uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Essand, Magnus
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Öberg, Kjell E.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Oncolytic Viruses for the Treatment of Neuroendocrine Tumors2011Ingår i: Hormone and Metabolic Research, ISSN 0018-5043, E-ISSN 1439-4286, Vol. 43, nr 12, s. 877-883Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Oncolytic viruses are emerging as anticancer agents, and they have also shown great promise for use against neuroendocrine tumors. Many viruses have a natural tropism for replication in tumor cells. Others can be genetically engineered to selectively kill tumor cells. Viruses have some advantages as therapeutic agents over current cytotoxic drugs and small molecules. They replicate in tumor cells and thereby increase in number over time leading to increased dosage. They are immunogenic and can alter the immunosuppressive tumor microenvironment and activate immune effector cells. They have also been shown to be able to kill drug-resistant cancer stem cells. This article reviews the recent literature on oncolytic viruses used so far for neuroendocrine tumors and indicates important issues to focus on in the future.

  • 2.
    Fletcher, Erika A. K.
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Immuneed AB, Uppsala.
    Eltahir, Mohamed
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Lindqvist, Frida
    Immuneed AB, Uppsala.
    Rieth, Jonas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Törnqvist, Gunilla
    Immuneed AB, Uppsala.
    Leja-Jarblad, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Immuneed AB, Uppsala.
    Mangsbo, Sara
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. Immuneed AB, Uppsala.
    Extracorporeal human whole blood in motion, as a tool to predict first-infusion reactions and mechanism-of-action of immunotherapeutics2018Ingår i: International Immunopharmacology, ISSN 1567-5769, E-ISSN 1878-1705, Vol. 54, s. 1-11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    First infusion reactions along with severe anaphylactic responses can occur as a result of systemic administration of therapeutic antibodies. The underlying mechanisms by which monoclonal antibodies induce cytokine release syndrome (CRS) can involve direct agonistic effects via the drug target, or a combination of target-engagement along with innate receptor interactions. Despite the wide variety of pathways and cells that can play a role in CRS, many currently used assays are devoid of one or more components that must be present for these responses to occur. One assay that has not been assessed for its capacity to predict CRS is the modified Chandler loop model. Herein we evaluate a plethora of commercially available monoclonal antibodies to evaluate the modified Chandler loop model's potential in CRS prediction. We demonstrate that in a 4-hour loop assay, both the superagonistic antibodies, anti-CD3 (OKT3) and anti-CD28 (ANC28.1), display a clear cytokine response with a mixed adaptive/innate cytokine source. OKT3 induce TNFα and IFN-γ release in 20 out of 23 donors tested, whereas ANC28.1 induce TNF-α, IL-2 and IFN-γ release in all donors tested (n = 18–22). On the other hand, non-agonistic antibodies associated with no or low infusion reactions in the clinic, namely cetuximab and natalizumab, neither induce cytokine release nor cause false positive responses. A TGN1412-like antibody also display a clear cytokine release with an adaptive cytokine profile (IFN-γ and IL-2) and all donors (n = 9) induce a distinct IL-2 response. Additionally, the value of an intact complement system in the assay is highlighted by the possibility to dissect out the mechanism-of-action of alemtuzumab and rituximab. The loop assay can either complement lymph node-like assays or stand-alone to investigate drug/blood interactions during preclinical development, or for individual safety screening prior to first-in-man clinical trial.

  • 3.
    Hillerdal, Victoria
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Ramachandran, Mohanraj
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice2014Ingår i: BMC Cancer, ISSN 1471-2407, E-ISSN 1471-2407, Vol. 14, s. 30-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background:

    Adoptive transfer of T cells genetically engineered with a chimeric antigen receptor (CAR) has successfully been used to treat both chronic and acute lymphocytic leukemia as well as other hematological cancers. Experimental therapy with CAR-engineered T cells has also shown promising results on solid tumors. The prostate stem cell antigen (PSCA) is a protein expressed on the surface of prostate epithelial cells as well as in primary and metastatic prostate cancer cells and therefore a promising target for immunotherapy of prostate cancer.

    Methods:

    We developed a third-generation CAR against PSCA including the CD28, OX-40 and CD3 zeta signaling domains. T cells were transduced with a lentivirus encoding the PSCA-CAR and evaluated for cytokine production (paired Student's t-test), proliferation (paired Student's t-test), CD107a expression (paired Student's t-test) and target cell killing in vitro and tumor growth and survival in vivo (Log-rank test comparing Kaplan-Meier survival curves).

    Results:

    PSCA-CAR T cells exhibit specific interferon (IFN)-gamma and interleukin (IL)-2 secretion and specific proliferation in response to PSCA-expressing target cells. Furthermore, the PSCA-CAR-engineered T cells efficiently kill PSCA-expressing tumor cells in vitro and systemic treatment with PSCA-CAR-engineered T cells significantly delays subcutaneous tumor growth and prolongs survival of mice.

    Conclusions:

    Our data confirms that PSCA-CAR T cells may be developed for treatment of prostate cancer.

  • 4.
    Jin, Chuan
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Yu, Di
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Čančer, Matko
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Nilsson, Berith
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Tat‐PTD‐modified Oncolytic Adenovirus Driven by the SCG3 Promoter and ASH1 Enhancer for Neuroblastoma Therapy2013Ingår i: Human Gene Therapy, ISSN 1043-0342, E-ISSN 1557-7422, Vol. 24, nr 8, s. 766-775Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Secretogranin III (SGC3) belongs to the granin family and is highly expressed in endocrine and neural tissues. The human SCG3 promoterhas not yet been characterized. We identified that a 0.5 kb DNA fragment upstream of the SCG3 gene can selectively drivetransgene expression in neuroblastoma cell lines. The strength of transgene expression was further increased and specificity maintained,by addition of the human achaete‐scute complex homolog 1 (ASH1) enhancer. We developed an oncolytic serotype 5‐basedadenovirus, where the SCG3 promoter and ASH1 enhancer drive E1A gene expression. The virus was further modified with a cellpenetratingpeptide (Tat‐PTD) in the virus capsid, which we have previously shown results in increased adenovirus transductionefficiency of many neuroblastoma cell lines. The virus, Ad5PTD(ASH1‐SCG3‐E1A), shows selective and efficient killing of neuroblastomacell lines in vitro, including cisplatin‐, etoposide‐ and doxorubicin‐insensitive neuroblastoma cells. Furthermore, it delays tumorgrowth and thereby prolonged survival for nude mice harboring subcutaneous human neuroblastoma xenograft. In conclusion, wereport a novel oncolytic adenovirus with potential use for neuroblastoma therapy.

  • 5.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.
    Oncolytic Adenovirus Therapy of Neuroendocrine Tumors2011Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Neuroendocrine tumors (NETs), originally described as carcinoids, represent a rare and heterogeneous group of neoplasms associated with intensive secretion of hormones, bioactive peptides and amines. Most of the patients are diagnosed at a late stage of disease, often with liver metastases. Surgery remains the main treatment to control metastatic disease, but is not curative. Oncolytic virotherapy represents a promising approach to treat cancer and different strategies have been exploited to restrict viral replication to tumor cells. We developed an oncolytic adenovirus based on serotype 5, Ad5[CgA-E1A], where the chromogranin A (CgA) promoter controls expression of the E1A gene and thereby virus replication. We found that Ad5[CgA-E1A], selectively replicates in NET cells and it is able to suppress fast-growing human BON carcinoid tumors in nude mice. The activity of Ad5[CgA-E1A] was not completely blocked in liver cells. We further repressed virus replication in hepatocytes by targeting E1A with miR122, an miRNA specifically expressed in the liver. miRNAs bind to mRNA and induce its cleavage or translational blockage. By insertion of tandem repeats of miR122 target sequences in 3’UTR of E1A gene, we observed reduced E1A protein expression and replication arrest in miR122 expressing liver cells. The oncolytic potency of the miR122-targeted virus was not affected in NET cells. Since some NET and neuroblastoma cells express high levels of somatostatin receptors (SSTRs), we introduced in the virus fiber knob cyclic peptides, which contain four amino acids (FWKT) and mimic the binding site of somatostatin for SSTRs. The FWKT-modified Ad5 transduces midgut carcinoid cells from liver metastases about 3-4 times better than non-modified Ad5. Moreover, FWKT-modified Ad5 overcomes neutralization in an ex vivo human blood loop model to a greater extent than Ad5, indicating that the fiber knob modification may prolong the systemic circulation time. NETs represent a huge therapeutic challenge and novel diagnostic markers are needed for early detection and effective treatment of NETs. We have profiled primary tumors and liver metastases of ileocaceal NETs, using Affymetrix microarrays and advanced bioinformatics. We have identified six novel marker genes and show high similarity between primary lesions and liver metastases transcriptome by hierarchical clustering analysis.

    Delarbeten
    1.
    Posten kunde inte hittas. Det kan bero på att posten inte längre är tillgänglig eller att du har råkat ange ett felaktigt id i adressfältet.
    2. Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability
    Öppna denna publikation i ny flik eller fönster >>Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability
    Visa övriga...
    2010 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 5, nr 1, s. e8916-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    BACKGROUND:

    We have previously developed an oncolytic serotype 5 adenovirus (Ad5) with chromogranin-A (CgA) promoter-controlled E1A expression, Ad[CgA-E1A], with the intention to treat neuroendocrine tumors, including carcinoids. Since carcinoids tend to metastasize to the liver it is important to fully repress viral replication in hepatocytes to avoid adenovirus-related liver toxicity. Herein, we explore miRNA-based regulation of E1A expression as a complementary mechanism to promoter-based transcriptional control.

    METHODOLOGY/PRINCIPAL FINDINGS:

    Ad[CgA-E1A-miR122], where E1A expression is further controlled by six tandem repeats of the target sequence for the liver-specific miR122, was constructed and compared to Ad[CgA-E1A]. We observed E1A suppression and replication arrest of the miR122-detargeted adenovirus in normal hepatocytes, while the two viruses killed carcinoid cells to the same degree. Repeated intravenous injections of Ad[CgA-E1A] induced liver toxicity in mice while Ad[CgA-E1A-miR122] injections did not. Furthermore, a miR122-detargeted adenovirus with the wild-type E1A promoter showed reduced replication in hepatic cells compared to wild-type Ad5 but not to the same extent as the miR122-detargeted adenovirus with the neuroendocrine-selective CgA promoter.

    CONCLUSIONS/SIGNIFICANCE:

    A combination of transcriptional (promoter) and post-transcriptional (miRNA target) regulation to control virus replication may allow for the use of higher doses of adenovirus for efficient tumors treatment without liver toxicity.

    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-124295 (URN)10.1371/journal.pone.0008916 (DOI)000274114800019 ()20111709 (PubMedID)
    Tillgänglig från: 2010-05-03 Skapad: 2010-05-03 Senast uppdaterad: 2017-12-12Bibliografiskt granskad
    3. Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells
    Öppna denna publikation i ny flik eller fönster >>Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells
    Visa övriga...
    2011 (Engelska)Ingår i: Gene Therapy, ISSN 0969-7128, E-ISSN 1476-5462, Vol. 18, nr 11, s. 1052-1062Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We have previously described the oncolytic adenovirus, Ad(CgA-E1A-miR122), herein denoted Ad5(CgA-E1A-miR122) that selectively replicates in and kills neuroendocrine cells, including freshly isolated midgut carcinoid cells from liver metastases. Ad5(CgA-E1A-miR122) is based on human adenovirus serotype 5 (Ad5) and infects target cells by binding to the coxsackie-adenovirus receptor (CAR) and integrins on the cell surface. Some neuroendocrine tumor (NET) and neuroblastoma cells express low levels of CAR and are therefore poorly transduced by Ad5. However, they often express high levels of somatostatin receptors (SSTRs). Therefore, we introduced cyclic peptides, which contain four amino acids (FWKT) and mimic the binding site for SSTRs in the virus fiber knob. We show that FWKT-modified Ad5 binds to SSTR2 on NET cells and transduces midgut carcinoid cells from liver metastases about 3-4 times better than non-modified Ad5 while it transduces normal hepatocytes at about 50% of Ad5. Moreover, FWKT-modified Ad5 overcomes neutralization in an ex vivo human blood loop model to greater extent than Ad5, indicating that fiber knob modification may prolong the systematic circulation time. We conclude that modification of adenovirus with the FWKT motif may be beneficial for NET therapy.

    Nyckelord
    oncolytic adenovirus, somatostatin, neuroendocrine tumors, carcinoid, neuroblastoma, proximity ligation
    Nationell ämneskategori
    Cell- och molekylärbiologi Cancer och onkologi Mikrobiologi inom det medicinska området
    Forskningsämne
    Onkologi; Molekylär medicin
    Identifikatorer
    urn:nbn:se:uu:diva-146964 (URN)10.1038/gt.2011.54 (DOI)000296889500004 ()21490682 (PubMedID)
    Tillgänglig från: 2011-02-22 Skapad: 2011-02-22 Senast uppdaterad: 2018-12-04
    4. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas
    Öppna denna publikation i ny flik eller fönster >>Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas
    Visa övriga...
    2009 (Engelska)Ingår i: Modern Pathology, ISSN 0893-3952, E-ISSN 1530-0285, Vol. 22, nr 2, s. 261-272Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The gene expression profile of metastasizing serotonin-producing neuroendocrine carcinomas, which arise from enterochromaffin cells in the jejunum and ileum, is still largely unknown. The aim of this study was to identify genes and proteins, which are preferentially expressed by neuroendocrine carcinoma and enterochromaffin cells and therefore potential novel biomarkers and/or therapeutic targets. Six carcinoma specimens and six normal ileal mucosas were profiled by Affymetrix microarrays. Advanced bioinformatics identified differentially and specifically expressed genes, which were validated by quantitative real-time-PCR on tumor cells extracted by laser capture microdissection and normal enterochromaffin cells extracted by immunolaser capture microdissection. We identified six novel marker genes for neuroendocrine carcinoma cells: paraneoplastic antigen Ma2 (PNMA2), testican-1 precursor (SPOCK1), serpin A10 (SERPINA10), glutamate receptor ionotropic AMPA 2 (GRIA2), G protein-coupled receptor 112 (GPR112) and olfactory receptor family 51 subfamily E member 1 (OR51E1). GRIA2 is specifically expressed by neuroendocrine carcinoma cells whereas the others are also expressed by normal enterochromaffin cells. GPR112 and OR51E1 encode proteins associated with the plasma membrane and may therefore become targets for antibody-based diagnosis and therapy. Hierarchical clustering shows high similarity between primary lesions and liver metastases. However, chemokine C-X-C motif ligand 14 (CXCL14) and NK2 transcription factor related locus 3 Drosophila (NKX2-3) are expressed to a lower level in liver metastases than in primary tumors and normal enterochromaffin cells, which implies a role in neuroendocrine carcinoma differentiation. In conclusion, this study provides a list of genes, which possess relatively specific expression to enterochromaffin and neuroendocrine carcinoma cells and genes with differential expression between primary tumors and metastases. We verified six novel marker genes that may be developed as biomarkers and/or therapeutic targets.

    Nyckelord
    gastrointestinal neuroendocrine carcinoma, bioinformatics analysis, novel markers
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-102171 (URN)10.1038/modpathol.2008.174 (DOI)000263182500014 ()18953328 (PubMedID)
    Tillgänglig från: 2009-05-05 Skapad: 2009-05-05 Senast uppdaterad: 2017-12-13Bibliografiskt granskad
  • 6.
    Leja, Justyna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Dzojic, Helena
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Gustafson, Elisabet
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper.
    Öberg, Kjell
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Medicin.
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    A novel chromogranin-A promoter-driven oncolytic adenovirus for midgut carcinoid therapy2007Ingår i: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 13, nr 8, s. 2455-2462Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: The use of replication-selective oncolytic adenoviruses is an emerging therapeutic approach for cancer, which thus far has not been employed for carcinoids. We therefore constructed Ad[CgA-E1A], a novel replication-selective oncolytic adenovirus, where the chromogranin A (CgA) promoter controls expression of the adenoviral E1A gene.

    Experimental Design: The Ad[CgA-E1A] virus was evaluated for E1A protein expression, replication ability, and cytolytic activity in various cell lines. It was also evaluated for treatment of xenografted human carcinoid tumors in nude mice. To use Ad[CgA-E1A] for the treatment of carcinoid liver metastases, it is important that normal hepatocytes do not support virus replication to minimize hepatotoxicity. We therefore evaluated CgA protein expression in normal hepatocytes. We also evaluated CgA gene expression in normal hepatocytes and microdissected tumor cells from carcinoid metastases.

    Results: We found that Ad[CgA-E1A] replicates similarly to wild-type virus in tumor cells with neuroendocrine features, including the BON carcinoid cell line and the SH-SY-5Y neuroblastoma cell lines, whereas it is attenuated in other cell types. Thus, cells where the CgA promoter is active are selectively killed. We also found that Ad[CgA-E1A] is able to suppress fast-growing human BON carcinoid tumors in nude mice. Furthermore, CgA is highly expressed in microdissected cells from carcinoid metastases, whereas it is not expressed in normal hepatocytes.

    Conclusion: Ad[CgA-E1A] is an interesting agent for the treatment of carcinoid liver metastases in conjunction with standard therapy for these malignancies.

  • 7.
    Leja, Justyna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Essaghir, Ahmed
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Wester, Kenneth
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi, Molekylär och morfologisk patologi.
    Öberg, Kjell
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Tötterman, Thomas H.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Lloyd, Ricardo
    Vasmatzis, George
    Demoulin, Jean-Baptiste
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas2009Ingår i: Modern Pathology, ISSN 0893-3952, E-ISSN 1530-0285, Vol. 22, nr 2, s. 261-272Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gene expression profile of metastasizing serotonin-producing neuroendocrine carcinomas, which arise from enterochromaffin cells in the jejunum and ileum, is still largely unknown. The aim of this study was to identify genes and proteins, which are preferentially expressed by neuroendocrine carcinoma and enterochromaffin cells and therefore potential novel biomarkers and/or therapeutic targets. Six carcinoma specimens and six normal ileal mucosas were profiled by Affymetrix microarrays. Advanced bioinformatics identified differentially and specifically expressed genes, which were validated by quantitative real-time-PCR on tumor cells extracted by laser capture microdissection and normal enterochromaffin cells extracted by immunolaser capture microdissection. We identified six novel marker genes for neuroendocrine carcinoma cells: paraneoplastic antigen Ma2 (PNMA2), testican-1 precursor (SPOCK1), serpin A10 (SERPINA10), glutamate receptor ionotropic AMPA 2 (GRIA2), G protein-coupled receptor 112 (GPR112) and olfactory receptor family 51 subfamily E member 1 (OR51E1). GRIA2 is specifically expressed by neuroendocrine carcinoma cells whereas the others are also expressed by normal enterochromaffin cells. GPR112 and OR51E1 encode proteins associated with the plasma membrane and may therefore become targets for antibody-based diagnosis and therapy. Hierarchical clustering shows high similarity between primary lesions and liver metastases. However, chemokine C-X-C motif ligand 14 (CXCL14) and NK2 transcription factor related locus 3 Drosophila (NKX2-3) are expressed to a lower level in liver metastases than in primary tumors and normal enterochromaffin cells, which implies a role in neuroendocrine carcinoma differentiation. In conclusion, this study provides a list of genes, which possess relatively specific expression to enterochromaffin and neuroendocrine carcinoma cells and genes with differential expression between primary tumors and metastases. We verified six novel marker genes that may be developed as biomarkers and/or therapeutic targets.

  • 8.
    Leja, Justyna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Nilsson, Berith
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Yu, Di
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Gustafson, Elisabet
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kvinnors och barns hälsa, Barnkirurgi.
    Åkerström, Göran
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Endokrinkirurgi.
    Öberg, Kjell
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för onkologi, radiologi och klinisk immunologi, Enheten för klinisk immunologi.
    Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability2010Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 5, nr 1, s. e8916-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND:

    We have previously developed an oncolytic serotype 5 adenovirus (Ad5) with chromogranin-A (CgA) promoter-controlled E1A expression, Ad[CgA-E1A], with the intention to treat neuroendocrine tumors, including carcinoids. Since carcinoids tend to metastasize to the liver it is important to fully repress viral replication in hepatocytes to avoid adenovirus-related liver toxicity. Herein, we explore miRNA-based regulation of E1A expression as a complementary mechanism to promoter-based transcriptional control.

    METHODOLOGY/PRINCIPAL FINDINGS:

    Ad[CgA-E1A-miR122], where E1A expression is further controlled by six tandem repeats of the target sequence for the liver-specific miR122, was constructed and compared to Ad[CgA-E1A]. We observed E1A suppression and replication arrest of the miR122-detargeted adenovirus in normal hepatocytes, while the two viruses killed carcinoid cells to the same degree. Repeated intravenous injections of Ad[CgA-E1A] induced liver toxicity in mice while Ad[CgA-E1A-miR122] injections did not. Furthermore, a miR122-detargeted adenovirus with the wild-type E1A promoter showed reduced replication in hepatic cells compared to wild-type Ad5 but not to the same extent as the miR122-detargeted adenovirus with the neuroendocrine-selective CgA promoter.

    CONCLUSIONS/SIGNIFICANCE:

    A combination of transcriptional (promoter) and post-transcriptional (miRNA target) regulation to control virus replication may allow for the use of higher doses of adenovirus for efficient tumors treatment without liver toxicity.

  • 9.
    Leja, Justyna
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Yu, Di
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Nilsson, Berith
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Gedda, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för radiologi, onkologi och strålningsvetenskap, Enheten för biomedicinsk strålningsvetenskap.
    Zieba, Agata
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hakkarainen, Tanja
    University of Helsinki, Finnish Institute for Molecular Medicine.
    Åkerström, Göran
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Endokrinkirurgi.
    Öberg, Kjell
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Oncolytic adenovirus modified with somatostatin motifs for selective infection of neuroendocrine tumor cells2011Ingår i: Gene Therapy, ISSN 0969-7128, E-ISSN 1476-5462, Vol. 18, nr 11, s. 1052-1062Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have previously described the oncolytic adenovirus, Ad(CgA-E1A-miR122), herein denoted Ad5(CgA-E1A-miR122) that selectively replicates in and kills neuroendocrine cells, including freshly isolated midgut carcinoid cells from liver metastases. Ad5(CgA-E1A-miR122) is based on human adenovirus serotype 5 (Ad5) and infects target cells by binding to the coxsackie-adenovirus receptor (CAR) and integrins on the cell surface. Some neuroendocrine tumor (NET) and neuroblastoma cells express low levels of CAR and are therefore poorly transduced by Ad5. However, they often express high levels of somatostatin receptors (SSTRs). Therefore, we introduced cyclic peptides, which contain four amino acids (FWKT) and mimic the binding site for SSTRs in the virus fiber knob. We show that FWKT-modified Ad5 binds to SSTR2 on NET cells and transduces midgut carcinoid cells from liver metastases about 3-4 times better than non-modified Ad5 while it transduces normal hepatocytes at about 50% of Ad5. Moreover, FWKT-modified Ad5 overcomes neutralization in an ex vivo human blood loop model to greater extent than Ad5, indicating that fiber knob modification may prolong the systematic circulation time. We conclude that modification of adenovirus with the FWKT motif may be beneficial for NET therapy.

  • 10.
    Ramachandran, Mohanraj
    et al.
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Yu, Di
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Dyczynski, Matheus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Pathol & Oncol, CCK, Stockholm, Sweden..
    Baskaran, Sathishkumar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Neuroonkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Zhang, Lei
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Lulla, Aleksei
    Institute of Technology, University of Tartu, Estonia..
    Lulla, Valeria
    Institute of Technology, University of Tartu, Estonia..
    Saul, Sirle
    Institute of Technology, University of Tartu, Estonia..
    Nelander, Sven
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Neuroonkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dimberg, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Merits, Andres
    Institute of Technology, University of Tartu, Estonia..
    Leja-Jarblad, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Essand, Magnus
    Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically administered triple microRNA-detargeted oncolytic Semliki Forest virus2017Ingår i: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 23, nr 6, s. 1519-1530Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PURPOSE:

    Glioblastoma multiforme (GBM) and high-risk neuroblastoma are cancers with poor outcome. Immunotherapy in the form of neurotropic oncolytic viruses is a promising therapeutic strategy for these malignancies. Here we evaluate the oncolytic potential of the neurovirulent and partly interferon (IFN)-β-resistant Semliki Forest virus (SFV)-4 in GBMs and neuroblastomas. To reduce neurovirulence we constructed SFV4miRT, which is attenuated in normal CNS cells through insertion of microRNA target sequences for miR124, miR125, miR134 Experimental Design:Oncolytic activity of SFV4miRT was examined in mouse neuroblastoma and GBM cell lines and in patient-derived human glioblastoma cell cultures (HGCC). In vivo neurovirulence and therapeutic efficacy was evaluated in two syngeneic orthotopic glioma models (CT-2A, GL261) and syngeneic subcutaneous neuroblastoma model (NXS2). The role of IFN-β in inhibiting therapeutic efficacy was investigated.

    RESULTS:

    The introduction of microRNA target sequences reduced neurovirulence of SFV4 in terms of attenuated replication in mouse CNS cells and ability to cause encephalitis when administered intravenously. A single intravenous injection of SFV4miRT prolonged survival and cured 4 of 8 mice (50%) with NXS2 and 3 of 11 mice (27%) with CT-2A, but not for GL261 tumor bearing mice. In vivo therapeutic efficacy in different tumor models inversely correlated to secretion of IFN-β by respective cells upon SFV4 infection in vitro Similarly, killing efficacy of HGCC lines inversely correlated to IFN-β response and interferon-α⁄β receptor (IFNAR)-1 expression.

    CONCLUSIONS:

    SFV4miRT has reduced neurovirulence, while retaining its oncolytic potential. SFV4miRT is an excellent candidate for treatment of GBMs and neuroblastomas with low IFN-β secretion.

  • 11.
    Svensson, Emma
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Milenova, Ioanna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Vrije Univ, Netherlands.
    Wenthe, Jessica
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ståhle, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Leja-Jarblad, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Immuneed AB, Uppsala, Sweden.
    Ullenhag, Gustav
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Experimentell och klinisk onkologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Dimberg, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Vaskulärbiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Moreno, Raphael
    IDIBELL-Institute Catalá d'Oncologia, Barcelona, Spain.
    Alemany, Ramon
    IDIBELL-Institute Catalá d'Oncologia, Barcelona, Spain.
    Loskog, Angelica S.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Lokon Pharma AB, Uppsala, Sweden.
    Shaping the Tumor Stroma and Sparking Immune Activation by CD40 and 4-1BB Signaling Induced by an Armed Oncolytic Virus.2017Ingår i: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 23, nr 19, s. 5846-5857Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: Pancreatic cancer is a severe indication with short expected survival despite surgery and/or combination chemotherapeutics. Checkpoint blockade antibodies are approved for several cancer indications, but pancreatic cancer has remained refractory. However, there are clinical data suggesting that stimulation of the CD40 pathway may be of interest for these patients. Oncolytic viruses armed with immunostimulatory genes represent an interesting approach. Herein, we present LOAd703, a designed adenovirus armed with trimerized CD40L and 4-1BBL that activates the CD40 and 4-1BB pathways, respectively. As many cells in the tumor stroma, including stellate cells and the infiltrating immune cells, express CD40 and some 4-1BB, we hypothesize that LOAd703 activates immunity and simultaneously modulates the biology of the tumor stroma.Experimental Design: Tumor, stellate, endothelial, and immune cells were infected by LOAd703 and investigated by flow cytometry, proteomics, and functional analyses.Results: LOAd703-infected pancreatic cell lines were killed by oncolysis, and the virus was more effective than standard-of-care gemcitabine. In in vivo xenograft models, LOAd703 efficiently reduced established tumors and could be combined with gemcitabine for additional effect. Infected stellate and tumor cells reduced factors that promote tumor growth (Spp-1, Gal-3, HGF, TGFβ and collagen type I), while chemokines were increased. Molecules involved in lymphocyte migration were upregulated on infected endothelial cells. Dendritic cells were robustly stimulated by LOAd703 to produce costimulators, cytokines and chemokines, and such DCs potently expanded both antigen-specific T cells and NK cells.Conclusions: LOAd703 is a potent immune activator that modulates the stroma to support antitumor responses. Clin Cancer Res; 1-12. ©2017 AACR.

  • 12.
    Yu, Di
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Jin, Chuan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Majdalani, Nadim
    Nilsson, Berith
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Eriksson, Fredrik
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Adenovirus with Hexon Tat-Protein Transduction Domain Modification Exhibits Increased Therapeutic Effect in Experimental Neuroblastoma and Neuroendocrine Tumors2011Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 85, nr 24, s. 13114-13123Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adenovirus serotype 5 (Ad5) is widely used as an oncolytic agent for cancer therapy. However, its infectivity is highly dependent on the expression level of coxsackievirus-adenovirus receptor (CAR) on the surfaces of tumor cells. Furthermore, infected cells overproduce adenovirus fiber proteins, which are released prior to cell lysis. The released fibers block CAR on noninfected neighboring cells, thereby preventing progeny virus entry. Our aim was to add a CAR-independent infection route to Ad5 to increase the infectivity of tumor cells with low CAR expression and prevent the fiber-masking problem. We constructed Ad5 viruses that encode the protein transduction domain (PTD) of the HIV-1 Tat protein (Tat-PTD) in hypervariable region 5 (HVR5) of the hexon protein. Tat-PTD functions as a cell-penetrating peptide, and Tat-PTD-modified Ad5 showed a dramatic increased transduction of CAR-negative cell lines compared to unmodified vector. Moreover, while tumor cell infectivity was severely reduced for Ad5 in the presence of fiber proteins, it was only marginally reduced for Tat-PTD-modified Ad5. Furthermore, because of the sequence alteration in the hexon HVR, coagulation factor X-mediated virus uptake was significantly reduced. Mice harboring human neuroblastoma and neuroendocrine tumors show suppressed tumor growths and prolonged survival when treated with Tat-PTD-modified oncolytic viruses. Our data suggest that modification of Ad5 with Tat-PTD in HVR5 expands its utility as an oncolytic agent.

  • 13.
    Yu, Di
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Leja, Justyna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Loskog, Angelica S.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Hellman, Per
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Endokrinkirurgi.
    Giandomenico, Valeria
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper.
    Öberg, Kjell
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinska vetenskaper, Endokrin tumörbiologi.
    Essand, Magnus
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Preclinical Evaluation of AdVince, an Oncolytic Adenovirus Adapted for Treatment of Liver Metastases from Neuroendocrine Cancer2017Ingår i: Neuroendocrinology, ISSN 0028-3835, E-ISSN 1423-0194, Vol. 105, nr 1, s. 54-66Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cancer immunotherapy is becoming a cornerstone in the clinical care of cancer patients due to the breakthrough trials with immune checkpoint blockade antibodies and chimeric antigen receptor T cells. The next breakthrough in cancer immunotherapy is likely to be oncolytic viruses engineered to selectively kill tumor cells and deceive the immune system to believe that the tumor is a foreign entity that needs to be eradicated. We have developed AdVince, an oncolytic adenovirus for treatment of liver metastases from neuroendocrine tumor (NET). AdVince includes the gene promoter from human chromogranin A for selective replication in neuroendocrine cells, miR122 target sequences for reduced liver toxicity, and a cell-penetrating peptide in the capsid for increased infectivity of tumor cells and optimized spread within tumors. This paper describes the preclinical evaluation of AdVince on freshly isolated human gastrointestinal NET cells resected from liver metastases and freshly isolated human hepatocytes as well as in fresh human blood. AdVince selectively replicates in and kills NET cells. Approximately, 73-fold higher concentration of AdVince is needed to induce similar level of cytotoxicity in NET cells as in hepatocytes. AdVince did not activate complement or induce considerable amount of proinflammatory cytokines or chemokines in human blood. The data presented herein indicate that AdVince can be safely evaluated in a phase I/IIa clinical trial for patients with liver-dominant NET.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf