uu.seUppsala universitets publikationer
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 66
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ali, Hasan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Eriksson, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, S. Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Kumar, M. S. Sharath
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Ögren, Jim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ziemann, Volker
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    An electron energy loss spectrometer based streak camera for time resolved TEM measurements2017Ingår i: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 176, s. 5-10Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100 ns and 10 μs.

  • 2.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Di Cristo, Valentina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Sanyal, Biplab
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Organisk kemi. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Conduction properties of graphene as a function of ion irradiation and acid treatment2011Ingår i: Graphene 2011 - 11th to 14th April 2011. Bilbao, Spain., 2011Konferensbidrag (Refereegranskat)
  • 3.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Rubino, Stefano
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Akhtar, Sultan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Cavalca, Filippo
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Di Cristo, Valentina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Exfoliation, transfer and electrical characterization of graphene2010Ingår i: Indian-Swedish Conference on Functional Materials, Uppsala, Sweden; 28-30 June 2010, 2010Konferensbidrag (Refereegranskat)
  • 4.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Coronel, E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Grigeriev, A.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Dielectrophoretic trapping of gold nanoparticles on SAM-prepared nanogaps: A comparative study of different molecular systems2009Ingår i: presentation European Conference on Molecular Electronics (ECME2009), Copenhagen, Denmark (Sept 2009), 2009Konferensbidrag (Övrigt vetenskapligt)
  • 5.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Dielectrophoretic trapping of gold nanoparticles on SAM-prepared nanogaps: A comparative study of different molecular systems2010Ingår i: International Conference on Molecular Electronics, Emmetten, Switzerland (Jan 2010), 2010Konferensbidrag (Refereegranskat)
  • 6.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Electrophoretic trapping of gold nanoparticles on sam-prepared nanogaps: A comparative study of different molecular systems2009Konferensbidrag (Refereegranskat)
  • 7.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Fabrication and characterization of high resistance nanogaps used for studies of different molecular electronics systems2009Konferensbidrag (Refereegranskat)
  • 8.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Widenkvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Oorganisk kemi.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Quinlan, R A
    Holloway, B C
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    An In-Situ Prepared Nano-Manipulator Tip for Electrical Characterization of Free Standing Graphene Like Sheets Inside a Focused Ion Beam/Scanning Electron Microscope2011Ingår i: Journal of Nanoelectronics and Optoelectronics, ISSN 1555-130X, E-ISSN 1555-1318, Vol. 6, nr 2, s. 162-168Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although contacting and moving atoms has been demonstrated using probe techniques, for many nano-objects, a fast and reproducible nano-probe technique is needed to acquire a large number of electrical measurements on nano-objects that are often similar but not the identical. Nano-manipulators have become a common tool in many scanning electron microscopes (SEM) and focussed ion beam devices (FIB). They can be rapidly and reproducibly moved from one nano-object to another. In this work we present a procedure to obtain reproducible electrical measurements of nano- to micron-sized objects by using a sharp, tungsten tip with well defined surface properties. The tip is a part of a manipulator and is sharpened in-situ by using the gallium ion beam inside a focused ion beam/scanning electron microscope (FIB/SEM). The contact resistance between a Au surface and the tip is 70 kΩ before the sharpening procedure and 10 Ω after sharpening. The leakage current of the total set-up of 10pA makes it possible to measure currents through a variety of nano-objects. This measurement technique is applied to measure the resistance of as grown, water treated and two HCl treated carbon nanosheets (CNS). These CNS vary in size and morphology. Using this nano-contacting set-up, we could obtain measurements of more than 400 different CNS. The obtained histograms allow us to observe a clear decrease of the resistance between original and 3 hour acid treated CNSs. We observe that longer periods of exposure of the CNS to the HCl do not further modify the resistance.

  • 9.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, S. Hassan. M.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Fabrication and use of high resistance nanogaps for application in molecular electronics2009Konferensbidrag (Refereegranskat)
  • 10.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    di Cristo, V.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    In-situ electrical characterization during defect insertion in exfoliated graphene sheets with a focused gallium ion beam at room and cryogenic temperaturesManuskript (preprint) (Övrigt vetenskapligt)
  • 11.
    Blom, Tobias
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Körber, N.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Fabrication and characterization of high resistance sub-5 nm gaps made by electrodeposition of gold in 30 nm gaps cut by using a focused gallium ion beamManuskript (preprint) (Övrigt vetenskapligt)
  • 12.
    Calard, Francois
    et al.
    Ecole Natl Super Chim Montpellier, Inst Charles Gerhardt , Architectures Mol & Mat Nanostruct, Montpellier, France..
    Wani, Ishtiaq Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Hayat, Aqib
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jarrosson, Thibaut
    Ecole Natl Super Chim Montpellier, Inst Charles Gerhardt Montpellier, Architectures Mol & Mat Nanostruct, Montpellier, France..
    Lere-Porte, Jean-Pierre
    Ecole Natl Super Chim Montpellier, Inst Charles Gerhardt Montpellier, Architectures Mol & Mat Nanostruct, Montpellier, France..
    Jafri, S. Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Mirpur Univ Sci & Technol, Dept Elect Engn, Azad Kashmir, Pakistan..
    Serein-Spirau, Francoise
    Ecole Natl Super Chim Montpellier, Inst Charles Gerhardt Montpellier, Architectures Mol & Mat Nanostruct, UMR CNRS 5253, Montpellier, France..
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Molekylär biomimetik.
    Designing sterically demanding thiolate coated AuNPs for electrical characterization of BPDT in a NP-molecule-nanoelectrode platform2017Ingår i: MOLECULAR SYSTEMS DESIGN & ENGINEERING, ISSN 2058-9689, Vol. 2, nr 2, s. 133-139Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular electronics with single or few molecules requires a stable metal-molecule nanojunction platform. Herein, we report the design and synthesis of gold nanoparticles coated with sterically demanding thiol ligands that are essential to fabricate a versatile and stable nanoelectrode-molecule-nanoparticle platform suitable for electrical characterization of small organic molecules. By combining.-tetraphenylmethane ether functionalized alkyl thioacetate and alkyl thiols, we prepared highly stable gold nanoparticles in a one-phase reaction providing simple and efficient purification. This robust preparation gives highly pure nanoparticles in very high yields (up to 90%) with long-time shelf stability. The synthesis in this work has superior reproducibility compared to previous synthesis processes that are currently being used for such molecular electronics platforms. Electron microscopy confirms the formation of uniform and small nanoparticles in the range of 5 to 7 nm. These nanoparticles with different ligand surface coverages were placed in a 20 nm nanoelectrode setup using dielectrophoretic forces. This setup was utilized to characterize the conductivity of the molecular wire 4,4'-biphenyldithiol introduced via ligand placeexchange under ambient conditions.

  • 13.
    Cavalca, Filippo
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.H.M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Rubino, Stefano
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Akhtar, Sultan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    DIY graphene production, transfer and characterization2009Ingår i: First Nordic Workshop on graphene science in 20-21 April, 2009, Uppsala., 2009Konferensbidrag (Övrigt vetenskapligt)
  • 14.
    Ghajeri, Farnaz
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Svenska Aerogel AB.
    Topalian, Zareh
    Svenska Aerogel AB.
    Tasca, Andrea
    University of Strathclyde,Department of Chemical and Process Engineering.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Mirpur University of Science and Technology.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Norberg, Peter
    Svenska Aerogel AB, R&D.
    Sjöström, Christer
    Svenska Aerogel AB.
    Case Study of a Green Nanoporous Material from Synthesis to Commercialisation: Quartzene®2018Ingår i: Current Opinion in Green and Sustainable Chemistry, ISSN 2452-2236, Vol. 12, s. 101-109Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Synthetic amorphous silicas with high porosity (94–97%) are introduced and various pathways for their synthesis are presented. The materials have structures with high surface area (300–750 m2/g) and are commercialised under the name of Quartzene®. Low cost silica sources and ambient pressure drying enable production in large scale with approximately 70% cost reduction as compared to conventional method silica aerogels. The structure is analysed, properties are reported as low density (0.04–0.15 g/ml), low thermal conductivity (24–26 mW/m·K), etc. Formaldehyde gas adsorption tests reveal that the uptake level of samples made by Quartzene® is significantly increased as compared to commercially available adsorbents. Thermal conductivity at elevated temperatures for mixtures of Quartzene® and stone wool shows a 23% reduction at 650 °C as compared to pure stone wool. Scaling up process for this green material meeting environmental sustainability demands in industrial manufacturing is discussed and challenges/current developments are presented.

  • 15.
    Hajati, Y
    et al.
    Dept of Physics, Faculty of Sciences, University of Shahid Chamran, Ahwaz, Iran.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, S H M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Haldar, Soumyajyoti
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Bhandary, Sumanta
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Shoushtari, M Z
    Dept of Physics, Faculty of Sciences, University of Shahid Chamran, Ahwaz, Iran.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Sanyal, Biplab
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Improved gas sensing activity in structurally defected bilayer graphene2012Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, nr 50, s. 50550-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graphene is a two-dimensional material with a capability of gas sensing, which is here shown to be drastically improved by inducing gentle disorder in the lattice. We report that by using a focused ion beam technique, controlled disorder can be introduced into the graphene structure through Ga + ion irradiation. This disorder leads to an increase in the electrical response of graphene to NO 2 gas molecules by a factor of three in an ambient environment (air). Ab initio density functional calculations indicate that NO 2 molecules bind strongly to Stone–Wales defects, where they modify electronic states close to the Fermi level, which in turn influence the transport properties. The demonstrated gas sensor, utilizing structurally defected graphene, shows faster response, higher conductivity changes and thus higher sensitivity to NO 2 as compared to pristine graphene.

  • 16.
    Han, Yuanyuan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets fysik.
    Ossipov, Dmitri A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Hilborn, Jöns
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Polymerkemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    LEIFER, KLAUS
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
    Graphene Based Mechanical Biosensor by Employing Non-covalent Stacking Functionalization2019Ingår i: Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Herein we demonstrate a novel methodology to achieve mechanical biosensor by employing the distinguished interaction forces between the atomic force microscope (AFM) probe and sensor surfaces as the response signal. This mechanical biosensor is fabricated by utilizing the non-covalent π-π stacking of pyrene-maltose onto graphene surfaces with Concanavalin A (Con A) as a target protein. The atomic resolution scanning tunneling microscopy (STM) images indicate the successful formation of the self-assembled and densely packed pyrene-maltose layer on the sensor surface, which gives distinct atomic lattice structure as compared to pristine graphene. This mechanical biosensor exhibits detection of Con A with the sensitivity down to nanomolar level. Therefore, this proposed mechanical biosensor has the potential to be employed in a variety of bio-sensing applications.

  • 17.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Using a nano-contact platform for evaluating molecular electronics response2009Konferensbidrag (Övrigt vetenskapligt)
  • 18.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Systematic assessment of a nanoparticle bridge platform for molecular electronics measurementsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles (AuNPs) in order to make electrical measurements and assess the platform under ambient conditions. Initially bare electrodes were tested to determine the response of the platform and it was found that creating devices in ambient conditions requires careful cleaning processes and awareness of the contributions contaminants may make to measurements. Both octanethiol (OT) and Biphenyldithiol (BPDT) molecules were also tested by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with the nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal-molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density function theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve when preparing the devices in ambient conditions. Significant hysteresis, or conductance switching, in the I-V curves of BPDT was also observed, which we attribute primarily to voltage induced changes at the interface between the molecule and the metal.

  • 19.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Widenqvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Sanyal, Biplab
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Organisk kemi.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Quinlan, R.A.
    College of William and Mary, US.
    Holloway, B.
    Luna Innovations Incorporated.
    Surpi, Alessandro
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Control of Conductivity in Graphene by Formation of Defects2008Ingår i: AVS 55th International Symposium & Exhibition 2008, October 19-24, Boston, USA, 2008Konferensbidrag (Refereegranskat)
    Abstract [en]

    Due to their large surface areas, the conductivity of graphene and carbonnano-sheets depends strongly on their chemical environment. This is thebase for future environmental sensors containing graphene sheets. Here, abinitiocalculations propose a possibility of conductivity increase. In theexperiment, a 1-2 orders of magnitude increase of the conductivity isobserved experimentally on sub-nanometTe carbon nano-sheets by using anin-situ nano-manipulation set-up. The conductivity of the graphene sheetswas assessed from first-principle simulations. Insertion of defects in thegraphene sheets can lead to a strong increase of the conductivity of singlegraphene sheets. To study this result experimentally, we carried outconductivity measurements on sub-nanometre graphene nano-sheets that aredeposited on W -substrates by radio-frequency plasma-enhanced chemicalvapour deposition. This deposition process creates free-standingmicrometer-sized carbon nano-sheets with sub-nanometre thickness. Thesenano-sheets were exposed to an acid treatment. It has been shown recentlythat such acid treatment creates defects in these sheets. Using a nanomanipulatorinside a scanning electron microscope, we individuallycontacted the nano-sheets and measured their resistance as a function oftheir functionalization. From more than 1000 measurements we obtain a 1-2order of magnitude increase of conductivity in the functionalised carbonnano-sheets as compared to just water treated or untreated carbon nanosheets.This result corresponds well to the conductivity change obtainedfrom theory. This study makes it possible to create environmental sensorsbased on graphene like carbon nano-sheets.

  • 20.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Widenkvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Biplab, Sanyal
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Fransson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Karis, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Quinlan, Ronald A.
    Holloway, Brian C.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Electrical characterization of defect induced graphene nanosheets2009Ingår i: Nanotech Europe 2009 - 28-30 september Berlin, 2009Konferensbidrag (Refereegranskat)
  • 21.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Widenkvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Sanyal, Biplab
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Grenberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Karis, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Yt- och gränsskiktsvetenskap.
    Holloway, B.C.
    Quinlan, R.A.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Conductivity engineering of graphene and carbon nanosheets by defect formation2008Ingår i: Conference of the American Vacuum Society, Boston, 2008, 2008Konferensbidrag (Refereegranskat)
  • 22.
    Jafri, Hassan
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Materialteori.
    Widenkvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Sanyal, Biplab
    Fransson, Jonas
    Eriksson, Olle
    Jansson, Ulf
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi.
    Karis, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Yt- och gränsskiktsvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    The effect of induced vacancy defects on resistivity of graphene2009Ingår i: Scandem conference, Reykjavik 2009, 2009Konferensbidrag (Refereegranskat)
  • 23.
    Jafri, Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Jonas, Fransson
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi, Fysikalisk-organisk kemi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy2013Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 5, nr 11, s. 4673-4677Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Short chains containing a series of metal- molecule-nanoparticle nanojunctions are a nano-materials system with the potential to give electrical signatures close to those from single molecule experiments while enabling to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing of typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signature of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing few 1,8-octanedithiol (ODT) molecules into a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.

  • 24.
    Jafri, S. Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Assessment of a nanoparticle bridge platform for molecular electronics measurements2010Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 21, nr 43, s. 435204-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal–molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the IV curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.

  • 25.
    Jafri, S Hassan M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strømme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Control of junction resistances in molecular electronic devices fabricated by FIB2011Ingår i: Microelectronic Engineering, ISSN 0167-9317, E-ISSN 1873-5568, Vol. 88, nr 8, s. 2629-2631Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A major hurdle to realize molecular electronic devices (MEDs) is to make reliable electrical contacts to a single or a few molecules. Our nano-contact platform with a gap size of less than 25 nm with resistances above 1000 TΩ was built using combined techniques of photolithography, electron beam lithography and focused ion beam milling. In this study, we have used gold nanoparticles (AuNPs) to bridge the nanoelectrode gaps by dielectrophoretic trapping and thus obtain electrical contacts. The electrodes and/or the nanoparticles were functionalised with 1–2 nm long alkane-thiol molecules so that the electronic structure of these molecules determines the properties of the electrical junction. Molecules were introduced both by functionalising the nanogap and the nanoparticles and the results of both functionalisation protocols are compared. Here, we show the nanogap–nanoparticle bridge set-up containing metal–molecule junctions that can be used as a base for the development of molecular electronics containing only a few molecules under ambient conditions. Current–voltage (IV) characterization of alkanethiol/gold junction showed non-linear response where mean geometric resistance of four different junctions could be tuned from 20 GΩ to 20 TΩ. The results from the measurements on 1-alkanethiol in such devices is a first step to demonstrate that this platform has the potential to obtain stable electronic devices having relatively small numbers of molecules with reliable metal molecule junction by combing top-down and bottom-up approaches.

  • 26.
    Jafri, S. Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Department of Electrical Engineering, Mirpur University of Science and Technology, Pakistan.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi. Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC. Uppsala Univ, Dept Chem BMC, SE-75123 Uppsala, Sweden..
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds2015Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, artikel-id 14431Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with omega-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  • 27.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    FIB lithography - nanostructuring using FIB,2015Konferensbidrag (Refereegranskat)
  • 28.
    Jafri, S.H. M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Large Variations in Shelf-life of Gold Nanoelectrode Gaps and Molecular Electronic Devices Stored in Air, Water and Organic SolventsManuskript (preprint) (Övrigt vetenskapligt)
  • 29.
    Jafri, S.H. M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Wallner, Andreas
    Ottosson, Henrik
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Stability optimisation of molecular electronic devices based on nanoelectrode–nanoparticle bridge platform in air and different storage liquids2014Ingår i: Journal of nanoparticle research, Vol. 16, nr 12, s. 1-11Artikel i tidskrift (Refereegranskat)
  • 30.
    Jafri, S.H. M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Piezoelectricity and photoconductivity in single or few Zinc Oxide nanorods2014Konferensbidrag (Refereegranskat)
  • 31.
    Jafri, S.Hassan M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Control of junction resistances in molecular electronic devices fabricated by FIB2010Ingår i: 36th International Conference on Micro and Nano Engineering, MNE2010, Italy (2010), 2010Konferensbidrag (Refereegranskat)
    Abstract [en]

    Molecules provide an opportunity to fabricate electronic devices with much smaller basic unit in size i.e. 1-5 nm as compared to today’s silicon based electronics. Furthermore, molecules can be synthesized withalmost unlimited variation of their electronic structure. Theoretically, molecules in various configurations were demonstrated as rectifiers, transistors or memories, but experimentally it is still very difficult to obtaina  stable and reproducible molecular based device [1]. A major hurdle to realize such devices is to make reliable electrical contacts to a single or a few molecules. Here, we show the first reproducible and systematic evaluation of a nanogap-nanoparticle bridge set-up that can be used as base for development of few molecule molecular electronics under ambient conditions. We have developed a nano-contact platform by top-down approach [2] with a gap size of 20-30nm using combined techniques of photolithography, electron beam lithography and focused ion beam milling (Fig 1). These gaps demonstrate excellent resistance in order of 1000 TΩ enabling us to carry out electrical characterization of highly resistive nanomaterials.However, compared to the size of molecules these gaps are quite big. In this study, we used metallic nanoparticles to bridge the gap and thus obtain electrical contacts with 1-2nm long molecules in the junction between the nanoelectrodes and the nanoparticles. The nanoparticles are assembled in the gap  by a bottom-up approach using dielectrophrosis trapping process. Prior to introduction of molecules in such devices, we found that the trapping of gold nanoparticles (AuNP) in between clean nanoelectrodes without presence of molecules often gave resistance in order of mega-ohms to giga-ohms due to presence of a non conductive barrier. However, it was observed that cleaning protocols of both the gold contacts and nanoparticles in solution lead to resistance of less than a few hundreds of ohms (Fig 2). Molecules were introduced both by functionalizing the electrode gap and the the nanoparticles and the results of both functionalisation protocols are compared. By optimizing the electrode cleaning as well as the functionalisation of the metallic surfaces, we obtain reproducible electrical measurements. We fabricated such devices either by depositing a Self Assembled Monolayer (SAM) of molecules on the nano-contacts and bridging the gap by AuNP or by bridging the clean nano-contacts with molecule-coated-AuNP (Fig 3). Here we utilized a model molecules octanethiol (OT), octanedithiol and biphenyldithiol in fabrication of devices and study of metal molecule junction resistance. IV characterization of OT molecules (Fig 4) showed linear response where current levels varied between picoamps and femtoamps with an applied voltage of 1-3V. OT in this setup had one physisorbed contact with gold, which resulted in much less wave function mixing at the molecule-metal interface, and consequently decreased the transmission probability at the molecule-electrode interface. As a result, in the evaluation of more than 50 devices, a considerable variation of resistance between different devices due to the lack of covalent binding, the variation in number of trapped AuNPs, incomplete coverage of OT on the uneven surface of nanoelectrodes and variation in contact surface geometry. Density functional theory is used to understand the origin of the resistance fluctuation. We were able to estimate the average resistance per octanethiol molecule for such device in order of 175GΩ, in good agreement with other published results. Our results with the measurements on OT in such devices demonstrate that it is possible to fabricate stable electronic devices having relatively small numbers of molecules with reliable metal molecule junction by combing top-down and bottom-up approaches. By functionalizing the nanoparticles, we obtained a strong decrease of the resistance spread of such devices from 3 orders of magnitude to about 1 order of magnitude, making this technology a potential approach for molecular devices operating at ambient conditions.

     

  • 32.
    Jafri, S.Hassan M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Realization of highly reproducible molecular junctions in a nanoparticle-alkanedithiol-nanoelectrode bridge platformManuskript (preprint) (Övrigt vetenskapligt)
  • 33.
    Jafri, S.H.M
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Electrical Characterization of Defect induced Graphene NanosheetsKonferensbidrag (Refereegranskat)
  • 34.
    Jafri, Syed Hassan Mujtaba
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Building Systems for Electronic Probing of Single Low Dimensional Nano-objects: Application to Molecular Electronics and Defect Induced Graphene2011Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Nano-objects have unique properties due to their sizes, shapes and structure. When electronic properties of such nano-objects are used to build devices, the control of interfaces at atomic level is required.

    In this thesis, systems were built that can not only electrically characterize nano-objects, but also allow to analyze a large number of individual nano-objects statistically at the example of graphene and nanoparticle-molecule-nanoelectrode junctions.

    An in-situ electrical characterization system was developed for the analysis of free standing graphene sheets containing defects created by an acid treatment. The electrical characterization of several hundred sheets revealed that the resistance in acid treated graphene sheets decreased by 50 times as compared to pristine graphene and is explained by the presence of di-vacancy defects. However, the mechanism of defect insertion into graphene is different when graphene is bombarded with a focused ion beam and in this case, the resistance of graphene increases upon defect insertion. The defect insertion becomes even stronger at liquid N2 temperature.

    A molecular electronics platform with excellent junction properties was fabricated where nanoparticle-molecule chains bridge 15-30nm nanoelectrodes. This approach enabled a systematic evaluation of junctions that were assembled by functionalizing electrode surfaces with alkanethiols and biphenyldithiol. The variations in the molecular device resistance were several orders of magnitude and explained by variations in attachment geometries of molecules. 

    The spread of resistance values of different devices was drastically reduced by using a new functionalization technique that relies on coating of gold nanoparticles with trityl protected alkanedithiols, where the trityl group was removed after trapping of nanoparticles in the electrode gap. This establishment of a reproducible molecular electronics platform enabled the observation of vibrations of a few molecules by inelastic tunneling spectroscopy. Thus this system can be used extensively to characterize molecules as well as build devices based on molecules and nanoparticles. 

    Delarbeten
    1. Conductivity engineering of graphene by defect formation
    Öppna denna publikation i ny flik eller fönster >>Conductivity engineering of graphene by defect formation
    Visa övriga...
    2010 (Engelska)Ingår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 43, nr 4, s. 045404-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Transport measurements have revealed several exotic electronic properties of graphene. The possibility to influence the electronic structure and hence control the conductivity by adsorption or doping with adatoms is crucial in view of electronics applications. Here, we show that in contrast to expectation, the conductivity of graphene increases with increasing concentration of vacancy defects, by more than one order of magnitude. We obtain a pronounced enhancement of the conductivity after insertion of defects by both quantum mechanical transport calculations as well as experimental studies of carbon nano-sheets. Our finding is attributed to the defect induced mid-gap states, which create a region exhibiting metallic behaviour around the vacancy defects. The modification of the conductivity of graphene by the implementation of stable defects is crucial for the creation of electronic junctions in graphene-based electronics devices.

    Ort, förlag, år, upplaga, sidor
    IOP Publishing, 2010
    Nationell ämneskategori
    Nanoteknik Elektroteknik och elektronik Materialteknik
    Forskningsämne
    Kemi med inriktning mot organisk kemi; Kemi med inriktning mot oorganisk kemi
    Identifikatorer
    urn:nbn:se:uu:diva-112356 (URN)10.1088/0022-3727/43/4/045404 (DOI)000273551300016 ()
    Tillgänglig från: 2010-01-13 Skapad: 2010-01-13 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    2. An In-Situ Prepared Nano-Manipulator Tip for Electrical Characterization of Free Standing Graphene Like Sheets Inside a Focused Ion Beam/Scanning Electron Microscope
    Öppna denna publikation i ny flik eller fönster >>An In-Situ Prepared Nano-Manipulator Tip for Electrical Characterization of Free Standing Graphene Like Sheets Inside a Focused Ion Beam/Scanning Electron Microscope
    Visa övriga...
    2011 (Engelska)Ingår i: Journal of Nanoelectronics and Optoelectronics, ISSN 1555-130X, E-ISSN 1555-1318, Vol. 6, nr 2, s. 162-168Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Although contacting and moving atoms has been demonstrated using probe techniques, for many nano-objects, a fast and reproducible nano-probe technique is needed to acquire a large number of electrical measurements on nano-objects that are often similar but not the identical. Nano-manipulators have become a common tool in many scanning electron microscopes (SEM) and focussed ion beam devices (FIB). They can be rapidly and reproducibly moved from one nano-object to another. In this work we present a procedure to obtain reproducible electrical measurements of nano- to micron-sized objects by using a sharp, tungsten tip with well defined surface properties. The tip is a part of a manipulator and is sharpened in-situ by using the gallium ion beam inside a focused ion beam/scanning electron microscope (FIB/SEM). The contact resistance between a Au surface and the tip is 70 kΩ before the sharpening procedure and 10 Ω after sharpening. The leakage current of the total set-up of 10pA makes it possible to measure currents through a variety of nano-objects. This measurement technique is applied to measure the resistance of as grown, water treated and two HCl treated carbon nanosheets (CNS). These CNS vary in size and morphology. Using this nano-contacting set-up, we could obtain measurements of more than 400 different CNS. The obtained histograms allow us to observe a clear decrease of the resistance between original and 3 hour acid treated CNSs. We observe that longer periods of exposure of the CNS to the HCl do not further modify the resistance.

    Ort, förlag, år, upplaga, sidor
    American Scientific, 2011
    Nyckelord
    Focused ion beam, FIB, electrical characterization, Nano-sized object
    Nationell ämneskategori
    Nanoteknik Annan elektroteknik och elektronik
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys; Teknisk fysik med inriktning mot materialvetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-122954 (URN)10.1166/jno.2011.1154 (DOI)000296210100013 ()
    Tillgänglig från: 2010-04-21 Skapad: 2010-04-21 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    3. In-situ electrical characterization during defect insertion in exfoliated graphene sheets with a focused gallium ion beam at room and cryogenic temperatures
    Öppna denna publikation i ny flik eller fönster >>In-situ electrical characterization during defect insertion in exfoliated graphene sheets with a focused gallium ion beam at room and cryogenic temperatures
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Nyckelord
    Focused Ion beam, Graphene, defects, conductivity, cryogenic temperatures
    Nationell ämneskategori
    Nanoteknik Annan elektroteknik och elektronik
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys
    Identifikatorer
    urn:nbn:se:uu:diva-160615 (URN)
    Tillgänglig från: 2011-10-27 Skapad: 2011-10-27 Senast uppdaterad: 2011-11-23
    4. Fabrication and characterization of high resistance sub-5 nm gaps made by electrodeposition of gold in 30 nm gaps cut by using a focused gallium ion beam
    Öppna denna publikation i ny flik eller fönster >>Fabrication and characterization of high resistance sub-5 nm gaps made by electrodeposition of gold in 30 nm gaps cut by using a focused gallium ion beam
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Nyckelord
    Electrodeposition, gold nanogap, focused ion beam
    Nationell ämneskategori
    Nanoteknik
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys
    Identifikatorer
    urn:nbn:se:uu:diva-160620 (URN)
    Tillgänglig från: 2011-10-27 Skapad: 2011-10-27 Senast uppdaterad: 2012-12-07
    5. Large Variations in Shelf-life of Gold Nanoelectrode Gaps and Molecular Electronic Devices Stored in Air, Water and Organic Solvents
    Öppna denna publikation i ny flik eller fönster >>Large Variations in Shelf-life of Gold Nanoelectrode Gaps and Molecular Electronic Devices Stored in Air, Water and Organic Solvents
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Nyckelord
    Nanoelectronics, molecular electronics, shelf-life, storage conditions
    Nationell ämneskategori
    Nanoteknik Materialkemi
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys; Kemi med inriktning mot bioorganisk kemi
    Identifikatorer
    urn:nbn:se:uu:diva-160621 (URN)
    Tillgänglig från: 2011-10-27 Skapad: 2011-10-27 Senast uppdaterad: 2011-11-23
    6. Assessment of a nanoparticle bridge platform for molecular electronics measurements
    Öppna denna publikation i ny flik eller fönster >>Assessment of a nanoparticle bridge platform for molecular electronics measurements
    Visa övriga...
    2010 (Engelska)Ingår i: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 21, nr 43, s. 435204-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A combination of electron beam lithography, photolithography and focused ion beam milling was used to create a nanogap platform, which was bridged by gold nanoparticles in order to make electrical measurements and assess the platform under ambient conditions. Non-functionalized electrodes were tested to determine the intrinsic response of the platform and it was found that creating devices in ambient conditions requires careful cleaning and awareness of the contributions contaminants may make to measurements. The platform was then used to make measurements on octanethiol (OT) and biphenyldithiol (BPDT) molecules by functionalizing the nanoelectrodes with the molecules prior to bridging the nanogap with nanoparticles. Measurements on OT show that it is possible to make measurements on relatively small numbers of molecules, but that a large variation in response can be expected when one of the metal–molecule junctions is physisorbed, which was partially explained by attachment of OT molecules to different sites on the surface of the Au electrode using a density functional theory calculation. On the other hand, when dealing with BPDT, high yields for device creation are very difficult to achieve under ambient conditions. Significant hysteresis in the IV curves of BPDT was also observed, which was attributed primarily to voltage induced changes at the interface between the molecule and the metal.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:uu:diva-132279 (URN)10.1088/0957-4484/21/43/435204 (DOI)000282511100005 ()
    Projekt
    KoF U3MEC
    Tillgänglig från: 2010-10-18 Skapad: 2010-10-18 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    7. Low-temperature synthesis of photoconducting CdTe nanotetrapods
    Öppna denna publikation i ny flik eller fönster >>Low-temperature synthesis of photoconducting CdTe nanotetrapods
    Visa övriga...
    2010 (Engelska)Ingår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 20, nr 6, s. 1208-1214Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We show that CdTe nanotetrapods are formed by two distinct growth regimes depending on the reaction temperature. At a low temperature (180 C) the combination of slow reaction kinetics and Ostwald ripening results in a novel pathway for the formation of a tetrapodal morphology. We also report, to the best of our knowledge, the first direct evaluation of the photoconductivity of CdTe nanotetrapods by employing gold ‘nanogap’ electrodes that were fabricated in-house. Our preliminary findings include I–V responses showing current enhancement, due to illumination, of up to 100 times.

    Nationell ämneskategori
    Kemi Teknik och teknologier
    Identifikatorer
    urn:nbn:se:uu:diva-113700 (URN)10.1039/b916208a (DOI)000273961900028 ()
    Tillgänglig från: 2010-02-03 Skapad: 2010-02-03 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    8. Control of junction resistances in molecular electronic devices fabricated by FIB
    Öppna denna publikation i ny flik eller fönster >>Control of junction resistances in molecular electronic devices fabricated by FIB
    Visa övriga...
    2011 (Engelska)Ingår i: Microelectronic Engineering, ISSN 0167-9317, E-ISSN 1873-5568, Vol. 88, nr 8, s. 2629-2631Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A major hurdle to realize molecular electronic devices (MEDs) is to make reliable electrical contacts to a single or a few molecules. Our nano-contact platform with a gap size of less than 25 nm with resistances above 1000 TΩ was built using combined techniques of photolithography, electron beam lithography and focused ion beam milling. In this study, we have used gold nanoparticles (AuNPs) to bridge the nanoelectrode gaps by dielectrophoretic trapping and thus obtain electrical contacts. The electrodes and/or the nanoparticles were functionalised with 1–2 nm long alkane-thiol molecules so that the electronic structure of these molecules determines the properties of the electrical junction. Molecules were introduced both by functionalising the nanogap and the nanoparticles and the results of both functionalisation protocols are compared. Here, we show the nanogap–nanoparticle bridge set-up containing metal–molecule junctions that can be used as a base for the development of molecular electronics containing only a few molecules under ambient conditions. Current–voltage (IV) characterization of alkanethiol/gold junction showed non-linear response where mean geometric resistance of four different junctions could be tuned from 20 GΩ to 20 TΩ. The results from the measurements on 1-alkanethiol in such devices is a first step to demonstrate that this platform has the potential to obtain stable electronic devices having relatively small numbers of molecules with reliable metal molecule junction by combing top-down and bottom-up approaches.

    Nyckelord
    Nanoelectrodes, Nanogap-nanoparticle bridge set-up, Molecular electronics, Metal-moleculejunctions, 1-alkanethiol, Electrical characterizatio
    Nationell ämneskategori
    Teknik och teknologier
    Forskningsämne
    Teknisk fysik med inriktning mot materialvetenskap; Teknisk fysik med inriktning mot nanoteknologi och funktionella material
    Identifikatorer
    urn:nbn:se:uu:diva-138234 (URN)10.1016/j.mee.2010.11.040 (DOI)000293663400250 ()
    Tillgänglig från: 2010-12-16 Skapad: 2010-12-16 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    9. Formation and NMR Spectroscopy of ω-Thiol Protected α,ω-Alkanedithiol Coated Gold Nanoparticles and Their Usage in Molecular Charge Transport Junctions
    Öppna denna publikation i ny flik eller fönster >>Formation and NMR Spectroscopy of ω-Thiol Protected α,ω-Alkanedithiol Coated Gold Nanoparticles and Their Usage in Molecular Charge Transport Junctions
    Visa övriga...
    2011 (Engelska)Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 27, nr 14, s. 9057-9067Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Gold nanoparticles (AuNPs) coated with stabilizing molecular monolayers are utilized in areas ranging from life sciences to nanoelectronics. Here we present a novel and facile one-pot single phase procedure for the preparation of stable AuNPs with good dispersity, which are coated with α,ω-alkanedithiols whose outer ω-thiol is protected by a triphenylmethyl group. Using dielectrophoresis we were able to trap these AuNPs, coated with ω-thiol protecting groups, in a 20 nm gold electrode nanogap. The ω-thiol group was then deprotected under acidic conditions in situ once the AuNPs were correctly positioned in the device. The subsequent deprotection resulted in an increase of conductance by three orders of magnitude, indicating that the isolated dithiol coated AuNPs were fused into a covalently bonded network with AuNP-molecule-AuNP as well as electrode-molecule-AuNP linkages. Furthermore, complete characterization of the AuNP surface-bonded alkanedithiols was achieved using a series of one- and two-dimensional NMR spectroscopy techniques. Our spectra of the molecule-coated AuNPs show well resolved signals, only slightly broader than for free molecules in solution, in contrast to many earlier reported NMR spectral data of molecules attached to AuNPs. Complementary diffusion NMR spectroscopic experiments were performed to prove that the observed alkanedithiols are definitely surface bonded species and do not exist in free and unattached form.

    Nyckelord
    Chemistry, Materials Science
    Nationell ämneskategori
    Kemi Teknik och teknologier
    Forskningsämne
    Teknisk fysik med inriktning mot materialvetenskap
    Identifikatorer
    urn:nbn:se:uu:diva-154968 (URN)10.1021/la2019007 (DOI)000292617800056 ()
    Projekt
    KoF U3MEC
    Forskningsfinansiär
    Vetenskapsrådet
    Tillgänglig från: 2011-06-14 Skapad: 2011-06-14 Senast uppdaterad: 2019-04-24Bibliografiskt granskad
    10. Realization of highly reproducible molecular junctions in a nanoparticle-alkanedithiol-nanoelectrode bridge platform
    Öppna denna publikation i ny flik eller fönster >>Realization of highly reproducible molecular junctions in a nanoparticle-alkanedithiol-nanoelectrode bridge platform
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Nyckelord
    Molecular electronic devices, electrical characterization, alkanedithiols, chemisorbed molecular junctions, nanoparticle-nanoelectrode
    Nationell ämneskategori
    Nanoteknik Annan elektroteknik och elektronik Atom- och molekylfysik och optik
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys; Fysik och astronomi med inriktning mot teoretisk fysik
    Identifikatorer
    urn:nbn:se:uu:diva-160622 (URN)
    Projekt
    KoF U3MEC
    Tillgänglig från: 2011-10-27 Skapad: 2011-10-27 Senast uppdaterad: 2013-11-08
    11. Vibrational signatures in inelastic tunneling spectroscopy from short molecule-nanoparticle chains trapped in versatile nanoelectrodes
    Öppna denna publikation i ny flik eller fönster >>Vibrational signatures in inelastic tunneling spectroscopy from short molecule-nanoparticle chains trapped in versatile nanoelectrodes
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Nyckelord
    Molecular vibrations, Inelastic electron tunneling spectroscopy, nanoparticle-nanoelectrode bridge platform, octandithiol
    Nationell ämneskategori
    Nanoteknik Annan elektroteknik och elektronik Atom- och molekylfysik och optik
    Forskningsämne
    Teknisk fysik med inriktning mot materialanalys; Fysik och astronomi med inriktning mot teoretisk fysik
    Identifikatorer
    urn:nbn:se:uu:diva-160626 (URN)
    Tillgänglig från: 2011-10-27 Skapad: 2011-10-27 Senast uppdaterad: 2012-04-01
  • 35.
    Jafri, Syed Hassan Mujtaba
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Fysikalisk-organisk kemi.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Stability optimisation of molecular electronic devices based on nanoelectrode-nanoparticle bridge platform in air and different storage liquids2014Ingår i: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 16, nr 12, s. 2811-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The long-term stability of metal nanoparticle-molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule-Au nanoparticle (AuNP) junctions themselves with the molecule being 1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol-NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT.

  • 36.
    Jafri, Syed Hassan Mujtaba
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Nanoparticle Bridges for Studying Electrical Properties of Organic Molecules2012Ingår i: Nanoparticles in Biology and Medicine: / [ed] Soloviev, M., Springer Publishing Company, 2012, s. 535-546Kapitel i bok, del av antologi (Refereegranskat)
  • 37.
    Jafri, Syed Hassan Mujtaba
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Widenkvist, Erika
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Sanyal, Biplab
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Fransson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Eriksson, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Karis, Olof
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och materialvetenskap, Yt- och gränsskiktsvetenskap.
    Quinlan, Ronald A
    College of William and Mary, Williamsburg VA, USA.
    Holloway, Brian C
    Luna Innovations, Danville, VA, USA.
    Leifer, Klaus
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Conductivity engineering of graphene by defect formation2010Ingår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 43, nr 4, s. 045404-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transport measurements have revealed several exotic electronic properties of graphene. The possibility to influence the electronic structure and hence control the conductivity by adsorption or doping with adatoms is crucial in view of electronics applications. Here, we show that in contrast to expectation, the conductivity of graphene increases with increasing concentration of vacancy defects, by more than one order of magnitude. We obtain a pronounced enhancement of the conductivity after insertion of defects by both quantum mechanical transport calculations as well as experimental studies of carbon nano-sheets. Our finding is attributed to the defect induced mid-gap states, which create a region exhibiting metallic behaviour around the vacancy defects. The modification of the conductivity of graphene by the implementation of stable defects is crucial for the creation of electronic junctions in graphene-based electronics devices.

  • 38.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Jafri, Hassan
    Carva, K.
    Sanyal, B.
    Grennberg, H.
    Jansson, U.
    Eriksson, O.
    Modification of electrical properties graphene by of defect insertion2011Ingår i: Proceedings Graphene Workshop, Bilbao, Spain, 2011., Spain: Graphene Workshop, Bilbao, Spain, 2011. , 2011Konferensbidrag (Refereegranskat)
  • 39.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Carva, K.
    Sanyal, B.
    Grennberg,, H.
    Jansson,, U.
    Holloway,, B.C.
    Quinlan,, R.
    Eriksson, O.
    Control of Conductivity in Graphene by Formation of Defects2010Konferensbidrag (Refereegranskat)
  • 40.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, H.
    Grigoriev, A.
    Ahuja, R.
    Wallner, A.
    Ottosson, H.
    Use of a nanoelectrode nanoparticle bridge platform in molecular electronics2010Konferensbidrag (Refereegranskat)
  • 41.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Use of a nanoelectrode nanoparticle bridge platform in molecular electronics2010Ingår i: ElecMol’10, 5th International Meeting on Molecular Electronics, Grenoble, France, December 6-10, 2010, 2010, s. 116-116Konferensbidrag (Refereegranskat)
  • 42.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Coronel, E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Molecular electronics on non-perfect electrode surfaces2010Ingår i: International Conference on Molecular Electronics, Emmetten, Switzerland, 2010Konferensbidrag (Refereegranskat)
  • 43.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Welch, Ken
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Strömme, Maria
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    FIB Fabrication and use of high resistance nanogaps for application in molecular electronics2010Ingår i: 17th International Microscopy Congress, IMC17, Brazil, 2010Konferensbidrag (Refereegranskat)
  • 44.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Widenqvist, E
    Carva, Karel
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
    Sanyal, Biplab
    Eriksson, Olle
    Grennberg, Helena
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Jansson, Ulf
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för materialkemi, Oorganisk kemi.
    Quinlan, R
    Holloway, B
    Luna Innovations Incorporated, NanoWorks Division,521 Bridge Street, Danville, 24541, Virginia, USA.
    Surpi, A
    Control of Conductivity in Graphene by Formation of Defects2008Konferensbidrag (Refereegranskat)
  • 45.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Hayat, Aqib
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Orthaber, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    Fransson, Jonas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Ottosson, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström.
    A 10-nm sized few molecule portable platform to assess molecular electronics properties2015Konferensbidrag (Övrigt vetenskapligt)
  • 46.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Löfås, H.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Hayat, A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Fransson, J.
    Wallner, A.
    Ottosson, H.
    Grigoriev, A.
    Ahuja, R.
    A 10-nm sized molecular electronics platform for applied and fundamental molecular property measurements2012Ingår i: Proceedings of Elecmol conference, Grenoble, 2012., Grenoble, 2012Konferensbidrag (Refereegranskat)
  • 47.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Jafri, S.Hassan M.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Löfås, Henrik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Agustsson, J.
    University Basel, Department of Physics, CH-4056 Basel, Switzerland.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Grigoriev, Anton
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Fransson, J.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Ahuja, Rajeev
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Teoretisk fysik.
    Wallner, Andreas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
    Calame, M.
    University Basel, Department of Physics, CH-4056 Basel, Switzerland.
    Vibrational signatures in inelastic tunneling spectroscopy from short molecule-nanoparticle chains trapped in versatile nanoelectrodesManuskript (preprint) (Övrigt vetenskapligt)
  • 48.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Daukiya, Lakshya
    Vonau, François
    Simon, Laurent
    Structural, electrical and sensing properties of defected graphene2014Ingår i: Structural, electrical and sensing properties of defected graphene, 2014Konferensbidrag (Övrigt vetenskapligt)
  • 49.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, S.H. M
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Experimentell fysik.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Daukiya, Lakshya
    Vonau, François
    Simon, Laurent
    Structural, electrical and sensing properties of defected graphene2014Konferensbidrag (Refereegranskat)
  • 50.
    Leifer, Klaus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Rubino, Stefano
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Akhtar, S.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Blom, Tobias
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Jafri, Hassan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap.
    Electrical measurements on graphene in a Au-nanoparticle-bridge platform2010Konferensbidrag (Refereegranskat)
12 1 - 50 av 66
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf