uu.seUppsala universitets publikasjoner
Endre søk
Begrens søket
1 - 37 of 37
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Biglarnia, Alireza
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Emanuelsson, Cecilia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Quach, My
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Larsson, Erik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylär och morfologisk patologi.
    Schneider, Mårten K. J.
    Tufveson, Gunnar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Lorant, Tomas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    The free radical scavenger S-PBN significantly prolongs DSG-mediated graft survival in experimental xenotransplantation2012Inngår i: Xenotransplantation, ISSN 0908-665X, E-ISSN 1399-3089, Vol. 19, nr 3, s. 166-176Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Nitrones such as 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) are known to trap and stabilize free radicals and to reduce inflammation. Recently, S-PBN was shown to reduce infiltration of T lymphocytes and the expression of adhesion molecules on the endothelium in experimental traumatic brain injury. We hypothesized that S-PBN could reduce infiltration of T lymphocytes during cell-mediated xenograft rejection and thereby increase graft survival. The concordant mouse-to-rat heart transplantation model was used to test the hypothesis. In this model, grafts undergo acute humoral xenograft rejection (AHXR) almost invariably on day 3 and succumb to cell-mediated rejection on approximately day 8 if AHXR is inhibited by treatment with 15-deoxyspergualin (DSG). Material and methods: Hearts from Naval Medical Research Institute (NMRI) mice were transplanted to the neck vessels of Lewis rats. Recipients were treated with S-PBN (n = 9), DSG (n = 9), S-PBN and DSG in combination (n = 10) or left untreated (n = 9) for survival studies. S-PBN was given daily intraperitoneally at a dose of 150 mg/kg body weight (BW) on day -1 to 30, and DSG was given daily intraperitoneally at a dose of 10 mg/kg BW on day -1 to 4 and 5 mg/kg BW on day 5 to 21. Nine additional recipients were given S-PBN only on days -1 and 0 in combination with continuous DSG treatment. Grafts were monitored until they stopped beating. Additional recipients were treated with S-PBN (n = 5), DSG (n = 5), S-PBN and DSG in combination (n = 6) or left untreated (n = 5) for morphological, immunohistochemical and flow cytometry analyses on days 2 and 6 after transplantation. Results: S-PBN treatment in combination with DSG resulted in increased median graft survival compared to DSG treatment alone (14 vs. 7 days; P = 0.019). Lower number of T lymphocytes on day 6 (P = 0.019) was observed by ex vivo propagation and flow cytometry when combining S-PBN with DSG, whereas immunohistochemical analyses demonstrated a significant reduction in the number of infiltrated CD4+, but not TCR+, cells. S-PBN treatment alone had no impact on graft survival compared to untreated rats (3 vs. 3 days). No differences were seen in ICAM-1 and VCAM-1 expression or in morphology between the groups. Conclusion: The combination of S-PBN and DSG treatment increases xenograft survival. The main effect of S-PBN appears to be in direct connection with the transplantation. Because of its low toxicity, S-PBN could become useful in combination with other immunosuppressants to reduce cell-mediated xenograft rejection.

  • 2.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Animal models of traumatic brain injury2016Inngår i: Experimental Neurosurgery in Animal Models / [ed] Miroslaw Janowski, New York: Springer-Verlag New York, 2016, s. 1-12Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Animal models of traumatic brain injury (TBI) have been the core of the research on the molecular, cellular, and functional effects of the disease. To be able to simulate the heterogeneous aspects of TBI several models have been designed. This chapter aims to describe the three most commonly used experimental models of TBI in rodents.

  • 3.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Exploring a new approach to treating brain injury: Anti-inflammatory effect of pulsed electromagnetic fields2012Inngår i: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 519, nr 1, s. 1-3Artikkel i tidsskrift (Annet vitenskapelig)
  • 4.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Dahlin, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Chu, Jiangtao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Kaller, Bodil
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    During, Erik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Novel Microdialysis Method to Study The Acute Cytokine Response to Diffuse Traumatic Brain Injury in the Rat2014Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 31, nr 5, s. A19-A19Artikkel i tidsskrift (Fagfellevurdert)
  • 5.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Combination of Growth Factor Treatment and Scaffold Deposition Following Experimental Traumatic Brain Injury Show a Temporary Effect on Cellular Regeneration2013Inngår i: Glia, ISSN 0894-1491, E-ISSN 1098-1136, Vol. 61, s. S196-S196Artikkel i tidsskrift (Annet vitenskapelig)
  • 6.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hansson, Hans-Arne
    Gothenburg Univ, Biomed, Gothenburg, Sweden.
    Reduced Intracranial Pressure After Treatment With Anti-Secretory Factor 16 In A Rat Model Of Traumatic Brain Injury2018Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, nr 16, s. A195-A196Artikkel i tidsskrift (Annet vitenskapelig)
  • 7.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hansson, Hans-Arne
    Univ Gothenburg, Inst Biomed, Gothenburg, Sweden..
    Raud, Johan
    Lantmannen AS Faktor AB, Stockholm, Sweden..
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Intranasal Administration of the Antisecretory Peptide AF-16 Reduces Edema and Improves Cognitive Function Following Diffuse Traumatic Brain Injury in the Rat2017Inngår i: Frontiers in Neurology, ISSN 1664-2295, E-ISSN 1664-2295, Vol. 8, artikkel-id 39Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A synthetic peptide with antisecretory activity, antisecretory factor (AF)-16, improves injury-related deficits in water and ion transport and decreases intracranial pressure after experimental cold lesion injury and encephalitis although its role in traumatic brain injury (TBI) is unknown. AF-16 or an inactive reference peptide was administrated intranasally 30 min following midline fluid percussion injury (mFPI; n = 52), a model of diffuse mild-moderate TBI in rats. Sham-injured (n = 14) or naive (n = 24) animals were used as controls. The rats survived for either 48 h or 15 days post-injury. At 48 h, the animals were tested in the Morris water maze (MWM) for memory function and their brains analyzed for cerebral edema. Here, mFPI-induced brain edema compared to sham or naive controls that was significantly reduced by AF-16 treatment (p < 0.05) although MWM performance was not altered. In the 15-day survival groups, the MWM learning and memory abilities as well as histological changes were analyzed. AF-16-treated brain-injured animals shortened both MWM latency and swim path in the learning trials (p < 0.05) and improved probe trial performance compared to brain-injured controls treated with the inactive reference peptide. A modest decrease by AF-16 on TBI-induced changes in hippocampal glial acidic fibrillary protein (GFAP) staining (p = 0.11) was observed. AF-16 treatment did not alter any other immunohistochemical analyses (degenerating neurons, beta-amyloid precursor protein (beta-APP), and Olig2). In conclusion, intranasal AF-16-attenuated brain edema and enhanced visuospatial learning and memory following diffuse TBI in the rat. Intranasal administration early post-injury of a promising neuroprotective substance offers a novel treatment approach for TBI.

  • 8.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hånell, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Björk, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Mir, Anis K.
    Gram, Hermann
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice2009Inngår i: European Journal of Neuroscience, ISSN 0953-816X, E-ISSN 1460-9568, Vol. 30, nr 3, s. 385-396Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interleukin-1beta (IL-1beta) may play a central role in the inflammatory response following traumatic brain injury (TBI). We subjected 91 mice to controlled cortical impact (CCI) brain injury or sham injury. Beginning 5 min post-injury, the IL-1beta neutralizing antibody IgG2a/k (1.5 microg/mL) or control antibody was infused at a rate of 0.25 microL/h into the contralateral ventricle for up to 14 days using osmotic minipumps. Neutrophil and T-cell infiltration and microglial activation was evaluated at days 1-7 post-injury. Cognition was assessed using Morris water maze, and motor function using rotarod and cylinder tests. Lesion volume and hemispheric tissue loss were evaluated at 18 days post-injury. Using this treatment strategy, cortical and hippocampal tissue levels of IgG2a/k reached 50 ng/mL, sufficient to effectively inhibit IL-1betain vitro. IL-1beta neutralization attenuated the CCI-induced cortical and hippocampal microglial activation (P < 0.05 at post-injury days 3 and 7), and cortical infiltration of neutrophils (P < 0.05 at post-injury day 7). There was only a minimal cortical infiltration of activated T-cells, attenuated by IL-1beta neutralization (P < 0.05 at post-injury day 7). CCI induced a significant deficit in neurological motor and cognitive function, and caused a loss of hemispheric tissue (P < 0.05). In brain-injured animals, IL-1beta neutralizing treatment resulted in reduced lesion volume, hemispheric tissue loss and attenuated cognitive deficits (P < 0.05) without influencing neurological motor function. Our results indicate that IL-1beta is a central component in the post-injury inflammatory response that, in view of the observed positive neuroprotective and cognitive effects, may be a suitable pharmacological target for the treatment of TBI.

  • 9.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lindh, Tone
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
    Shabnam, Salimi
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Combination of growth factor treatment and scaffold deposition following traumatic brain injury has only a temporary effect on regeneration2014Inngår i: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1588, s. 37-48Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The recovery after traumatic brain injury (TBI) is hampered by the poor regenerative capacity of the brain. Today there is no treatment available that effectively restores lost brain tissue, but much research is focused on the stimulation of endogenous neural stem cells to viably and functionally repopulate the injured parenchyma. It is crucial that the therapies have a proven long-term effect on both regeneration and functional recovery to be clinically interesting. Here we have studied the induction of stem cell activation in rats at three weeks and six weeks after inducing TBI using controlled cortical impact model at a severe setting. We combined intracerebroventricular growth factor and scaffold treatment in order to accomplish an optimal effect on the stem cell regeneration. Immediately after TBI epidermal growth factor infusion with osmotic minipumps was started and continued for seven days. The pumps were removed and an extracellular matrix scaffold containing vascular endothelial growth factor was deposited into the cortical cavity. Three weeks after injury there was a positive effect of the treatment with a significant increase in neuronal and astrocytic regeneration. However, after six weeks there was no difference in the number of newly generated neurons and astrocytes in treated or untreated rats. Evaluation of tissue loss and spatial learning in the Morris water maze corroborated that the treatment had no effect at the later time point. Our results highlight the importance of long-term studies to ensure that a promising effect on tissue regeneration and functional outcome is not only temporary.

  • 10.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Neurokirurgi.
    Lundqvist, Hanna
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Neurokirurgi.
    Ekmark, Sara
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Neurokirurgi.
    Lewen, Anders
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Neurokirurgi.
    Ebendal, Ted
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Medicinskt utvecklingsbiologi.
    Hillered, Lars
    Uppsala universitet, Medicinska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Neurokirurgi.
    Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury2004Inngår i: Journal of Neurotrauma, Vol. 21, nr 9, s. 1168-1182Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mitogen-activated protein kinase (MAPK) cascades are membrane-to-nucleus signaling modules that recently have been implicated as mediators of cellular injury. In this study, we investigated the involvement of the MAP kinase p44/p42 (extracellular signal-regulated kinase [ERK1/2]) in traumatic brain injury (TBI) in rats. There was a strong increase in activated, phosphorylated ERK 1/2 (p-ERK 1/2) protein at 10 min up to 24 h after the injury. Expression of p-ERK occurred in cells identified as neurons, astrocytes, and microglia. Most of the cells expressing p-ERK were TUNEL positive at later time points. Treatment with the MEK inhibitor U0126 or the free radical scavenger S-PBN, both with neuroprotective properties in TBI, attenuated the early activation of ERK and resulted in less activation of caspase-3 and subsequent DNA fragmentation. Post-treatment with U0126 resulted in a significant decrease (-60%) in cortical cavity size and cortical atrophy at 2 weeks after trauma. Overall, the results suggest that ERK activation is initiated by increased oxygen radical activity and that overactivation of ERK sets off secondary cell death mechanisms in TBI. Clinical studies are warranted to evaluate the concept of MEK inhibition in head-injured patients.

  • 11.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Acute Inflammatory Biomarker Responses to Diffuse Traumatic Brain Injury in the Rat Monitored by a Novel Microdialysis Technique2019Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 36, nr 2, s. 201-211Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Neuroinflammation is a major contributor to the progressive brain injury process induced by traumatic brain injury (TBI), and may play an important role in the pathophysiology of axonal injury. The immediate neuroinflammatory cascade cannot be characterized in the human setting. Therefore, we used the midline fluid percussion injury model of diffuse TBI in rats and a novel microdialysis (MD) method providing stable diffusion-driven biomarker sampling. Immediately post-injury, bilateral amphiphilic tri-block polymer coated MD probes (100 kDa cut off membrane) were inserted and perfused with Dextran 500 kDa-supplemented artificial cerebrospinal fluid (CSF) to optimize protein capture. Six hourly samples were analyzed for 27 inflammatory biomarkers (9 chemokines, 13 cytokines, and 5 growth factors) using a commercial multiplex biomarker kit. TBI (n = 6) resulted in a significant increase compared with sham-injured controls (n = 6) for five chemokines (eotaxin/CCL11, fractalkine/CX3CL1, LIX/CXCL5, monocyte chemoattractant protein [MCP]1α/CCL2, macrophage inflammatory protein [MIP]1α /CCL3), 10 cytokines (interleukin [IL]-1α, IL-1β, IL-4, IL-6, IL-10, IL-13, IL-17α, IL-18, interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and four growth factors (epidermal growth factor [EGF], granulocyte-macrophage colony-stimulating factor [GM-CSF], leptin, vascular endothelial growth factor [VEGF]). Therefore, diffuse TBI was associated with an increased level of 18 of the 27 inflammatory biomarkers at one through six time points, during the observation period whereas the remaining 9 biomarkers were unaltered. The study shows that diffuse TBI induces an acute increase in a number of inflammatory biomarkers. The novel MD technique provides stable MD sampling suitable for further studies on the early neuroinflammatory cascade in TBI.

  • 12.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lewén, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Enblad, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Basu, Samar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Oxidativ stress och inflammation.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Interstitial F2-Isoprostane 8-Iso-PGF As a Biomarker of Oxidative Stress after Severe Human Traumatic Brain Injury2012Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 29, nr 5, s. 766-775Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oxidative stress is a major contributor to the secondary injury process after experimental traumatic brain injury (TBI). The importance of oxidative stress in the pathobiology of human TBI is largely unknown. The F(2)-isoprostane 8-iso-prostaglandin F(2α) (8-iso-PGF(2α)), synthesized in vivo through non-enzymatic free radical catalyzed peroxidation of arachidonic acid, is a widely used biomarker of oxidative stress in multiple disease states, including TBI and cerebral ischemia/reperfusion. Our hypothesis is that harvesting of biomarkers directly in the injured brain by cerebral microdialysis (MD) is advantageous because of its high spatial and temporal resolution compared to blood or cerebrospinal fluid sampling. The aim of this study was to test the feasibility of measuring 8-iso-PGF(2α) in MD, ventricular cerebrospinal fluid (vCSF), and plasma samples collected from patients with severe TBI, and to compare the MD signals with MD-glycerol, implicated as a biomarker of oxidative stress, as well as MD-glutamate, a biomarker of excitotoxicity. Six patients (4 men, 2 women) were included in the study, three of whom had a focal/mixed TBI, and three a diffuse axonal injury (DAI). Following the bedside analysis of routine MD biomarkers (glucose, lactate:pyruvate ratio, glycerol, and glutamate), two 12-h MD samples per day were used to analyze 8-iso-PGF(2α) from 24 h up to 8 days post-injury. The interstitial levels of 8-iso-PGF(2α) were markedly higher than the levels obtained from plasma and vCSF (p<0.05), supporting our hypothesis. The MD-8-iso-PGF(2α) levels correlated strongly (p<0.05) with MD-glycerol and MD-glutamate, which are widely used biomarkers of membrane phospholipid degradation/oxidative stress and excitotoxicity, respectively. This study demonstrates the feasibility of analyzing 8-iso-PGF(2α) in MD samples from the human brain. Our results support a close relationship between oxidative stress and excitotoxicity following human TBI. MD-8-iso-PGF(2α) in combination with MD-glycerol may be useful biomarkers of oxidative stress in the neurointensive care setting.

  • 13.
    Clausen, Fredrik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lewén, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat2008Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 25, nr 12, s. 1449-1457Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reactive oxygen species (ROS) are important contributors to the secondary injury cascade following traumatic brain injury (TBI), and ROS inhibition has consistently been shown to be neuroprotective following experimental TBI. NXY-059, a nitrone free radical trapping compound, has been shown to be neuroprotective in models of ischemic stroke but has not been evaluated in experimental TBI. In the present study, a continuous 24-h intravenous infusion of NXY-059 or vehicle was initiated 30min following a severe lateral fluid percussion brain injury (FPI) in adult rats (n=22), and histological and behavioral outcomes were evaluated. Sham-injured animals (n=22) receiving identical drug infusion were used as controls. Visuospatial learning was evaluated in the Morris water maze at post-injury days 11–14, followed by a probe trial (memory test) at day 18. The animals were sacrificed at day 18, and loss of hemispheric brain tissue was measured in microtubule-associated protein (MAP)–2stained sections. Brain-injured, NXY-059-treated animals showed a significant reduction of visuospatial learning deficits when compared to the brain-injured, vehicle-treated control animals (p<0.05). NXY-059-treated animals significantly reduced the loss of hemispheric tissue compared to brain-injured controls (43.0±11mm3 versus 74.4±19mm3, respectively; p<0.01). The results show that post-injury treatment with NXY-059 significantly attenuated the loss of injured brain tissue and improved cognitive outcome, suggesting a major role for ROS in the pathophysiology of TBI.

  • 14.
    Dahlin, Andreas P
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Purins, Karlis
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Chu, Jiangtao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Sedigh, Amir
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Lorant, Tomas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Transplantationskirurgi.
    Enblad, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lewén, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Refined microdialysis method for protein biomarker sampling in acute brain injury in the neurointensive care setting2014Inngår i: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 86, nr 17, s. 8671-8679Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    There is growing interest in cerebral microdialysis (MD) for sampling of protein biomarkers in neurointensive care (NIC) patients. Published data point to inherent problems with this methodology including protein interaction and biofouling leading to unstable catheter performance. This study tested the in vivo performance of a refined MD method including catheter surface modification, for protein biomarker sampling in a clinically relevant porcine brain injury model. Seven pigs of both sexes (10-12 weeks old; 22.2-27.3 kg) were included. Mean arterial blood pressure, heart rate, intracranial pressure (ICP) and cerebral perfusion pressure was recorded during the stepwise elevation of intracranial pressure by inflation of an epidural balloon catheter with saline (1 mL/20 min) until brain death. One naïve MD catheter and one surface modified with Pluronic F-127 (10 mm membrane, 100 kDa molecular weight cutoff MD catheter) were inserted into the right frontal cortex and perfused with mock CSF with 3% Dextran 500 at a flow rate of 1.0 μL/min and 20 min sample collection. Naïve catheters showed unstable fluid recovery, sensitive to ICP changes, which was significantly stabilized by surface modification. Three of seven naïve catheters failed to deliver a stable fluid recovery. MD levels of glucose, lactate, pyruvate, glutamate, glycerol and urea measured enzymatically showed an expected gradual ischemic and cellular distress response to the intervention without differences between naïve and surface modified catheters. The 17 most common proteins quantified by iTRAQ and nanoflow LC-MS/MS were used as biomarker models. These proteins showed a significantly more homogeneous response to the ICP intervention in surface modified compared to naïve MD catheters with improved extraction efficiency for most of the proteins. The refined MD method appears to improve the accuracy and precision of protein biomarker sampling in the NIC setting.

  • 15.
    Dyhrfort, Philip
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Enblad: Neurokirurgi.
    Shen, Qiujin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Molekylära verktyg.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. Uppsala Univ, Dept Neurosci, Sect Neurosurg, Uppsala, Sweden.
    Eriksson, Måns
    Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Statistiska institutionen. Uppsala Univ, Dept Stat, Uppsala, Sweden;Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland;Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh, Midlothian, Scotland.
    Enblad, Per
    Kamali-Moghaddam, Masood
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Lewén, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Enblad: Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
    Monitoring of Protein Biomarkers of Inflammation in Human Traumatic Brain Injury Using Microdialysis and Proximity Extension Assay Technology in Neurointensive Care2019Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 36, nr 20, s. 2872-2885Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Traumatic brain injury (TBI) is followed by secondary injury mechanisms strongly involving neuroinflammation. To monitor the complex inflammatory cascade in human TBI, we used cerebral microdialysis (MD) and multiplex proximity extension assay (PEA) technology and simultaneously measured levels of 92 protein biomarkers of inflammation in MD samples every three hours for five days in 10 patients with severe TBI under neurointensive care. One mu L MD samples were incubated with paired oligonucleotide-conjugated antibodies binding to each protein, allowing quantification by real-time quantitative polymerase chain reaction. Sixty-nine proteins were suitable for statistical analysis. We found five different patterns with either early (<48 h; e.g., CCL20, IL6, LIF, CCL3), mid (48-96 h; e.g., CCL19, CXCL5, CXCL10, MMP1), late (>96 h; e.g., CD40, MCP2, MCP3), biphasic peaks (e.g., CXCL1, CXCL5, IL8) or stable (e.g., CCL4, DNER, VEGFA)/low trends. High protein levels were observed for e.g., CXCL1, CXCL10, MCP1, MCP2, IL8, while e.g., CCL28 and MCP4 were detected at low levels. Several proteins (CCL8, -19, -20, -23, CXCL1, -5, -6, -9, -11, CST5, DNER, Flt3L, and SIRT2) have not been studied previously in human TBI. Cross-correlation analysis revealed that LIF and CXCL5 may play a central role in the inflammatory cascade. This study provides a unique data set with individual temporal trends for potential inflammatory biomarkers in patients with TBI. We conclude that the combination of MD and PEA is a powerful tool to map the complex inflammatory cascade in the injured human brain. The technique offers new possibilities of protein profiling of complex secondary injury pathways.

  • 16.
    Ekmark-Lewén, Sara
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Flygt, Johanna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Fridgeirsdottir, Gudrun A.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Kiwanuka, Olivia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Hanell, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Meyerson, Bengt J.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Mir, Anis K.
    Novartis Inst Biomed Res, Basel, Switzerland..
    Gram, Hermann
    Novartis Inst Biomed Res, Basel, Switzerland..
    Lewen, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β2016Inngår i: European Journal of Neuroscience, ISSN 0953-816X, E-ISSN 1460-9568, Vol. 43, nr 8, s. 1016-1033Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1 has not been established in TAI. An IL-1-neutralizing or a control antibody was administered intraperitoneally at 30min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n=41) were compared with sham-injured controls (n=20) and untreated, naive mice (n=9). The anti-IL-1 antibody reached the target brain regions in adequate therapeutic concentrations (up to similar to 30g/brain tissue) at 24h post-injury in both cFPI (n=5) and sham-injured (n=3) mice, with lower concentrations at 72h post-injury (up to similar to 18g/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9days post-injury, and the Morris water maze (MWM) at 14-21days post-injury. Following TAI, the IL-1-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1 is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI.

  • 17.
    Flygt, Johanna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Diffuse traumatic brain injury in the mouse induces a transient proliferation of oligodendrocyte progenitor cells in injured white matter tracts2016Konferansepaper (Fagfellevurdert)
  • 18.
    Flygt, Johanna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Diffuse traumatic brain injury in the mouse induces a transient proliferation of oligodendrocyte progenitor cells in injured white matter tracts2017Inngår i: Restorative Neurology and Neuroscience, ISSN 0922-6028, E-ISSN 1878-3627, Vol. 35, nr 2, s. 251-263Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Injury to the white matter may lead to impaired neuronal signaling and is commonly observed following traumatic brain injury (TBI). Although endogenous repair of TBI-induced white matter pathology is limited, oligodendrocyte progenitor cells (OPCs) may be stimulated to proliferate and regenerate functionally myelinating oligodendrocytes. Even though OPCs are present throughout the adult brain, little is known about their proliferative activity following axonal injury caused by TBI.

    Objective: We hypothesized that central fluid percussion injury (cFPI) in mice, a TBI model causing wide-spread axonal injury, results in OPC proliferation.

    Methods: Proliferation of OPCs was evaluated in 27 cFPI mice using 5-ethynyl-2-deoxyuridine (EdU) labeling and a cell proliferation assay at 2 (n=9), 7 (n = 8) and 21 (n = 10) days post injury (dpi). Sham-injured mice (n = 14) were used as controls. OPC proliferation was quantified by immunohistochemistry using the OPC markers NG2 and Olig2 in several white matter loci including the corpus callosum, external capsule, fimbriae, the internal capsule and cerebral peduncle.

    Results: The number of EdU/DAPI/Olig2-positive cells were increased in the cFPI group compared to sham-injured animals at 7 days post-injury (dpi; p≤0.05) in the majority of white matter regions. The OPC proliferation had subsided by 21 dpi. The number of EdU/DAPI/NG2 cells was also increase at 7 dpi in the external capsule and fimbriae.

    Conclusion: These results suggest that traumatic axonal injury in the mouse induces a transient proliferative response of residing OPCs. These proliferating OPCs may replace dead oligodendrocytes and contribute to remyelination, which needs evaluation in future studies.

  • 19.
    Flygt, Johanna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Ruscher, Karsten
    Department of Neuroscience, unit of Neurosurgery, Lund University, Lund, Sweden..
    Norberg, Amanda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Mir, AK
    Novartis Institutes of Biomedical Research, Basel, Switzerland .
    Gram, Hermann
    Novartis Institutes of Biomedical Research, Basel, Switzerland .
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Reduced loss of mature Oligodendrocytes following Diffuse Traumatic Brain Injury in the mouse by Neutralization of Interleukin-1βManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Abstract

    Background: Traumatic brain injury (TBI) leads to several secondary consequences impairing patient outcome. Injury to the components of the white matter, the oligodendrocyte population, myelin and axons, associate with post-injury cognitive deficits. Oligodendrocytes (OLs), the myelin-producing cell, are highly vulnerable post-TBI. Lost OLs may be replaced by proliferating oligodendrocyte progenitor cells (OPCs). A complex inflammatory response is also initiated following TBI, which is an important therapeutic target in TBI. The cytokine, interleukin-1β (IL-1β), is a key mediator of the inflammatory response. When neutralized following experimental TBI, behavioral and histological outcome is improved by unknown mechanisms.

    Methods: The central fluid percussion injury (cFPI) and sham injury was used in mice at three survival end-points; 2, 7 and 14 days post-injury. Mice were, at 30 min post-injury, randomly administered a neutralizing IL-1β antibody or a control antibody.  OPC proliferation (5-ethynyl 2´- deoxyuridine (EdU)/Olig 2 co-labeling) and mature OL cell death was evaluated in injured white matter tracts. In situ hybridization for Olig2 transcripts in EdU positive cells and microglia ramification was also evaluated.

    Results: Attenuated cell death, indicated by cleaved caspase-3 expression, and OL cell loss was observed in brain-injured animals treated with the IL-1β neutralizing antibody without influencing proliferation of OPCs, the number of Olig2 transcript or the ramification of microglia. 

     

    Conclusion: Although OPC proliferation was not influenced, IL-1β neutralization reduced oligodendrocyte cell death in diffuse TBI which may partly explain the beneficial outcome observed using this anti-inflammatory treatment.   

     

  • 20.
    Flygt, Johanna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Ruscher, Karsten
    Novartis Inst Biomed Res, Basel, Switzerland.
    Norberg, Amanda
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Mir, Anis
    Lund Univ, Skane Univ Hosp, Dept Clin Sci Lund, Neurosurg, Lund, Sweden.
    Gram, Hermann
    Lund Univ, Skane Univ Hosp, Dept Clin Sci Lund, Neurosurg, Lund, Sweden.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi. Lund Univ, Skane Univ Hosp, Dept Clin Sci Lund, Neurosurg, Lund, Sweden.
    Neutralization of Interleukin-1 beta following Diffuse Traumatic Brain Injury in the Mouse Attenuates the Loss of Mature Oligodendrocytes2018Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, nr 23, s. 2837-2849Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Traumatic brain injury (TBI) commonly results in injury to the components of the white matter tracts, causing post-injury cognitive deficits. The myelin-producing oligodendrocytes (OLs) are vulnerable to TBI, although may potentially be replaced by proliferating oligodendrocyte progenitor cells (OPCs). The cytokine interleukin-1 beta (IL-1 beta) is a key mediator of the complex inflammatory response, and when neutralized in experimental TBI, behavioral outcome was improved. To evaluate the role of IL-1 beta on oligodendrocyte cell death and OPC proliferation, 116 adult male mice subjected to sham injury or the central fluid percussion injury (cFPI) model of traumatic axonal injury, were analyzed at two, seven, and 14 days post-injury. At 30 min post-injury, mice were randomly administered an IL-1 beta neutralizing or a control antibody. OPC proliferation (5-ethynyl 2 '- deoxyuridine (EdU)/Olig2 co-labeling) and mature oligodendrocyte cell loss was evaluated in injured white matter tracts. Microglia/macrophages immunohistochemistry and ramification using Sholl analysis were also evaluated. Neutralizing IL-1 beta resulted in attenuated cell death, indicated by cleaved caspase-3 expression, and attenuated loss of mature OLs from two to seven days post-injury in brain-injured animals. IL-1 beta neutralization also attenuated the early, two day post-injury increase of microglia/macrophage immunoreactivity and altered their ramification. The proliferation of OPCs in brain-injured animals was not altered, however. Our data suggest that IL-1 beta is involved in the TBI-induced loss of OLs and early microglia/macrophage activation, although not the OPC proliferation. Attenuated oligodendrocyte cell loss may contribute to the improved behavioral outcome observed by IL-1 beta neutralization in this mouse model of diffuse TBI.

  • 21.
    Fridgeirsdottir, Gudrun Andrea
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Escalated handling of young C57BL/6 mice results in altered Morris water maze performance2014Inngår i: Upsala Journal of Medical Sciences, ISSN 0300-9734, E-ISSN 2000-1967, Vol. 119, nr 1, s. 1-9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background. The handling of experimental animals prior to experimental interventions is often poorly described, even though it may affect the final functional outcome. This study explores how the use of repeated handling of C57BL/6 mice prior to Morris water maze (MWM) tests can affect the performance. Methods and materials. The handled animals were subjected to the escalating handling protocol, with the investigator spending 5 min per day per cage for 8 days prior to the MWM test. On the last days of handling, the mice were introduced to water and the concept of a hidden platform. The MWM test consisted of four daily trials for 90 s per day for 4 days with a hidden platform. A probe test was performed 4 days after the last learning trial. Control animals were not handled prior to MWM. Results. Handling reduced the latency to find the platform on the first 2 days of the MWM tests and reduced thigmotaxis. The mice increased their swim speed and elicited more explorative behavior in the learning trials and to some lesser extent in the probe trials. Conclusions. The improvement in MWM navigation was most likely due to reduced stress and anxiety regarding the investigator and the test. Handled mice displayed less variability than non-handled mice, suggesting that by using a controlled handling protocol prior to the experiments fewer C57BL/6 mice would be needed to achieve statistically significant differences in studies of learning and spatial memory using MWM.

  • 22.
    Hanell, Anders
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Djupsjö, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Vallstedt, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Patra, Kalicharan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Israelsson, Charlotte
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Medicinsk utvecklingsbiologi.
    Larhammar, Martin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Björk, Maria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Paixao, Sonia
    Kullander, Klas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice2012Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 29, nr 17, s. 2660-2671Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p < 0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p < 0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p < 0.05) and hippocampal sprouting (Timm stain, p < 0.05) and induced a marked loss of hemispheric tissue (p < 0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.

  • 23. Hanell, Anders
    et al.
    Hedin, Johanna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Facilitated assessment of tissue loss following experimental traumatic brain injury2012Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 29, nr 10, s. A154-A154Artikkel i tidsskrift (Annet vitenskapelig)
  • 24.
    Hillered, Lars
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Dahlin, Andreas P
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Chu, Jiangtao
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Bergquist, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Hjort, Klas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Mikrosystemteknik.
    Enblad, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lewén, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting - a technical approach2014Inngår i: Frontiers in Neurology, ISSN 1664-2295, E-ISSN 1664-2295, Vol. 5, s. 245-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cerebral microdialysis (MD) was introduced as a neurochemical monitoring method in the early 1990s and is currently widely used for the sampling of low molecular weight molecules, signaling energy crisis, and cellular distress in the neurointensive care (NIC) setting. There is a growing interest in MD for harvesting of intracerebral protein biomarkers of secondary injury mechanisms in acute traumatic and neurovascular brain injury in the NIC community. The initial enthusiasm over the opportunity to sample protein biomarkers with high molecular weight cut-off MD catheters has dampened somewhat with the emerging realization of inherent methodological problems including protein-protein interaction, protein adhesion, and biofouling, causing an unstable in vivo performance (i.e., fluid recovery and extraction efficiency) of the MD catheter. This review will focus on the results of a multidisciplinary collaborative effort, within the Uppsala Berzelii Centre for Neurodiagnostics during the past several years, to study the features of the complex process of high molecular weight cut-off MD for protein biomarkers. This research has led to new methodology showing robust in vivo performance with optimized fluid recovery and improved extraction efficiency, allowing for more accurate biomarker monitoring. In combination with evolving analytical methodology allowing for multiplex biomarker analysis in ultra-small MD samples, a new opportunity opens up for high-resolution temporal mapping of secondary injury cascades, such as neuroinflammation and other cell injury reactions directly in the injured human brain. Such data may provide an important basis for improved characterization of complex injuries, e.g., traumatic and neurovascular brain injury, and help in defining targets and treatment windows for neuroprotective drug development.

  • 25. Kenne, Ellinor
    et al.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lindbom, Lennart
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice2012Inngår i: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 26Artikkel i tidsskrift (Annet vitenskapelig)
  • 26. Kenne, Ellinor
    et al.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Lindbom, Lennart
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice2012Inngår i: Journal of Neuroinflammation, ISSN 1742-2094, E-ISSN 1742-2094, Vol. 9, s. 17-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear.

    Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI). Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data.

    Results: Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury.

    Conclusion: Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  • 27. Kocak, Oyku
    et al.
    Fridgeirsdottir, Gudrun Andrea
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Endogenous free radical production by NADPH oxidase 2 contributes to the secondary injury cascade after traumatic brain injury in mice2012Inngår i: Brain Injury, ISSN 0269-9052, E-ISSN 1362-301X, Vol. 26, nr 4-5, s. 503-504Artikkel i tidsskrift (Annet vitenskapelig)
  • 28.
    Kononenko, Olga
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Watanabe, Hiroyuki
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Stålhandske, Lada
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Zarelius, Ann
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Yakovleva, Tatiana
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Bakalkin, Georgy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi. Lund Univ, Dept Clin Sci Neurosurg, Skane Univ Hosp, EA Blocket,4th Floor,Box 188, S-22100 Lund, Sweden.
    Focal traumatic brain injury induces neuroplastic molecular responses in lumbar spinal cord2019Inngår i: Restorative Neurology and Neuroscience, ISSN 0922-6028, E-ISSN 1878-3627, Vol. 37, nr 2, s. 87-96Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background/Objectives: Motor impairment induced by traumatic brain injury (TBI) may be mediated through changes in spinal molecular systems regulating neuronal plasticity. We assessed whether a focal controlled cortical impact (CCI) TBI in the rat alters expression of the Tgfb1, c-Fos, Bdnf and Gap43 neuroplasticity genes in lumbar spinal cord.

    Approach/Methods: Adult male Sprague-Dawley rats (n = 8) were subjected to a right-side CCI over the anterior sensorimotor hindlimb representation area or sham-injury (n=8). Absolute expression levels of Tgfb1, c-Fos, Bdnf, and Gapd43 genes were measured by droplet digital PCR in ipsi- and contralesional, dorsal and ventral quadrants of the L4 and L5 spinal cord. The neuronal activity marker c-Fos was analysed by immunohistochemistry in the dorsal L4 and L5 segments. The contra- vs. ipsilesional expression pattern was examined as the asymmetry index, AI.

    Results: The Tgfb1 mRNA levels were significantly higher in the CCI vs. sham-injured rats, and in the contra- vs. ipsilesional dorsal domains in the CCI group. The number of c-Fos-positive cells was elevated in the L4 and L5 segments; and on the contralesional compared to the ipsilesional side in the CCI group. The c-Fos AI in the dorsal laminae was significantly increased by CCI.

    Conclusions: The results support the hypothesis that focal TBI induces plastic alterations in the lumbar spinal cord that may contribute to either motor recovery or maladaptive motor responses.

  • 29.
    Lewén, Anders
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Dyhrfort, Philip
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Enblad, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    A Dedicated 21-Plex Pea Panel For High-Sensitive Protein Biomarker Detection Using Micro-Dialysis In Traumatic Brain Injury2018Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, nr 16, s. A130-A130Artikkel i tidsskrift (Annet vitenskapelig)
  • 30.
    Loov, Camilla
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Shevchenko, Ganna
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Nadadhur, Aishwarya Geeyarpuram
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Wetterhall, Magnus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Analytisk kemi.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Identification of Injury Specific Proteins in a Cell Culture Model of Traumatic Brain Injury2013Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 2, s. e55983-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers.

  • 31.
    Lööv, Camilla
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Nadadhur, Aishwarya
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Extracellular Ezrin - a Novel Biomarker for Traumatic Brain Injury2015Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 32, nr 4, s. 244-251Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Traumatic brain injury (TBI) is a heterogeneous disease, and the discovery of diagnostic and prognostic TBI biomarkers is highly desirable in order to individualize patient care. We have previously published a study in which we identified possible TBI biomarkers by mass spectrometry 24 h after injury in a cell culture model. Ezrin-radixin-moesin (ERM) proteins were found abundantly in the medium after trauma, and in the present study we have identified extracellular ezrin as a possible biomarker for brain trauma by analyzing cell culture medium from injured primary neurons and glia and by measuring ezrin in cerebrospinal fluid (CSF) from both rats and humans. Our results show that extracellular ezrin concentration was substantially increased in cell culture medium after injury, but that the intracellular expression of the protein remained stable over time. Controlled cortical impact injured rats showed an increased amount of ezrin in CSF at both day 3 and day 7 after trauma. Moreover, ezrin was present in all ventricular CSF samples from seven humans with severe TBI. In contrast to intracellular ezrin, which is distinctly activated following TBI, extracellular ezrin is nonphosphorylated. This is the first report of extracellular ERM proteins in human and experimental models of TBI, providing a scientific foundation for further assessment of ezrin as a potential biomarker.

  • 32.
    Mao, Haojie
    et al.
    Western Univ, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada.
    Lu, Lihong
    Western Univ, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada.
    Bian, Kewei
    Western Univ, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Colgan, Niall
    Univ Coll Dublin, Sch Elect Elect & Mech Engn, Dublin, Ireland.
    Gilchrist, Michael
    Univ Coll Dublin, Sch Elect Elect & Mech Engn, Dublin, Ireland.
    Biomechanical analysis of fluid percussion model of brain injury2018Inngår i: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 77, s. 228-232Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. A previous rat brain model was improved with a new hexahedral elements-based skull model and a new cerebrospinal fluid (CSF) layer. We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10-20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5-10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.

  • 33.
    Marklund, Niklas
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Morales, D
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Hånell, Anders
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Kiwanuka, Olivia
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Pitkänen, A
    Gimbel, D A
    Philipson, Ola
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Lannfelt, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Hillered, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Strittmatter, S M
    McIntosh, Tracy K
    Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice2009Inngår i: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 163, nr 2, s. 540-551Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Increasing age is associated with a poor prognosis following traumatic brain injury (TBI). CNS axons may recover poorly following TBI due to expression of myelin-derived inhibitors to axonal outgrowth such as Nogo-A. To study the role of Nogo-A/B in the pathophysiological response of the elderly to TBI, 1-year-old mice deficient in Nogo-A/B (Nogo-A/B homozygous(-/-) mice), Nogo-A/B heterozygous(-/+) mice, and age-matched wild-type (WT) littermate controls were subjected to a controlled cortical impact (CCI) TBI. Sham-injured WT mice (7 months old) and 12 month old naïve Nogo-A/B(-/-) and Nogo-A/B(-/+) served as controls. Neurological motor function was evaluated up to 3 weeks, and cognitive function, hemispheric tissue loss, myelin staining and hippocampal beta-amyloid (A beta) immunohistochemistry were evaluated at 4 weeks post-injury. In WT littermates, TBI significantly impaired learning ability at 4 weeks and neurological motor function up to 2 weeks post-injury and caused a significant loss of hemispheric tissue. Following TBI, Nogo-A/B(-/-) mice showed significantly less recovery from neurological motor and cognitive deficits compared to brain-injured WT mice. Naïve Nogo-A/B(-/-) and Nogo-A/B(-/+) mice quickly learned the MWM task in contrast to brain-injured Nogo-A/B(-/-) mice who failed to learn the MWM task at 4 weeks post-injury. Hemispheric tissue loss and cortical lesion volume were similar among the brain-injured genotypes. Neither TBI nor the absence of NogoA/B caused an increased A beta expression. Myelin staining showed a reduced area and density in the corpus callosum in brain-injured Nogo-A/B(-/-) animals compared to their littermate controls. These novel and unexpected behavioral results demonstrate that the absence of Nogo-A/B may negatively influence outcome, possibly related to hypomyelination, following TBI in mice and suggest a complex role for this myelin-associated axonal growth inhibitor following TBI.

  • 34.
    Watanabe, Hiroyuki
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Zhang, Mengliang
    Lund Univ, Dept Expt Med Sci, Neuronano Res Ctr, Lund, Sweden.
    Sarkisyan, Daniil
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Kononenko, Olga
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Iakovleva, Tatiana
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Marklund, Niklas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Bakalkin, Georgy
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
    Asymmetric Hindlimb Motor Response To Focal Traumatic Brain Injury Is Controlled By Side-Specific Opioid Mechanism2018Inngår i: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, nr 16, s. A79-A79Artikkel i tidsskrift (Annet vitenskapelig)
  • 35.
    Zelano, Johan
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Halawa, Imad
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Kumlien, Eva
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Hyponatremia augments kainic-acid induced status epilepticus in the mouse: A model for dysmetabolic status epilepticus2013Inngår i: Epilepsia, ISSN 0013-9580, E-ISSN 1528-1167, Vol. 54, nr SI, s. 106-106Artikkel i tidsskrift (Annet vitenskapelig)
  • 36.
    Zelano, Johan
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Halawa, Imad
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurokirurgi.
    Kumlien, Eva
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Neurologi.
    Hyponatremia augments kainic-acid induced status epilepticus in the mouse: A model for dysmetabolic status epilepticus2013Inngår i: Epilepsy Research, ISSN 0920-1211, E-ISSN 1872-6844, Vol. 106, nr 1-2, s. 29-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Status epilepticus (SE) is a dreaded neurological emergency. A reignited interest in SE has resulted in a more adaptive use of treatment protocols. More knowledge on SE of various aetiologies is therefore needed. We are interested in treatment of SE under hyponatremia, and have here evaluated whether SE induced by systemic kainic acid could be a suitable platform for such studies. Acute hyponatremia was induced in C57/BL6 mice by intraperitoneal injection of dDAVP and water loading. Hyponatremic mice displayed an increased frequency of epileptiform spikes on EEG and 5/9 hyponatremic mice displayed electrographic seizures. After kainic acid (20mg/kg) treatment, hyponatremic mice displayed significantly longer time with electrographic seizure activity, which was also seen after treatment with diazepam (20mg/kg). We conclude that hyponatremia augments kainic acid-induced SE, This model might be a valuable platform for studies on treatment of SE in hyponatremia.

  • 37.
    Zysk, Marlena
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Clausen, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Enblad: Neurokirurgi.
    Aguilar, Ximena
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Sehlin, Dag
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Syvänen, Stina
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Erlandsson, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för folkhälso- och vårdvetenskap, Geriatrik.
    Long-Term Effects of Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease2019Inngår i: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 72, nr 1, s. 161-180Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Alzheimer's disease (AD) is the leading cause of dementia worldwide, affecting over 10% of the elderly population. Epidemiological evidence indicates that traumatic brain injury (TBI) is an important risk factor for developing AD later in life. However, which injury-induced processes that contribute to the disease onset remains unclear. The aim with the present study was to identify cellular processes that could link TBI to AD development, by investigating the chronic impact of two different injury models, controlled cortical impact (CCI) and midline fluid percussion injury (mFPI). The trauma was induced in 3-month-old tg-ArcSwe mice, carrying the Arctic mutation along with the Swedish mutation, and the influence of TBI on AD progression was analyzed at 12- and 24-weeks post-injury. The long-term effect of the TBI on memory deficiency, amyloid-beta (A beta) pathology, neurodegeneration and inflammation was investigated by Morris water maze, PET imaging, immunohistochemistry, and biochemical analyses. Morris water maze analysis demonstrated that mice subjected to CCI or mFPI performed significantly worse than uninjured tg-ArcSwe mice, especially at the later time point. Moreover, the injured mice showed a late upregulation of reactive gliosis, which concurred with a more pronounced A beta pathology, compared to uninjured AD mice. Our results suggest that the delayed glial activation following TBI may be an important link between the two diseases. However, further studies in both experimental models and human TBI patients will be required to fully elucidate the reasons why TBI increases the risk of neurodegeneration.

1 - 37 of 37
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf