonic and induced hPS cell lines when added as a soluble protein to the medium at seeding. IaI supplementation efficiently supports adaptation of feeder-dependent hPS cells to xeno-free conditions, clonal growth as well as single-cell survival in the absence of Rho-associated kinase inhibitor (ROCKi). This time-efficient and simplified culture method paves the way for large-scale, high-throughput hPS cell culture, and will be valuable for both basic research and commercial applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 21. Rasool, Mahmood
    et al.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Aslam, Muhammad
    Tariq, Muhammad
    Ahmad, Ilyas
    Ali, Amjad
    Entesarian, Miriam
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Baig, Shahid Mahmood
    A novel missense mutation in the EDA gene associated with X-linked recessive isolated hypodontia2008Ingår i: Journal of Human Genetics, ISSN 1434-5161, E-ISSN 1435-232X, Vol. 53, nr 10, s. 894-8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Isolated hypodontia, or congenital absence of one to six permanent teeth (OMIM 300606), is a common condition that affects about 20% of individuals worldwide. We identified two extended Pakistani pedigrees segregating X-linked hypodontia with variable expressivity. Affected males show no other associated anomalies, and obligate carrier females have normal dentition. We analyzed the families with polymorphic markers in the ectodysplasin A (EDA) gene region and obtained significant linkage to the phenotype in each pedigree (Z(max) 3.29 and 2.65, respectively, at theta = 0.00). Sequence analysis of the coding regions of EDA revealed a novel missense mutation c.1091T>C resulting in a methionine to threonine substitution (p.M364T) in the tumor necrosis factor (TNF) homology domain. Met364 is a highly conserved residue located on the outer surface of the EDA protein. From our findings, we suggest that the mutation disturbs but does not destroy the EDA structure, resulting in the partial and unusually mild ED phenotype restricted to hypodontia.

  • 22.
    Reimegård, Johan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution. Uppsala universitet, Science for Life Laboratory, SciLifeLab. National Bioinformatics Infrastructure Sweden.
    Tarbier, Marcel
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Sci Life Lab, Stockholm, Sweden.
    Danielsson, Marcus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Baskaran, Sathishkumar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Neuroonkologi.
    Panagiotou, Styliani
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Friedländer, Marc R.
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Sci Life Lab, Stockholm, Sweden.
    Gallant, Caroline J.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    A combined approach for single-cell mRNA and intracellular protein expression analysis2021Ingår i: Communications Biology, E-ISSN 2399-3642, Vol. 4, nr 1, artikel-id 624Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Combined measurements of mRNA and protein expression in single cells enable in-depth analysis of cellular states. We present SPARC, an approach that combines single-cell RNA-sequencing with proximity extension essays to simultaneously measure global mRNA and 89 intracellular proteins in individual cells. We show that mRNA expression fails to accurately reflect protein abundance at the time of measurement, although the direction of changes is in agreement during neuronal differentiation. Moreover, protein levels of transcription factors better predict their downstream effects than do their corresponding transcripts. Finally, we highlight that protein expression variation is overall lower than mRNA variation, but relative protein variation does not reflect the mRNA level. Our results demonstrate that mRNA and protein measurements in single cells provide different and complementary information regarding cell states. SPARC presents a state-of-the-art co-profiling method that overcomes current limitations in throughput and protein localization, including removing the need for cell fixation.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 23.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Betat, Heike
    Mörl, Mario
    Is yeast on its way to evolving tRNA editing?2005Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, Vol. 6, nr 4, s. 367-372Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In human mitochondria, genes for tRNA(Tyr) and tRNA(Cys) overlap by a single nucleotide. From polycistronic precursors, a 3'-truncated upstream tRNA(Tyr) is released, missing the overlapping position. A subsequent editing reaction restores this position. Similar mitochondrial tRNA gene overlaps exist in all metazoans, but not in organisms such as yeast or Escherichia coli. Therefore, we asked whether tRNA overlaps are processed in these organisms. Corresponding constructs were introduced and transcripts tested for processing and editing in E. coli and yeast. E. coli produces only one functional tRNA from these precursors, indicating that tRNA overlaps are incompatible with its processing pathway. In contrast, yeast processes overlapping tRNAs similar to human mitochondria, releasing a 3'-truncated upstream tRNA. This tRNA is restored in an editing-like event, although yeast does not carry a corresponding endogenous editing substrate. These findings support the hypothesis of the evolution of editing by recruitment of a pre-existing and promiscuous editing enzyme.

  • 24.
    Schuster, Jens
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    de Guidi, Claudia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Syndromic RNA polymerase II insufficiency: Generation of a human induced pluripotent stem cell line (UUIGPi002A-5) with a heterozygous disruption of POLR2A2021Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 57, artikel-id 102577Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Heterozygous variants in POLR2A, encoding the largest subunit of RNA polymerase II, cause severe neurodevelopmental and multisystem abnormalities in humans. Using CRISPR/Cas9 we generated the human iPSC line KICRi002A-5 with a heterozygous truncating 4 bp insertion in exon 5 of the POLR2A gene. Analysis using qRTPCR confirmed reduced POLR2A mRNA in KICRi002A-5 vs. the isogenic WT iPSC line. The edited iPSC line expressed pluripotency markers and exhibited differentiation capacity into the three germ layers. Assessment of genomic integrity revealed a normal karyotype and OFF-target editing was excluded. The iPSC line KICRi002A-5 provides a useful resource to study mechanisms underlying developmental defects caused by RBP1 insufficiency.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Schwarz, Franziska
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Generation of human induced pluripotent stem cell (iPSC) lines from three patients with von Hippel-Lindau syndrome carrying distinct VHL gene mutations2019Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 38, artikel-id UNSP 101474Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Von Hippel-Lindau (VHL) syndrome is a familial cancer syndrome caused by mutations in the tumor suppressor gene VHL. We generated human iPSC lines from primary dermal fibroblasts of three VHL syndrome patients carrying distinct VHL germ line mutations (c.194C > G, c.194C > T and nt440delTCT, respectively). Characterization of the iPSC lines confirmed expression of pluripotency markers, trilineage differentiation potential and absence of exogenous vector expression. The three hiPSC lines were genetically stable and retained the VHL mutation of each donor. These iPSC lines, the first derived from VHL syndrome patients, offer a useful resource to study disease pathophysiology and for anti-cancer drug development.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 26.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Noraddin, Feria Hikmet
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk och experimentell patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Generation of three human induced pluripotent stem cell (iPSC) lines from three patients with Dravet syndrome carrying distinct SCN1A gene mutations2019Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 39, artikel-id 101523Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dravet syndrome (DS) is a childhood epilepsy syndrome caused by heterozygous mutations in the SCN1A gene encoding voltage-gated sodium channel Nav1.1. We generated iPSCs from fibroblasts of three DS patients carrying distinct SCN1A mutations (c.5502-5509dupGCTTGAAC, c.2965G>C and c.651C>G). The iPSC lines were genetically stable and each line retained the SCN1A gene mutation of the donor fibroblasts. Characterization of the iPSC lines confirmed expression of pluripotency markers, absence of exogenous vector expression and trilineage differentiation potential. These iPSC lines offer a useful resource to investigate the molecular mechanisms underlying Nav1.1 haploinsufficiency and for drug development to improve treatment of DS patients.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 27.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Fröjmark, Anne-Sophie
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Nilsson, Per
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Badhai, Jitendra
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Virtanen, Anders
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Ribosomal protein S19 binds to its own mRNA with reduced affinity in Diamond-Blackfan anemia2010Ingår i: Blood Cells, Molecules & Diseases, ISSN 1079-9796, E-ISSN 1096-0961, Vol. 45, nr 1, s. 23-28Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Heterozygous mutations in the ribosomal protein S19 (RPS19) gene are associated with Diamond-Blackfan anemia (DBA). The mechanism by which RPS19 mediates anemia are still unclear, as well as the regulation of RPS19 expression. We show herein that RPS19 binds specifically to the 5' untranslated region of its own mRNA with an equilibrium binding constant (K(D)) of 4.1+/-1.9 nM. We investigated the mRNA binding properties of two mutant RPS19 proteins (W52R and R62W) identified in DBA patients. We observed a significant increase in K(D) for both proteins (16.1+/-2.1 and 14.5+/-4.9 nM, respectively), indicating a reduced RNA binding capability (p<0.05). We suggest that the binding of RPS19 to its mRNA has a regulatory function and hypothesize that the weaker RNA binding of mutant rRPS19 may have implications for the pathophysiological mechanisms in DBA.

  • 28.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Halvardson, Jonatan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Lorenzo, Laureanne Pilar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Ameur, Adam
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Sobol, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Raykova, Doroteya
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Annerén, Göran
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Feuk, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling2015Ingår i: Cellular Reprogramming, ISSN 2152-4971, E-ISSN 2152-4998, Vol. 17, nr 5, s. 327-337Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling.

  • 29.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hoeber, Jan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Annerén, Göran
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa, Forskargrupper (Inst. för kvinnor och barns hälsa), Barnkirurgisk forskning.
    Generation of two human iPSC lines (UUIGPi013-A and UUIPGi014-A) from cases with Down syndrome and full trisomy for chromosome 21 (T21)2020Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 49, artikel-id 102081Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Down syndrome (DS) is caused by trisomy for chromosome 21 (T21). We generated two induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two males with DS using Sendai virus delivery of OCT4, SOX2, KLF4, and c-MYC. Characterization of the two iPSC lines, UUIGPi013-A and UUIPGi014-A, showed that they are genetically stable with a 47,XY,+21 karyotype. Both lines displayed expression of pluripotency markers and trilineage differentiation capacity. These two iPSC lines provide a useful resource for DS modeling and pharmacological interventions.

  • 30.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Karlsson, Teresia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Karlström, Per-Olof
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa.
    Poromaa, Inger Sundström
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Down-regulation of progesterone receptor membrane component 1 (PGRMC1) in peripheral nucleated blood cells associated with premature ovarian failure (POF) and polycystic ovary syndrome (PCOS)2010Ingår i: Reproductive Biology and Endocrinology, E-ISSN 1477-7827, Vol. 8, s. 58-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: Progesterone receptor membrane component 1 (PGRMC1) is a member of a progesterone-binding complex implicated in female reproduction. We aimed i) to determine the natural expression of PGRMC1 in peripheral nucleated blood cells throughout the menstrual cycle and ii) to investigate any association between PGRMC1 levels in leukocytes and conditions characterized by reduced fertility. METHODS: We analyzed PGRMC1 expression in peripheral leukocytes from 15 healthy cycling women over four weeks. Additionally, we determined PGRMC1 levels in samples from patients with premature ovarian failure (POF) and polycystic ovary syndrome (PCOS) as well as in healthy postmenopausal women and male controls. The levels of PGRMC1 protein in nucleated peripheral blood cells were quantified by Western blot analysis. RESULTS: PGRMC1 levels did not vary significantly throughout the menstrual cycle. We observed a significant down-regulation of PGRMC1 in postmenopausal women and in patients with premature ovarian failure (POF) and polycystic ovary syndrome (PCOS) when compared to early follicular phase of healthy women. CONCLUSION: This study suggests that reduced levels of PGRMC1 in peripheral leukocytes are associated with perturbed ovulatory function.

  • 31.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Khan, Tahir Naeem
    Tariq, Muhammad
    Shaiq, Pakeeza Arzoo
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Mäbert, Katrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Baig, Shahid Mahmood
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala University.
    Exome sequencing circumvents missing clinical data and identifies a BSCL2 mutation in congenital lipodystrophy2014Ingår i: BMC Medical Genetics, E-ISSN 1471-2350, Vol. 15, artikel-id 71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: Exome sequencing has become more and more affordable and the technique has emerged as an important diagnostic tool for monogenic disorders at early stages of investigations, in particular when clinical information is limited or unspecific as well as in cases of genetic heterogeneity.

    METHODS: We identified a consanguineous Pakistani family segregating an autosomal recessive phenotype characterized by muscular hypertrophy, mild mental retardation and skeletal abnormalities. The available clinical information was incomplete and we applied whole exome sequencing in an affected family member for the identification of candidate gene variants.

    RESULTS: Exome sequencing identified a previously unreported homozygous mutation in the acceptor splice site of intron 5 in the BSCL2 gene (c.574-2A > G). Expression analysis revealed that the mutation was associated with skipping of exon 6. BSCL2 mutations are associated with Berardinelli-Seip congenital lipodystrophy and a clinical re-evaluation of affected individuals confirmed the diagnosis.

    CONCLUSIONS: Exome sequencing is a powerful technique for the identification of candidate gene variants in Mendelian traits. We applied this technique on a single individual affected by a likely autosomal recessive disorder without access to complete clinical details. A homozygous and truncating mutation was identified in the BSCL2 gene suggesting congenital generalized lipodystrophy. Incomplete phenotypic delineations are frequent limiting factors in search for a diagnosis and may lead to inappropriate care and follow-up. Our study exemplifies exome sequencing as a powerful diagnostic tool in Mendelian disorders that may complement missing clinical information and accelerate clinical diagnosis.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Schuster, Jens
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Genomik och neurobiologi.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Genomik och neurobiologi.
    Khalfallah, Ayda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Laan, Loora
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Hoeber, Jan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Fatima, Ambrin
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Sequeira, Velin Marita
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Jin, Zhe
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Korol, Sergiy V.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Huss, Mikael
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Wallenberg Long Term Bioinformat Support, Stockholm, Sweden..
    Nordgren, Ann
    Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.;Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden..
    Anderlid, Britt Marie
    Karolinska Inst, Ctr Mol Med, Dept Mol Med & Surg, Stockholm, Sweden.;Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden..
    Gallant, Caroline J.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Birnir, Bryndis
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Genomik och neurobiologi.
    ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function2022Ingår i: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 15, artikel-id 988993Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 33.
    Schuster, Jens
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Jin, Zhe
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Birnir: Molekylär fysiologi och neurovetenskap.
    Huss, Mikael
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Wallenberg Long Term Bioinformat Support, Stockholm, Sweden.
    Korol, Sergiy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Birnir: Molekylär fysiologi och neurovetenskap.
    Noraddin, Feria Hikmet
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk och experimentell patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Birnir, Bryndis
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Birnir: Molekylär fysiologi och neurovetenskap.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment2019Ingår i: Neurobiology of Disease, ISSN 0969-9961, E-ISSN 1095-953X, Vol. 132, artikel-id 104583Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dravet syndrome (DS) is an early onset refractory epilepsy typically caused by de novo heterozygous variants in SCN1A encoding the a-subunit of the neuronal sodium channel Na(v)1.1. The syndrome is characterized by age related progression of seizures, cognitive decline and movement disorders. We hypothesized that the distinct neurodevelopmental features in DS are caused by the disruption of molecular pathways in Na(v)1.1 haploinsufficient cells resulting in perturbed neural differentiation and maturation. Here, we established DS-patient and control induced pluripotent stem cell derived neural progenitor cells (iPSC NPC) and GABAergic interneuronal (iPSC GABA) cells. The DS-patient iPSC GABA cells showed a shift in sodium current activation and a perturbed response to induced oxidative stress. Transcriptome analysis revealed specific dysregulations of genes for chromatin structure, mitotic progression, neural plasticity and excitability in DS-patient iPSC NPCs and DS-patient iPSC GABA cells versus controls. The transcription factors FOXM1 and E2F1, positive regulators of the disrupted pathways for histone modification and cell cycle regulation, were markedly up-regulated in DS-iPSC GABA lines. Our study highlights transcriptional changes and disrupted pathways of chromatin remodeling in Na(v)1.1 haploinsufficient GABAergic cells, providing a molecular framework that overlaps with that of neurodevelopmental disorders and other epilepsies.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 34.
    Schuster, Jens
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Genomik och neurobiologi.
    Lu, Xi
    Dang, Yonglong
    Klar, Joakim
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa, Barnkirurgisk forskning.
    Wenz, Amelie S.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa, Barnkirurgisk forskning.
    Chen, Xingqi
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg och funktionsgenomik.
    Epigenetic Insights into GABAergic development in Dravet Syndrome iPSC and Therapeutic ImplicationsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Dravet syndrome (DS) is a devastating early onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. In this study, we utilized induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors to model disease-associated epigenetic abnormalities of GABAergic development. Employing the ATAC-seq technique, we assessed chromatin accessibility at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, we elucidated the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility in GABAergic cells. The distinct dynamics in chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development in some DS iPSC-GABA. This study provides the first comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC, offering valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, our detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve development of personalized and targeted anti-epileptic therapies.  

  • 35.
    Schuster, Jens
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Sobol, Maria
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Khalfallah, Ayda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Anderlid, Britt-Marie
    Karolinska Univ Hosp, Dept Mol Med & Surg, Ctr Mol Med, Stockholm, Sweden;Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden.
    Nordgren, Ann
    Karolinska Univ Hosp, Dept Mol Med & Surg, Ctr Mol Med, Stockholm, Sweden;Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Mowat-Wilson syndrome: Generation of two human iPS cell lines (UUIGPi004A and UUIGPi005A) from siblings with a truncating ZEB2 gene variant2019Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 39, artikel-id 101518Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mowat-Wilson syndrome (MWS) is a complex developmental syndrome caused by heterozygous mutations in the Zinc finger E-box-binding homeobox 2 gene (ZEB2). We generated the first human iPSC lines from primary fibroblasts of two siblings with MWS carrying a heterozygous ZEB2 stop mutation (c.1027C > T; p.Arg343*) using the Sendai virus reprogramming system. Both iPSC lines were free from reprogramming vector genes, expressed pluripotency markers and showed potential to differentiate into the three germ layers. Genetic analysis confirmed normal karyotypes and a preserved stop mutation. These iPSC lines will provide a useful resource to study altered neural lineage fate and neuropathophysiology in MWS.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 36.
    Schuster, Jens
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Sundblom, Jimmy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Thuresson, Ann-Charlotte
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hassin-Baer, Sharon
    Klopstock, Thomas
    Dichgans, Martin
    Cohen, Oren S.
    Raininko, Raili
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för radiologi, onkologi och strålningsvetenskap, Enheten för radiologi.
    Melberg, Atle
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms2011Ingår i: Neurogenetics, ISSN 1364-6745, E-ISSN 1364-6753, Vol. 12, nr 1, s. 65-72Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms features micturition urgency, constipation, erectile dysfunction, and orthostatic hypotension, usually followed by pyramidal signs and ataxia. Peripheral nerve conduction is normal. The disease is often mistaken for multiple sclerosis in the initial phase. There is a characteristic pattern of white matter changes in the brain and spinal cord on magnetic resonance imaging (MRI), mild atrophy of the brain, and a more marked atrophy of the spinal cord. ADLD is associated with duplications of the lamin B1 (LMNB1) gene but the mechanism by which the rearrangement conveys the phenotype is not fully defined. We analyzed four unrelated families segregating ADLD with autonomic symptoms for duplications of the LMNB1 gene. A single nucleotide polymorphism (SNP) array analysis revealed novel duplications spanning the entire LMNB1 gene in probands from each of the four families. We then analyzed the expression of lamin B1 in peripheral leukocytes by Western blot analysis in five patients from two available families. The protein levels of lamin B1 were found significantly increased. These results indicate that the ADLD phenotype associated with LMNB1 duplications is mediated by increased levels of the lamin B1 protein. Furthermore, we show that a molecular diagnosis for ADLD with autonomic symptoms can be obtained by a direct analysis of lamin B1 in peripheral leukocytes.

  • 37.
    Schuster, Jens
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Tripathi, Rekha
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Generation of a human iPSC line (UUIGPi015-A) from a patient with Dravet syndrome and a 2.9 Mb deletion spanning SCN1A on chromosome 22022Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 60, artikel-id 102712Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dravet syndrome is an early onset devastating epilepsy syndrome usually caused by heterozygous mutations in SCN1A. We generated a human iPSC line (UUIGPi015A) from dermal fibroblasts of a patient with Dravet syndrome carrying a deletion on chromosome 2 encompassing SCN1A and 9 flanking genes. Characterization of the iPSC line confirmed expression of pluripotency markers, tri-lineage differentiation capacity and absence of exogenous reprogramming factors. The iPSC line retained the deletion and was genomically stable. The iPSC line UUIGPi015-A provides a useful resource for studies on the pathophysiology of Dravet syndrome and seizures caused by haploinsufficiency of SCN1A and flanking gene products.

    Ladda ner fulltext (pdf)
    fulltext
  • 38. Schürer, Heike
    et al.
    Lang, Kathrin
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Mörl, Mario
    A universal method to produce in vitro transcripts with homogeneous 3' ends2002Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 30, nr 12, s. e56-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method is described that allows a general drawback of in vitro transcription assays to be overcome: RNA polymerases tend to add extra nucleotides to the RNA 3' end that are not encoded in the linearized DNA template. Furthermore, these polymerases show a considerable rate of premature termination close to the RNA's 3' end. These features lead to a decreased yield of full-length transcripts and often make it difficult to determine and isolate the correctly transcribed full-length RNA. The hammerhead ribozyme is frequently used in cis to cleave off these extra nucleotides. However, the upstream sequence requirements of this ribozyme restrict its general usability. In contrast, the hepatitis delta virus ribozyme has no such requirements and can therefore be applied to any RNA sequence in cis. Due to the catalytic activity of the ribozyme, the desired transcript is released as an RNA molecule with a homogeneous 3' end. The resulting 2',3'-cyclo-phosphate group of the released RNA can be easily and efficiently removed by T4 polynucleotide kinase treatment. The presented method can be applied for virtually any sequence to be transcribed and is therefore superior to other ribozyme strategies, suggesting possible applications in every field where transcripts with homogeneous 3' ends are required.

  • 39. Shahsavani, M
    et al.
    Pronk, R J
    Falk, R
    Lam, M
    Moslem, M
    Linker, S B
    Salma, J
    Day, K
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Anderlid, B-M
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Gage, F H
    Falk, A
    An in vitro model of lissencephaly: expanding the role of DCX during neurogenesis2018Ingår i: Molecular Psychiatry, ISSN 1359-4184, E-ISSN 1476-5578, Vol. 23, nr 7, s. 1674-1684Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.Molecular Psychiatry advance online publication, 19 September 2017; doi:10.1038/mp.2017.175.

  • 40.
    Sobol, Maria
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Laan, Loora
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Shahsavani, Mansoureh
    Karolinska Inst Solna, Dept Neurosci, Stockholm, Sweden.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Annerén, Göran
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Konzer, Anne
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Mi, Jia
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala Univ, Dept Chem BMC Analyt Chem, Box 599, SE-75124 Uppsala, Sweden.
    Bergquist, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nordlund, Jessica
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Molekylär medicin. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hoeber, Jan
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Huss, Mikael
    Stockholm Univ, Natl Bioinformat Infrastruct Sweden, Sci Life Lab, Dept Biochem & Biophys, Solna, Sweden.
    Falk, Anna
    Karolinska Inst Solna, Dept Neurosci, Stockholm, Sweden.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Transcriptome and Proteome Profiling of Neural Induced Pluripotent Stem Cells from Individuals with Down Syndrome Disclose Dynamic Dysregulations of Key Pathways and Cellular Functions2019Ingår i: Molecular Neurobiology, ISSN 0893-7648, E-ISSN 1559-1182, Vol. 56, nr 10, s. 7113-7127Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Down syndrome (DS) or trisomy 21 (T21) is a leading genetic cause of intellectual disability. To gain insights into dynamics of molecular perturbations during neurogenesis in DS, we established a model using induced pluripotent stem cells (iPSC) with transcriptome profiles comparable to that of normal fetal brain development. When applied on iPSCs with T21, transcriptome and proteome signatures at two stages of differentiation revealed strong temporal dynamics of dysregulated genes, proteins and pathways belonging to 11 major functional clusters. DNA replication, synaptic maturation and neuroactive clusters were disturbed at the early differentiation time point accompanied by a skewed transition from the neural progenitor cell stage and reduced cellular growth. With differentiation, growth factor and extracellular matrix, oxidative phosphorylation and glycolysis emerged as major perturbed clusters. Furthermore, we identified a marked dysregulation of a set of genes encoded by chromosome 21 including an early upregulation of the hub gene APP, supporting its role for disturbed neurogenesis, and the transcription factors OLIG1, OLIG2 and RUNX1, consistent with deficient myelination and neuronal differentiation. Taken together, our findings highlight novel sequential and differentiation-dependent dynamics of disturbed functions, pathways and elements in T21 neurogenesis, providing further insights into developmental abnormalities of the DS brain.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 41.
    Sobol, Maria
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Raykova, Doroteya
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Cavelier, Lucia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Khalfallah, Ayda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Methods of Reprogramming to Induced Pluripotent Stem Cell Associated with Chromosomal Integrity and Delineation of a Chromosome 5q Candidate Region for Growth Advantage2015Ingår i: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 24, nr 17, s. 2032-2040Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Induced pluripotent stem cells (iPSCs) have brought great promises for disease modeling and cell-based therapies. One concern related to the use of reprogrammed somatic cells is the loss of genomic integrity and chromosome stability, a hallmark for cancer and many other human disorders. We investigated 16 human iPSC lines reprogrammed by nonintegrative Sendai virus (SeV) and another 16 iPSC lines generated by integrative lentivirus for genetic changes. At early passages we detected cytogenetic rearrangements in 44% (7/16) of iPSC lines generated by lentiviral integration whereas the corresponding figure was 6% (1/16) using SeV-based delivery. The rearrangements were numerical and/or structural with chromosomes 5 and 12 as the most frequently involved chromosomes. Three iPSC lines with chromosome 5 aberrations were derived from one and the same donor. We present in this study the aberrant karyotypes including a duplication of chromosome 5q13q33 that restricts a candidate region for growth advantage. Our results suggest that the use of integrative lentivirus confers a higher risk for cytogenetic abnormalities at early passages when compared to SeV-based reprogramming. In combination, our findings expand the knowledge on acquired cytogenetic aberrations in iPSC after reprogramming and during culture.

  • 42.
    Vasylovska, Svitlana
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Brboric, Anja
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Carlsson, Per-Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Lau, Joey
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi.
    Generation of human induced pluripotent stem cell (iPSC) lines (UUMCBi001-A, UUMCBi002-A) from two healthy donors2021Ingår i: Stem Cell Research, ISSN 1873-5061, E-ISSN 1876-7753, Vol. 50, artikel-id 102114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Availability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors. Both iPSC lines were genetically stable with a genotype that matched the fibroblast lines of donors. These iPSC lines add to available reference lines as a resource for disease modeling of polygenic and multifactorial diseases, for evaluation of differentiation protocols and toxicology screening.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Zakaria, Muhammad
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan;Centre for Human Genetics, Hazara University, Mansehra, Pakistan.
    Fatima, Ambrin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Wikström, Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.
    Abdullah, Uzma
    Ali, Zafar
    Akram, Talia
    Tariq, Muhammad
    Ahmad, Habib
    Schuster, Jens
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Baig, Shahid M
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Primary microcephaly, primordial dwarfism, and brachydactyly in adult cases with biallelic skipping of RTTN exon 422019Ingår i: Human Mutation, ISSN 1059-7794, E-ISSN 1098-1004, Vol. 40, nr 7, s. 899-903Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biallelic and pathogenic variants in the RTTN gene, encoding the centrosomal protein Rotatin, are associated with variable degrees of neurodevelopmental abnormalities, microcephaly, and extracranial malformations. To date, no reported case has reached their third decade. Herein, we report on a consanguineous family with three adult members, age 43, 57, and 60 years respectively, with primary microcephaly, developmental delay, primordial dwarfism, and brachydactyly segregating a homozygous splice site variant NM_173630.3:c.5648–5T>A in RTTN. The variant RTTN allele results in a nonhypomorphic skipping of exon 42 and a frameshift [(NP_775901.3:p.Ala1883Glyfs*6)]. Brain MRI of one affected individual showed markedly reduced volume of cerebral lobes and enlarged sulci but without signs of neural migration defects. Our assessment of three adult cases with a biallelic RTTN variant shows that a predicted shortened Rotatin, lacking the C‐terminal end, are associated with stationary clinical features into the seventh decade. Furthermore, our report adds brachydactyly to the phenotypic spectrum in this pleiotropic entity.

  • 44.
    Zulfiqar, Shumaila
    et al.
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Tariq, Muhammad
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Ali, Zafar
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Fatima, Ambrin
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Klar, Joakim
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Abdullah, Uzma
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Ali, Aamir
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Ramzan, Shafaq
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    He, Sijie
    Allied Hosp, Radiol Dept, Faisalabad, Pakistan;BGI Shenzhen, Shenzhen 518083, Peoples R China.
    Zhang, Jianguo
    BGI Shenzhen, Shenzhen 518083, Peoples R China.
    Khan, Ayaz
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Shah, Suleman
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Khan, Sheraz
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Makhdoom, Ehtishamul Haq
    Govt Coll Univ, Dept Physiol, Faisalabad, Pakistan.
    Schuster, Jens
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Dahl, Niklas
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk genetik och genomik.
    Baig, Shahid Mahmood
    PIEAS, NIBGE, Human Mol Genet Lab, Faisalabad, Pakistan.
    Whole exome sequencing identifies novel variant underlying hereditary spastic paraplegia in consanguineous Pakistani families2019Ingår i: Journal of clinical neuroscience, ISSN 0967-5868, E-ISSN 1532-2653, Vol. 67, s. 19-23Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hereditary Spastic paraplegias (HSPs) are heterogeneous group of degenerative disorders characterized by progressive weakness and spasticity of the lower limbs, combined with additional neurological features. This study aimed to identify causative gene variants in two nonrelated consanguineous Pakistani families segregating HSP. Whole exome sequencing (WES) was performed on a total of five individuals from two families including four affected and one phenotypically normal individual. The variants were validated by Sanger sequencing and segregation analysis. In family A, a novel homozygous variant c.604G > A (p.Glu202Lys) was identified in the CYP2U1 gene with clinical symptoms of SPG56 in 3 siblings. Whereas, a previously reported variant c.5769delT (p.Ser1923Argfs*28) in the SPG11 gene was identified in family B manifesting clinical features of SPG11 in 3 affected individuals. Our combined findings add to the clinical and genetic variability associated with CYP2U1 and SPG11 variants highlighting the complexity of HSPs. These findings further emphasize the usefulness of WES as a powerful diagnostic tool.

1 - 44 av 44
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf