uu.seUppsala University Publications
Change search
Refine search result
12 1 - 50 of 72
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Akkoyun, S.
    et al.
    Algora, A.
    Alikhani, B.
    Ameil, F.
    Angelis, G. de
    Arnold, L.
    Astier, A.
    Atac, Ayse
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Aubert, Y.
    Aufranc, C.
    Austin, A.
    Aydin, S.
    Azaiez, F.
    Badoer, S.
    Balabanski, D. L.
    Barrientos, D.
    Baulieu, G.
    Baumann, R.
    Bazzacco, D.
    Beck, F. A.
    Beck, T.
    Bednarczyk, P.
    Bellato, M.
    Bentley, M. A.
    Benzoni, G.
    Berthier, R.
    Berti, L.
    Beunard, R.
    Bianco, G. Lo
    Birkenbach, B.
    Bizzeti, P. G.
    Bizzeti-Sona, A. M.
    Blanc, F. Le
    Blasco, J. M.
    Blasi, N.
    Bloor, D.
    Boiano, C.
    Borsato, M.
    Bortolato, D.
    Boston, A. J.
    Boston, H. C.
    Bourgault, P.
    Boutachkov, P.
    Bouty, A.
    Bracco, A.
    Brambilla, S.
    Brawn, I. P.
    Brondi, A.
    Broussard, S.
    Bruyneel, B.
    Bucurescu, D.
    Burrows, I.
    Burger, A.
    Cabaret, S.
    Cahan, B.
    Calore, E.
    Camera, F.
    Capsoni, A.
    Carrio, F.
    Casati, G.
    Castoldi, M.
    Cederwall, B.
    Cercus, J. -L
    Chambert, V.
    Chambit, M. El
    Chapman, R.
    Charles, L.
    Chavas, J.
    Clement, E.
    Cocconi, P.
    Coelli, S.
    Coleman-Smith, P. J.
    Colombo, A.
    Colosimo, S.
    Commeaux, C.
    Conventi, D.
    Cooper, R. J.
    Corsi, A.
    Cortesi, A.
    Costa, L.
    Crespi, F. C. L.
    Cresswell, J. R.
    Cullen, D. M.
    Curien, D.
    Czermak, A.
    Delbourg, D.
    Depalo, R.
    Descombes, T.
    Desesquelles, P.
    Detistov, P.
    Diarra, C.
    Didierjean, F.
    Dimmock, M. R.
    Doan, Q. T.
    Domingo-Pardo, C.
    Doncel, M.
    Dorangeville, F.
    Dosme, N.
    Drouen, Y.
    Duchêne, G.
    Dulny, B.
    Eberth, J.
    Edelbruck, P.
    Egea, J.
    Engert, T.
    Erduran, M. N.
    Erturk, S.
    Fanin, C.
    Fantinel, S.
    Farnea, E.
    Faul, T.
    Filliger, M.
    Filmer, F.
    Finck, Ch.
    France, G. de
    Gadea, A.
    Gast, W.
    Geraci, A.
    Gerl, J.
    Gernhauser, R.
    Giannatiempo, A.
    Giaz, A.
    Gibelin, L.
    Givechev, A.
    Goel, N.
    Gonzalez, V.
    Gottardo, A.
    Grave, X.
    Grebosz, J.
    Griffiths, R.
    Grint, A. N.
    Gros, P.
    Guevara, L.
    Gulmini, M.
    Gorgen, A.
    Ha, H. T. M.
    Habermann, T.
    Harkness, L. J.
    Harroch, H.
    Hauschild, K.
    He, C.
    Hernandez-Prieto, A.
    Hervieu, B.
    Hess, H.
    Huyuk, T.
    Ince, E.
    Isocrate, R.
    Jaworski, G.
    Johnson, A.
    Jolie, J.
    Jones, P.
    Jonson, B.
    Joshi, P.
    Judson, D. S.
    Jungclaus, A.
    Kaci, M.
    Karkour, N.
    Karolak, M.
    Karkour, A.
    Kebbiri, M.
    Kempley, R. S.
    Khaplanov, A.
    Klupp, S.
    Kogimtzis, M.
    Kojouharov, I.
    Korichi, A.
    Korten, W.
    Kroll, Th.
    Krucken, R.
    Kurz, N.
    Ky, B. Y.
    Labiche, M.
    Lafay, X.
    Lavergne, L.
    Lazarus, I. H.
    Leboutelier, S.
    Lefebvre, F.
    Legay, E.
    Legeard, L.
    Lelli, F.
    Lenzi, S. M.
    Leoni, S.
    Lermitage, A.
    Lersch, D.
    Leske, J.
    Letts, S. C.
    Lhenoret, S.
    Lieder, R. M.
    Linget, D.
    Ljungvall, J.
    Lopez-Martens, A.
    Lotode, A.
    Lunardi, S.
    Maj, A.
    Marel, J. van der
    Mariette, Y.
    Marginean, N.
    Marginean, R.
    Maron, G.
    Mather, A. R.
    Meczynski, W.
    Mendez, V.
    Medina, P.
    Melon, B.
    Menegazzo, R.
    Mengoni, D.
    Merchan, E.
    Mihailescu, L.
    Michelagnoli, C.
    Mierzejewski, J.
    Milechina, L.
    Million, B.
    Mitev, K.
    Molini, P.
    Montanari, D.
    Moon, S.
    Morbiducci, F.
    Moro, R.
    Morrall, P. S.
    Möller, O.
    Nannini, A.
    Napoli, D. R.
    Nelson, L.
    Nespolo, M.
    Ngo, V. L.
    Nicoletto, M.
    Nicolini, R.
    Noa, Y. Le
    Nolan, P. J.
    Norman, M.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Obertelli, A.
    Olariu, A.
    Orlandi, R.
    Oxley, D. C.
    Ozben, C.
    Ozille, M.
    Oziol, C.
    Pachoud, E.
    Palacz, M.
    Palin, J.
    Pancin, J.
    Parisel, C.
    Pariset, P.
    Pascovici, G.
    Peghin, R.
    Pellegri, L.
    Perego, A.
    Perrier, S.
    Petcu, M.
    Petkov, P.
    Petrache, C.
    Pierre, E.
    Pietralla, N.
    Pietri, S.
    Pignanelli, M.
    Piqueras, I.
    Podolyak, Z.
    Pouhalec, P. Le
    Pouthas, J.
    Pugnere, D.
    Pucknell, V. F. E.
    Pullia, A.
    Quintana, B.
    Raine, R.
    Rainovski, G.
    Ramina, L.
    Rampazzo, G.
    Rana, G. La
    Rebeschini, M.
    Recchia, F.
    Redon, N.
    Reese, M.
    Reiter, P.
    Regan, P. H.
    Riboldi, S.
    Richer, M.
    Rigato, M.
    Rigby, S.
    Ripamonti, G.
    Robinson, A. P.
    Robin, J.
    Roccaz, J.
    Ropert, J. -A
    Rosse, B.
    Rossi Alvarez, C.
    Rosso, D.
    Rubio, B.
    Rudolph, D.
    Saillant, F.
    Sahin, E.
    Salomon, F.
    Salsac, M. -D
    Salt, J.
    Salvato, G.
    Sampson, J.
    Sanchis, E.
    Santos, C.
    Schaffner, H.
    Schlarb, M.
    Scraggs, D. P.
    Seddon, D.
    Senyigit, M.
    Sigward, M. -H
    Simpson, G.
    Simpson, J.
    Slee, M.
    Smith, J. F.
    Sona, P.
    Sowicki, B.
    Spolaore, P.
    Stahl, C.
    Stanios, T.
    Stefanova, E.
    Stezowski, O.
    Strachan, J.
    Suliman, G.
    Söderström, Pär-Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Tain, J. L.
    Tanguy, S.
    Tashenov, S.
    Theisen, Ch.
    Thornhill, J.
    Tomasi, F.
    Toniolo, N.
    Touzery, R.
    Travers, B.
    Triossi, A.
    Tripon, M.
    Tun-Lanoe, K. M. M.
    Turcato, M.
    Unsworth, C.
    Ur, C. A.
    Valiente-Dobon, J. J.
    Vandone, V.
    Vardaci, E.
    Venturelli, R.
    Veronese, F.
    Veyssiere, Ch.
    Viscione, E.
    Wadsworth, R.
    Walker, P. M.
    Warr, N.
    Weber, C.
    Weisshaar, D.
    Wells, D.
    Wieland, O.
    Wiens, A.
    Wittwer, G.
    Wollersheim, H. J.
    Zocca, F.
    Zamfir, N. V.
    Zieblinski, M.
    Zucchiatti, A.
    AGATA -Advanced GAmma Tracking Array2012In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 668, p. 26-58Article in journal (Refereed)
    Abstract [en]

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  • 2.
    Andersson, Peter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Rathore, Vikram
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Senis, Lorenzo
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Anastasiadis, Anastasios
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Atak, Haluk
    Hacettepe University.
    Holcombe, Scott
    OECD Halden Reactor Project.
    Håkansson, Ane
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jansson, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Simulation of the response of a segmented High-Purity Germanium detector for gamma emission tomography of nuclear fuelIn: Article in journal (Other academic)
    Abstract [en]

    Irradiation testing of nuclear fuel is routinely performed in nuclear test reactors. For qualification and licensing of Accident Tolerant Fuels or Generation IV reactor fuels, an extensive increase in irradiation testing is foreseen in order to fill the gaps of existing validation data, both in normal operational conditions and in order to identify operational limits.

    Gamma Emission Tomography (GET) has been demonstrated as a viable technique for studies of the behavior of irradiated nuclear fuel, e.g. measurement of fission gas release and inspection of fuel behavior under Loss-Of-Coolant Accident conditions. In this work, the aim is to improve the technique of GET for irradiated nuclear fuel by developing a detector concept for an improved tomography system that allows for a higher spatial resolution and/or faster interrogation.

    We present the working principles of a novel concept for gamma emission tomography using a segmented High Purity Germanium (HPGe) detector. The performance of this concept was investigated using the Monte Carlo particle transport code MCNP. In particular, the data analysis of the proposed detector was evaluated, and the performance, in terms of full energy efficiency and localization failure rate, has been evaluated.

    We concluded that the segmented HPGe detector has an advantageous performance as compared to the traditional single-channel detector systems. Due to the scattering nature of gamma rays, a trade-off is presented between efficiency and cross-talk; however, the performance is nevertheless a substantial improvement over the currently used single-channel HPGe detector systems.

  • 3. Andgren, K.
    et al.
    Ganioğlu, E.
    Cederwall, B.
    Wyss, R.
    Bhattacharyya, S.
    Brown, J. R.
    Angelis, G. de
    France, G. de
    Dombrádi, Zs.
    Gál, J.
    Hadinia, B.
    Johnson, A.
    Johnston-Theasby, F.
    Jungclaus, A.
    Khaplanov, A.
    Kownacki, J.
    Lagergren, K.
    Rana, G. La
    Molnár, J.
    Moro, R.
    Singh, B. S. Nara
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Sandzelius, M.
    Scheurer, J. -N
    Sletten, G.
    Sohler, D.
    Timár, J.
    Trotta, M.
    Valiente-Dobón, J. J.
    Vardaci, E.
    Wadsworth, R.
    Williams, S.
    Low-spin collective behavior in the transitional nuclei $^{86,88}\mathrm{Mo}$2007In: Physical Review C, Vol. 76, no 1Article in journal (Refereed)
  • 4. Assie, M.
    et al.
    Scarpaci, J. A.
    Lacroix, D.
    Angelique, J. C.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    Catford, W. N.
    Chabot, M.
    Chatterjee, A.
    Fallot, M.
    Iwasaki, H.
    Marechal, F.
    Monrozeau, C.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Petrache, C.
    Skaza, F.
    Tuna, T.
    Neutron correlations in 6He viewed through nuclear break-up2010In: Modern Physics Letters A, ISSN 0217-7323, E-ISSN 1793-6632, Vol. 25, no 21-23, p. 1846-1849Article in journal (Refereed)
    Abstract [en]

    Nuclear break-up as a tool to study neutron correlations is investigated both theoretically and experimentally. First a time dependent theory going beyond mean field has been developed and shows that correlations between nucleons can be probed through nuclear break-up. Secondly, nuclear break-up of He-6 on Pb-208 target was studied at 20 A.MeV using a secondary beam of He-6 produced by the SPIRAL facility at GANIL. From the correlation function, a strong contribution of the di-neutron configuration of He-6 is found.

  • 5. Assié, M.
    et al.
    Scarpaci, J. A.
    Lacroix, D.
    Angélique, J. C.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    Catford, W. N.
    Chabot, M.
    Chatterjee, A.
    Fallot, M.
    Iwasaki, H.
    Maréchal, F.
    Mengoni, D.
    Monrozeau, C.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Petrache, C.
    Skaza, F.
    Tuna, T.
    Neutron correlations in 6He viewed through nuclear break-up2009In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 42, no 3, p. 441-446Article in journal (Refereed)
    Abstract [en]

    The nuclear break-up of He-6 on a Pb-208 target was studied at 20 A MeV using a secondary beam of He-6 produced by the SPIRAL facility at GANIL. alpha-particles were detected in coincidence with two neutrons with a large angular coverage and the reaction mechanism was identified. From the distribution of the relative angles between the two neutrons the correlation function was extracted. It shows a strong correlation at small relative angles attributed to the contribution of the di-neutron configuration of He-6.

  • 6. Ataç, A.
    et al.
    Kaşkaş, A.
    Akkoyun, S.
    Şenyiğit, M.
    Hüyük, T.
    Kara, S. O.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Discrimination of gamma rays due to inelastic neutron scattering in AGATA2009In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 607, no 3, p. 554-563Article in journal (Refereed)
    Abstract [en]

    Possibilities of discriminating neutrons and γ rays in the AGATA γ -ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and γ rays from the center of AGATA. Three different methods were developed and tested in order to find “fingerprints” of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1–5 MeV and 10 γ rays with energies between 150 and 1450 keV, the peak-to-background ratio at a γ -ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

  • 7. Blazhev, A
    et al.
    Braun, N
    Grawe, H
    Boutachkov, P
    Singh, B S Nara
    Brock, T
    Liu, Zh
    Wadsworth, R
    Górska, M
    Jolie, J
    Nowacki, F
    Pietri, S
    Domingo-Pardo, C
    Kojouharov, I
    Caceres, L
    Engert, T
    Farinon, F
    Gerl, J
    Goel, N
    Grȩbosz, J
    Hoischen, R
    Kurz, N
    Nociforo, C
    Prochazka, A
    Schaffner, H
    Steer, S
    Weick, H
    Wollersheim, H-J
    Ataç, A
    Bettermann, L
    Eppinger, K
    Faestermann, T
    Finke, F
    Geibel, K
    Hinke, C
    Gottardo, A
    Ilie, G
    Iwasaki, H
    KrÃŒcken, R
    Merchan, E
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    PfÃŒtzner, M
    Podolyák, Zs
    Regan, P
    Reiter, P
    Rinta-Antila, S
    Rudolph, D
    Scholl, C
    Söderström, P-A
    Warr, N
    Woods, P
    High-energy excited states in 98 Cd2010In: Journal of Physics: Conference Series, Vol. 205, no 1Article in journal (Refereed)
    Abstract [en]

    In 98 Cd a new high-energy isomeric γ -ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E 2 and E 4 strength for the two decay branches of the isomer. Preliminary results on the 98 Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100 Sn are discussed.

  • 8. Boso, A.
    et al.
    Lenzi, S. M.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Recchia, F.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Bonnard, J.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Aydin, S.
    Aksaray Univ, Dept Phys, Aksaray, Turkey..
    Bentley, M. A.
    Univ York, York, N Yorkshire, England..
    Cederwall, B.
    Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Clement, E.
    GANIL, Caen, France..
    De France, G.
    GANIL, Caen, France..
    Di Nitto, A.
    Dipartimento Sci Fis, Naples, Italy.;Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Dijon, A.
    GANIL, Caen, France..
    Doncel, M.
    Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ghazi-Moradi, F.
    Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Gottardo, A.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Padua, Italy..
    Henry, T.
    Univ York, York, N Yorkshire, England..
    Huyuk, T.
    IFIC CSIC, Valencia, Spain..
    Jaworski, G.
    Warsaw Univ, Heavy Ion Lab, Warsaw, Poland..
    John, P. R.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Juhasz, K.
    Univ Debrecen, H-4032 Debrecen, Hungary..
    Kuti, I.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Melon, B.
    Dipartimento Fis, Florence, Italy.;Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy..
    Mengoni, D.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Michelagnoli, C.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.;Ist Nazl Fis Nucl, Sez Padova, Padua, Italy..
    Modamio, V.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Padua, Italy..
    Napoli, D. R.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Padua, Italy..
    Nyako, B. M.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Nyberg, J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Warsaw Univ, Heavy Ion Lab, Warsaw, Poland..
    Valiente-Dobon, J. J.
    Isospin Symmetry Breaking In Mirror Nuclei Mg-23-Na-232017In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 48, no 3, p. 313-318Article in journal (Refereed)
    Abstract [en]

    Mirror energy differences (MED) are a direct consequence of isospin symmetry breaking. Moreover, the study of MED has proved to give valuable information of several nuclear structure properties. We present the results of an experiment performed in GANIL to study the MED in mirror nuclei Mg-23-Na-23 up to high spin. The experimental values are compared with state-of-the-art shell model calculations. This permits to enlighten several nuclear structure properties, such as the way in which the nucleons alignment proceeds, the radius variation with J, the role of the spin-orbit interaction and the importance of isospin symmetry breaking terms of nuclear origin.

  • 9.
    Boso, A.
    et al.
    Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England;INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Lenzi, S. M.
    INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Recchia, F.
    INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Bonnard, J.
    Univ Paris Saclay, Univ Paris Sud, Inst Phys Nucl, IN2P3,CNRS, F-91405 Orsay, France;INFN, Sez Padova, I-135131 Padua, Italy.
    Zuker, A. P.
    IPHC, F-67000 Strasbourg, France;Univ Strasbourg, F-67000 Strasbourg, France;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Aydin, S.
    Aksaray Univ, Dept Phys, TR-68100 Aksaray, Turkey.
    Bentley, M. A.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Cederwall, B.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
    Clement, E.
    CNRS, CEA, GANIL, DRF,IN2P3, F-14076 Caen, France.
    de France, G.
    CNRS, CEA, GANIL, DRF,IN2P3, F-14076 Caen, France.
    Di Nitto, A.
    INFN, Sez Napoli, I-80126 Naples, Italy;Dipartimento Fis, I-80126 Naples, Italy;Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.
    Dijon, A.
    CNRS, CEA, GANIL, DRF,IN2P3, F-14076 Caen, France.
    Doncel, M.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
    Ghazi-Moradi, F.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
    Gadea, A.
    Univ Valencia, IFIC, CSIC, E-46980 Valencia, Spain.
    Gottardo, A.
    INFN, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Henry, T.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Huyuk, T.
    Univ Valencia, IFIC, CSIC, E-46980 Valencia, Spain.
    Jaworski, G.
    Warsaw Univ, Heavy Ion Lab, PL-02093 Warsaw, Poland.
    John, P. R.
    INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Juhasz, K.
    Hung Acad Sci, Inst Nucl Res ATOMKI, H-4001 Debrecen, Hungary.
    Kuti, I
    Hung Acad Sci, Inst Nucl Res ATOMKI, H-4001 Debrecen, Hungary.
    Melon, B.
    INFN, Sez Firenze, I-50019 Florence, Italy;Dipartimento Fis, I-50019 Florence, Italy.
    Mengoni, D.
    INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Michelagnoli, C.
    INFN, Sez Padova, I-135131 Padua, Italy;Univ Padua, Dipartimento Fis & Astron, I-135131 Padua, Italy.
    Modamio, V
    INFN, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Napoli, D. R.
    INFN, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Nyako, B. M.
    Hung Acad Sci, Inst Nucl Res ATOMKI, H-4001 Debrecen, Hungary.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Warsaw Univ, Heavy Ion Lab, PL-02093 Warsaw, Poland.
    Timar, J.
    Hung Acad Sci, Inst Nucl Res ATOMKI, H-4001 Debrecen, Hungary.
    Valiente-Dobon, J. J.
    INFN, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Neutron Skin Effects in Mirror Energy Differences: The Case of Mg-23-Na-232018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 3, article id 032502Article in journal (Refereed)
    Abstract [en]

    Energy differences between analogue states in the T = 1/2 Mg-23-Na-23 mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetrybreaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the f(7/2) shell. It is shown that the introduction of a schematic ISB interaction of the same type of that used in the f(7/2) shell is needed to reproduce the data. An alternative novel description, applied here for the first time, relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon potential. This analysis provides two important results: (i) The mirror energy differences give direct insight into the nuclear skin; (ii) the skin changes along the rotational bands are strongly correlated with the difference between the neutron and proton occupations of the s(1/2) "halo" orbit.

  • 10.
    Boso, A.
    et al.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy;Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England.
    Milne, S. A.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Bentley, M. A.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Recchia, F.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Lenzi, S. M.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Rudolph, D.
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Labiche, M.
    Sci Tech Daresbury, UKRI STFC Daresbuty Lab, Daresbury WA4 4AD, England.
    Pereira-Lopez, X.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Afara, S.
    King Saud Univ, POB 2454, Riyadh 11451, Saudi Arabia.
    Ameil, F.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Arici, T.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Justus Liebig Univ Giessen, D-35392 Giessen, Germany.
    Aydin, S.
    Aksaray Univ, TR-68100 Aksaray Adana Yolu, Saglik Aksaray, Turkey.
    Axiotis, M.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Barrientos, D.
    CERN, CH-1211 Geneva 23, Switzerland.
    Benzoni, G.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
    Birkenbach, B.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Boston, A. J.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Boston, H. C.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Boutachkov, P.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Bracco, A.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy;Univ Milan, Dept Phys, I-20133 Milan, Italy.
    Bruce, A. M.
    Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GJ, E Sussex, England.
    Bruyneel, B.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France.
    Cederwall, B.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
    Clement, E.
    GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France.
    Cortes, M. L.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Cullen, D. M.
    Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England.
    Desesquelles, P.
    Univ Paris Sud, CSNSM, Bat 104,Orsay Campus, F-91405 Orsay, France;Univ Paris Saclay, CNRS, IN2P3, Bat 104,Orsay Campus, F-91405 Orsay, France.
    Dombradi, Zs
    Hungarian Acad Sci, ATOMKI, Inst Nucl Res, POB 51, H-4001 Debrecen, Hungary.
    Domingo-Pardo, C.
    Univ Valencia, CSIC, IFIC, E-46980 Valencia, Spain.
    Eberth, J.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Fahlander, C.
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Gelain, M.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Gonzalez, V
    Univ Valencia, Dept Ingn Elect, Valencia, Spain.
    John, P. R.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Gerl, J.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Golubev, P.
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Gorska, M.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Gottardo, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS, IN2P3,Inst Phys Nucl, F-91405 Orsay, France.
    Grahna, T.
    Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland.
    Grassi, L.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Habermann, T.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Harkness-Brennan, L. J.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Henry, T. W.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Hess, H.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Kojouharov, I
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Korten, W.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France.
    Lalovic, N.
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Lettmann, M.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Lizarazo, C.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Louchart-Henning, C.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Menegazzo, R.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Mengoni, D.
    Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Merchan, E.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Michelagnoli, C.
    GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France.
    Million, B.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
    Modamio, V
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Moeller, T.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Napoli, D. R.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics. Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden.
    Singh, B. S. Nara
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England;Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England.
    Pai, H.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Pietralla, N.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Pietri, S.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Podolyak, Zs
    Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
    Perez Vidal, R. M.
    Univ Valencia, CSIC, IFIC, E-46980 Valencia, Spain.
    Pullia, A.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy;Univ Milan, Dept Phys, I-20133 Milan, Italy.
    Ralet, D.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany;GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France.
    Rainovski, G.
    St Kliment Ohridski Univ Sofia, Fac Phys, Sofia 1164, Bulgaria.
    Reese, M.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Reiter, P.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Salsac, M. D.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France.
    Sanchis, E.
    Univ Valencia, Dept Ingn Elect, Valencia, Spain.
    Sarmiento, L. G.
    Lund Univ, Dept Phys, S-22100 Lund, Sweden.
    Schaffner, H.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany.
    Scruton, L. M.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Singh, P. P.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Indian Inst Technol Ropar, Dept Phys, Rupnagar 140001, Punjab, India.
    Stahl, C.
    GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
    Uthayakumaar, S.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Valiente-Dobon, J. J.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Wieland, O.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
    Isospin dependence of electromagnetic transition strengths among an isobaric triplet2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 797, article id UNSP 134835Article in journal (Refereed)
    Abstract [en]

    Electric quadrupole matrix elements, M-p, for the J(pi) = 2(+) -> 0(+), Delta T = 0, T = 1 transitions across the A = 46 isobaric multiplet Cr-46-V-46-Ti-46 have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M-p with respect to T-z. Pairs of nuclei in the T = 1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M-p values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr-46 and Ti-46; (ii) a "stretched target" technique was adopted here, for the first time, for lifetime measurements in V-46 and Ti-46. A constant value of M-p across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T = 1 isospin triplets is presented. (C) 2019 The Author(s). Published by Elsevier B.V.

  • 11. Boutachkov, P
    et al.
    Braun, N
    Brock, T
    Singh, B S Nara
    Blazhev, A
    Liu, Z
    Wadsworth, R
    Górska, M
    Grawe, H
    Pietri, S
    Domingo-Pardo, C
    Faestermann, T
    Farinon, F
    Grebosz, J
    Kojuharov, I
    Kurz, N
    Nociforo, C
    Podolyák, Zs
    Prochazka, A
    Steer, S
    Cáceres, L
    Engert, T
    Gerl, J
    Goel, N
    Hoischen, R
    Schaffner, H
    Weick, H
    Wollersheim, H-J
    Bettermann, L
    Finke, F
    Geibel, K
    Ilie, G
    Iwasaki, H
    Jolie, J
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Reiter, P
    Scholl, C
    Söderström, P-A
    Warr, N
    Eppinger, K
    Gottardo, A
    Hinke, C
    KrÃŒcken, R
    PfÃŒtzner, M
    Regan, P
    Rinta-Antila, S
    Rudolph, D
    Woods, P
    Ataç, A
    Merchán, E
    Isomer and β -decay spectroscopy of T z =1 isotopes below the N=Z=50 shell gap2011In: Journal of Physics: Conference Series, Vol. 312, no 9Article in journal (Refereed)
    Abstract [en]

    The RISING setup at the GSI-FRS facility was used to investigate the isomer and beta decays in N Z 50 Cd, Ag and Pd isotopes. A preliminary analysis of the data has revealed new results on the Tz=1, 94 Pd, 96 Ag and 98 Cd isotopes. In 94 Pd a new high-spin isomer was observed, whilst in 96 Ag 3 new isomeric states were identified, including core-excited states. In 98 Cd a new high-energy isomeric γ-ray transition is observed, thus enabling us to confirm the previous spin assignment for the core-excited 12 + isomer.

  • 12. Boutachkov, P.
    et al.
    Gorska, M.
    Grawe, H.
    Blazhev, A.
    Braun, N.
    Brock, T. S.
    Liu, Z.
    Singh, B. S. Nara
    Wadsworth, R.
    Pietri, S.
    Domingo-Pardo, C.
    Kojouharov, I.
    Caceres, L.
    Engert, T.
    Farinon, F.
    Gerl, J.
    Goel, N.
    Grbosz, J.
    Hoischen, R.
    Kurz, N.
    Nociforo, C.
    Prochazka, A.
    Schaffner, H.
    Steer, S. J.
    Weick, H.
    Wollersheim, H. -J
    Faestermann, T.
    Podolyak, Zs.
    Rudolph, D.
    Atac, A.
    Bettermann, L.
    Eppinger, K.
    Finke, F.
    Geibel, K.
    Gottardo, A.
    Hinke, C.
    Ilie, G.
    Iwasaki, H.
    Jolie, J.
    Kruecken, R.
    Merchan, E.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pfuetzner, M.
    Regan, P. H.
    Reiter, P.
    Rinta-Antila, S.
    Scholl, C.
    Söderström, Per-Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Warr, N.
    Woods, P. J.
    Nowacki, F.
    Sieja, K.
    High-spin isomers in (96)Ag: Excitations across the Z=38 and Z=50, N=50 closed shells2011In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 84, no 4, p. 044311-Article in journal (Refereed)
    Abstract [en]

    Excited states in (96)Ag were populated in fragmentation of an 850-MeV/u (124)Xe beam on a 4-g/cm(2) Be target. Three new high-spin isomers were identified and the structure of the populated states was investigated. The level scheme of (96)Ag was established, and a spin parity of (13(-)), (15(+)), and (19(+)) was assigned to the new isomeric states. Shell-model calculations were performed in various model spaces, including pi nu(p(1/2), g(9/2), f(5/2), p(3/2)) and the large-scale shell-model space pi nu(gds), to account for the observed parity changing M2 and E3 transitions from the (13(-)) isomer and the E2 and E4 transitions from the (19(+)) core-excited isomer, respectively. The calculated level schemes and reduced transition strengths are found to be in very good agreement with the experiment.

  • 13. Brock, T. S.
    et al.
    Nara Singh, B. S.
    Boutachkov, P.
    Braun, N.
    Blazhev, A.
    Liu, Z.
    Wadsworth, R.
    Górska, M.
    Grawe, H.
    Pietri, S.
    Domingo-Pardo, C.
    Rudolph, D.
    Steer, S. J.
    Ataç, A.
    Bettermann, L.
    Cáceres, L.
    Engert, T.
    Eppinger, K.
    Faestermann, T.
    Farinon, F.
    Finke, F.
    Geibel, K.
    Gerl, J.
    Gernhäuser, R.
    Goel, N.
    Gottardo, A.
    Grębosz, J.
    Hinke, C.
    Hoischen, R.
    Ilie, G.
    Iwasaki, H.
    Jolie, J.
    Kaşkaş, A.
    Kojuharov, I.
    Krücken, R.
    Kurz, N.
    Merchán, E.
    Nociforo, C.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pfützner, M.
    Prochazka, A.
    Podolyák, Zs.
    Regan, P. H.
    Reiter, P.
    Rinta-Antila, S.
    Schaffner, H.
    Scholl, C.
    Söderström, P. -A
    Warr, N.
    Weick, H.
    Wollersheim, H. -J
    Woods, P. J.
    Observation of a new high-spin isomer in $^{94}\mathrm{Pd}$2010In: Physical Review C, Vol. 82, no 6Article in journal (Refereed)
  • 14. Carlson, R. F.
    et al.
    Ingemarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics. Uppsala University, The Svedberg Laboratory.
    Lantz, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics, High Energy Physics.
    Arendse, G.J.
    Auce, Agris
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Cox, A.J.
    Föertsch, S.V.
    Jacobs, N. M.
    Johansson, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Peavy, Joel
    Renberg, Per-Ulf
    Uppsala University, The Svedberg Laboratory.
    Sundberg, Olle
    Uppsala University, The Svedberg Laboratory.
    Stander, J. A.
    Steyn, G. F.
    Tibell, Gunnar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Zorro, Rogerio
    Uppsala University, The Svedberg Laboratory.
    A method for measuring light ion reaction cross-sections2005In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 547, no 2-3, p. 541-554Article in journal (Refereed)
    Abstract [en]

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20 50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle.

  • 15. Cederwall, B.
    et al.
    Moradi, F. Ghazi
    Back, T.
    Johnson, A.
    Blomqvist, J.
    Clement, E.
    de France, G.
    Wadsworth, R.
    Andgren, K.
    Lagergren, K.
    Dijon, A.
    Jaworski, G.
    Liotta, R.
    Qi, C.
    Nyako, B. M.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Al-Azri, H.
    Algora, A.
    de Angelis, G.
    Atac, A.
    Bhattacharyya, S.
    Brock, T.
    Brown, J. R.
    Davies, P.
    Di Nitto, A.
    Dombradi, Zs.
    Gadea, A.
    Gal, J.
    Hadinia, B.
    Johnston-Theasby, F.
    Joshi, P.
    Juhasz, K.
    Julin, R.
    Jungclaus, A.
    Kalinka, G.
    Kara, S. O.
    Khaplanov, A.
    Kownacki, J.
    La Rana, G.
    Lenzi, S. M.
    Molnar, J.
    Moro, R.
    Napoli, D. R.
    Singh, B. S. Nara
    Persson, A.
    Recchia, F.
    Sandzelius, M.
    Scheurer, J. -N
    Sletten, G.
    Sohler, D.
    Söderström, Pär-Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Taylor, M. J.
    Timar, J.
    Valiente-Dobon, J. J.
    Vardaci, E.
    Williams, S.
    Evidence for a spin-aligned neutron-proton paired phase from the level structure of Pd-922011In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 469, no 7328, p. 68-71Article in journal (Refereed)
    Abstract [en]

    Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work(1) that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing(2-6), in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus Pd-92. Gamma rays emitted following the Ni-58(Ar-36,2n)Pd-92 fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution c-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction(2-6). We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling(7,8)) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

  • 16. Chatterjee, A.
    et al.
    Navin, A.
    Shrivastava, A.
    Bhattacharyya, S.
    Rejmund, M.
    Keeley, N.
    Nanal, V.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pillay, R. G.
    Ramachandran, K.
    Stefan, I.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    de France, G.
    Gupta, D.
    Labiche, M.
    Lemasson, A.
    Lemmon, R.
    Raabe, R.
    Scarpaci, J. A.
    Simenel, C.
    Timis, C.
    $1n$ and $2n$ Transfer With the Borromean Nucleus $^{6}\mathrm{He}$ Near the Coulomb Barrier2008In: Physical Review Letters, Vol. 101, no 3Article in journal (Refereed)
  • 17.
    Clement, E.
    et al.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Michelagnoli, C.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    de France, G.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Li, H. J.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Lemasson, A.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Dejeon, C. Barthe
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Beuzard, M.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Bougault, P.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Cacitti, J.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Foucher, J. -L
    Fremont, G.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Gangnant, P.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Goupil, J.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Houarner, C.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Jean, M.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Lefevre, A.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Legeard, L.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Legruel, F.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Maugeais, C.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Menager, L.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Menard, N.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Munoz, H.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Ozille, M.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Raine, B.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Ropert, J. A.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Saillant, F.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Spitaels, C.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Tripon, M.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Vallerand, Ph.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Voltolini, G.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France..
    Korten, W.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Salsac, M. -D
    Theisen, Ch.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Zielinska, M.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Joannem, T.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Karolak, M.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Kebbiri, M.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Lotode, A.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Touzery, R.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Walter, Ch.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Korichi, A.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Ljungvall, J.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Lopez-Martens, A.
    CEA, DRF, CNRS, IN2P3,GANIL, F-14076 Caen 05, France.;Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Ralet, D.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Dosme, N.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Grave, X.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Karkour, N.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Lafay, X.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Legay, E.
    Univ Paris Saclay, Univ Paris Sud, IN2P3, CSNSM,CNRS, F-91405 Orsay, France..
    Kojouharov, I.
    GSI Helmholtzzentrum Schwerionenforsch mbH, Darmstadt, Germany..
    Domingo-Pardo, C.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain..
    Gadea, A.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain..
    Perez-Vidal, R. M.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain..
    Civera, J. V.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain..
    Birkenbach, B.
    Univ Cologne, IKP, D-50937 Cologne, Germany..
    Eberth, J.
    Univ Cologne, IKP, D-50937 Cologne, Germany..
    Hess, H.
    Univ Cologne, IKP, D-50937 Cologne, Germany..
    Lewandowski, L.
    Univ Cologne, IKP, D-50937 Cologne, Germany..
    Reiter, P.
    Univ Cologne, IKP, D-50937 Cologne, Germany..
    Nannini, A.
    INFN Sez Firenze, IT-50019 Sesto Fiorentino, Italy..
    De Angelis, G.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Jaworski, G.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    John, P.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Napoli, D. R.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Valiente-Dobon, J. J.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Barrientos, D.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Bortolato, D.
    INFN Lab Nazl Legnaro, IT-35020 Legnaro, Italy..
    Benzoni, G.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Bracco, A.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Brambilla, S.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Camera, F.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Crespi, F. C. L.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Leoni, S.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Million, B.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Pullia, A.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Wieland, O.
    INFN Sez Milano, IT-20133 Milan, Italy..
    Bazzacco, D.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Lenzi, S. M.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Lunardi, S.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Menegazzo, R.
    INFN Sez Padova, I-35131 Padua, Italy..
    Mengoni, D.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Recchia, F.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Bellato, M.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Isocrate, R.
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Canet, F. J. Egea
    INFN Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy..
    Didierjean, F.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Duchene, G.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Baumann, R.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Brucker, M.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Dangelser, E.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Filliger, M.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Friedmann, H.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Gaudiot, G.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Grapton, J. -N
    Kocher, H.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Mathieu, C.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Sigward, M. -H
    Thomas, D.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Veeramootoo, S.
    Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France..
    Dudouet, J.
    Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France..
    Stezowski, O.
    Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France..
    Aufranc, C.
    Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France..
    Aubert, Y.
    Univ Paris Saclay, Univ Paris Sud, CNRS, IN2P3,Inst Phys Nucl Orsay, F-91405 Orsay, France..
    Labiche, M.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Simpson, J.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Burrows, I.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Coleman-Smith, P. J.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Grant, A.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Lazarus, I. H.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Morrall, P. S.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Pucknell, V. F. E.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Boston, A.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France.;Univ Liverpool, Oliver Lodge Lab, Oxford St, Liverpool L69 7ZE, Merseyside, England..
    Judson, D. S.
    Univ Liverpool, Oliver Lodge Lab, Oxford St, Liverpool L69 7ZE, Merseyside, England..
    Lalovic, N.
    GSI Helmholtzzentrum Schwerionenforsch mbH, Darmstadt, Germany.;Lund Univ, Dept Phys, Lund, Sweden..
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Collado, J.
    Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain..
    Gonzalez, V.
    Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain..
    Kuti, I.
    Hungarian Acad Sci, Inst Nucl Res, Pf 51, H-4001 Debrecen, Hungary..
    Nyako, B. M.
    Hungarian Acad Sci, Inst Nucl Res, Pf 51, H-4001 Debrecen, Hungary..
    Maj, A.
    Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland..
    Rudigier, M.
    Univ Surrey, Dept Phys, Guildford, Surrey, England..
    Conceptual design of the AGATA 1 π array at GANIL2017In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 855, p. 1-12Article in journal (Refereed)
    Abstract [en]

    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l π array are presented.

  • 18. Crespi, F. C. L.
    et al.
    Avigo, R.
    Camera, F.
    Benzoni, G.
    Blasi, N.
    Bottoni, S.
    Bracco, A.
    Brambilla, S.
    Casati, P.
    Coniglio, F.
    Corsi, A.
    Giaz, A.
    Leoni, S.
    Million, B.
    Nicolini, R.
    Pellegri, L.
    Riboldi, S.
    Vandone, V.
    Wieland, O.
    Akkoyun, S.
    Atac, A.
    Bazzacco, D.
    Bellato, M.
    Bortolato, D.
    Calore, E.
    Ciemala, M.
    Farnea, E.
    Gadea, A.
    Gottardo, A.
    Kmiecik, M.
    Maj, A.
    Mengoni, D.
    Michelagnoli, C.
    Montanari, D.
    Napoli, D. R.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Recchia, F.
    Sahin, E.
    Söderström, P. A.
    Ur, C.
    Dobon, J. J. Valiente
    Response of AGATA segmented HPGe detectors to gamma-rays up to 15.1 MeV2011In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 2011, p. 1147-1149Conference paper (Refereed)
  • 19.
    Delafosse, C.
    et al.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Verney, D.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Marevic, P.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France;CEA, DAM, DIF, F-91297 Arpajon, France.
    Gottardo, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Michelagnoli, C.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Lemasson, A.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Goasduff, A.
    Inst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Ljungvall, J.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    Clement, E.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Korichi, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    De Angelis, G.
    Inst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Andreoiu, C.
    Simon Fraser Univ, Dept Chem, Burnaby, BC V5A S16, Canada.
    Babo, M.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France;CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Boso, A.
    Univ Padua, Dept Fis & Astron, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Didierjean, F.
    Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
    Dudouet, J.
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
    Franchoo, S.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Gadea, A.
    Univ Valencia, CSIC, IFIC, Apartado Oficial 22085, Valencia 46071, Spain.
    Georgiev, G.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    Ibrahim, F.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Jacquot, B.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Konstantinopoulos, T.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    Lenzi, S. M.
    Univ Padua, Dept Fis & Astron, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Maquart, G.
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
    Matea, I
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Mengoni, D.
    Univ Padua, Dept Fis & Astron, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Napoli, D. R.
    Inst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Niksic, T.
    Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, Zagreb 10000, Croatia.
    Olivier, L.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Perez-Vidal, R. M.
    Univ Valencia, CSIC, IFIC, Apartado Oficial 22085, Valencia 46071, Spain.
    Portail, C.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Recchia, F.
    Univ Padua, Dept Fis & Astron, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Redon, N.
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
    Siciliano, M.
    Inst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Stefan, I
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
    Stezowski, O.
    Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France.
    Vretenar, D.
    Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, Zagreb 10000, Croatia.
    Zielinska, M.
    CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France.
    Barrientos, D.
    CERN, CH-1211 Geneva 23, Switzerland.
    Benzoni, G.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
    Birkenbach, B.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Boston, A. J.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Boston, H. C.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Cederwall, B.
    Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden.
    Charles, L.
    Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
    Ciemala, M.
    Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland.
    Collado, J.
    Univ Valencia, Dept Ingn Elect, E-46100 Valencia, Spain.
    Cullen, D. M.
    Univ Manchester, Schuster Lab, Nucl Phys Grp, Manchester M13 9PL, Lancs, England.
    Desesquelles, P.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    de France, G.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Domingo-Pardo, C.
    Univ Valencia, CSIC, IFIC, Apartado Oficial 22085, Valencia 46071, Spain.
    Eberth, J.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Gonzalez, V
    Univ Valencia, Dept Ingn Elect, E-46100 Valencia, Spain.
    Harkness-Brennan, L. J.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Hess, H.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Judson, D. S.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Jungclaus, A.
    CSIC, Inst Estruct Mat, E-28006 Madrid, Spain.
    Korten, W.
    CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France.
    Lefevre, A.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Legruel, F.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Menegazzo, R.
    Univ Padua, Dept Fis & Astron, I-35131 Padua, Italy;Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
    Million, B.
    Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Quintana, B.
    Univ Salamanca, Lab Radiac Ionizantes, E-37008 Salamanca, Spain.
    Ralet, D.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91406 Orsay, France.
    Reiter, P.
    Univ Cologne, Inst Kernphys, Zulpicher Str 77, D-50937 Cologne, Germany.
    Saillant, F.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France.
    Sanchis, E.
    Univ Valencia, Dept Ingn Elect, E-46100 Valencia, Spain.
    Theisen, Ch
    CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France.
    Dobon, J. J. Valiente
    Inst Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the Ni-78 Region: A Hint from Lifetime Measurements2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 19, article id 192502Article in journal (Refereed)
    Abstract [en]

    Lifetime measurements of excited states of the light N = 52 isotones Kr-88, Se-86, and Ge-84 have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2; 2(+)-> 0(+)) and B(E2; 4(+)-> 2(+)) were obtained for the first time for the hard-to-reach 84Ge. While the B(E2; 2(+)-> 0(+) ) values of Kr-88, Se-86 saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g(7/2), 1h(11/2)) space of an inert Ni-78 core, the value obtained for Ge-84 largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N less than or similar to 49, extend beyond N = 50. The onset of collectivity at Z = 32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector rho field in shell-structure evolution.

  • 20. Egea Canet, F. J.
    et al.
    Gonzalez, V.
    Tripon, M.
    Jastrzab, M.
    Triossi, A.
    Gadea, A.
    de France, G.
    Valiente-Dobon, J. J.
    Barrientos, D.
    Sanchis, E.
    Boujrad, A.
    Houarner, C.
    Blaizot, M.
    Bourgault, P.
    de Angelis, G.
    Erduran, M. N.
    Erturk, S.
    Hueyuek, T.
    Jaworski, G.
    Luo, X. L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Modamio, V.
    Moszynski, M.
    Di Nitto, A.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Soderstrom, P. -A
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Wadsworth, R.
    A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors2015In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 62, no 3, p. 1056-1062Article in journal (Refereed)
    Abstract [en]

    This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.

  • 21. Egea Canet, F. J.
    et al.
    Houarner, C.
    Boujrad, A.
    Gonzalez, V.
    Tripon, M.
    Jastrzab, M.
    Triossi, A.
    de France, G.
    Gadea, A.
    Valiente-Dobon, J. J.
    Barrientos, D.
    Sanchis, E.
    Blaizot, M.
    Bourgault, P.
    de Angelis, G.
    Erduran, M. N.
    Erturk, S.
    Hueyuek, T.
    Jaworski, G.
    Luo, X. L.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Modamio, V.
    Moszynski, M.
    Di Nitto, A.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Söderström, P-A
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Wadsworth, R.
    Digital Front-End Electronics for the Neutron Detector NEDA2015In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 62, no 3, p. 1063-1069Article in journal (Refereed)
    Abstract [en]

    This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.

  • 22.
    Ertoprak, A.
    et al.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden.;Istanbul Univ, Fac Sci, Dept Phys, TR-34134 Istanbul, Turkey..
    Cederwall, B.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Jakobsson, U.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Nyako, B. M.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Nyberg, J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Davies, P.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Doncel, M.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    De France, G.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen 5, France..
    Kuti, I.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Napoli, D. R.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Wadsworth, R.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Ghugre, S. S.
    UGC DAE CSR, Consortium Sci Res, Kolkata 700098, India..
    Raut, R.
    UGC DAE CSR, Consortium Sci Res, Kolkata 700098, India..
    Akkus, B.
    Istanbul Univ, Fac Sci, Dept Phys, TR-34134 Istanbul, Turkey..
    Al-Azri, H.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Algora, A.
    Univ Valencia, CSIC, IFIC, Valencia, Spain..
    de Angelis, G.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Atac, A.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Back, T.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Boso, A.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy..
    Clement, E.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen 5, France..
    Debenham, D. M.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England..
    Dombradi, Zs.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Erturk, S.
    Univ Omer Halisdemir, Dept Phys, Fac Sci & Arts, TR-51240 Nigde, Turkey..
    Gadea, A.
    Univ Valencia, CSIC, IFIC, Valencia, Spain..
    Moradi, F. Ghazi
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Gottardo, A.
    Univ Paris Saclay, CNRS, IN2P3, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France..
    Huyuk, T.
    Univ Valencia, CSIC, IFIC, Valencia, Spain..
    Ideguchi, E.
    Osaka Univ, Nucl Phys Res Ctr, Osaka, Japan..
    Jaworski, G.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Li, H.
    Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden..
    Michelagnoli, C.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen 5, France..
    Modamio, V.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Palacz, M.
    Warsaw Univ Technol, Fac Phys, PL-00662 Warsaw, Poland..
    Petrache, C. M.
    Univ Paris Saclay, CNRS, IN2P3, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France..
    Recchia, F.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy..
    Sandzelius, M.
    Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland..
    Siciliano, M.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy.;Univ Padua, Dipartimento Fis & Astron, Padua, Italy..
    Timar, J.
    MTA Atomki, H-4001 Debrecen, Hungary..
    Valiente-Dobon, J. J.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy..
    Xiao, Z. G.
    Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China..
    Lifetime Measurements With The Doppler Shift Attenuation Method Using A Thick Homogeneous Production Target — Verification of the Method2017In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 48, no 3, p. 325-329Article in journal (Refereed)
    Abstract [en]

    Doppler Shift Attenuation Method (DSAM) analysis of excited-state lifetimes normally employs thin production targets mounted on a thick stopper foil ("backing") serving to slow down and stop the recoiling nuclei of interest in a well-defined manner. Use of a thick, homogeneous production target leads to a more complex analysis as it results in a substantial decrease in the energy of the incident projectile which traverses the target with an associated change in the production cross section of the residues as a function of penetration depth. Here, a DSAM lifetime analysis using a thick homogeneous target has been verified using the Doppler broadened lineshapes of gamma rays following the decay of highly excited states in the semi-magic (N = 50) nucleus Ru-94. Lifetimes of excited states in the Ru-94 nucleus have been obtained using a modified version of the LINESHAPE package from the Doppler broadened lineshapes resulting from the emission of the gamma rays, while the residual nuclei were slowing down in the thick (6 mg/cm(2)) metallic Ni-58 target. The results have been validated by comparison with a previous measurement using a different (RDDS) technique.

  • 23.
    Ertoprak, A.
    et al.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden;Istanbul Univ, Fac Sci, Dept Phys, TR-34134 Istanbul, Turkey.
    Cederwall, B.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Qi, C.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Doncel, M.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden;Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
    Jakobsson, U.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden;Univ Helsinki, Dept Chem, POB 3, FIN-00014 Helsinki, Finland.
    Nyako, B. M.
    MTA Atomki, H-4001 Debrecen, Hungary.
    Jaworski, G.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Davies, P.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    de France, G.
    CEA DSM CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France.
    Kuti, I.
    MTA Atomki, H-4001 Debrecen, Hungary.
    Napoli, D. R.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Wadsworth, R.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Ghugre, S. S.
    UGC DAE Consortium Sci Res, Kolkata Ctr, Kolkata 700098, India.
    Raut, R.
    UGC DAE Consortium Sci Res, Kolkata Ctr, Kolkata 700098, India.
    Akkus, B.
    Istanbul Univ, Fac Sci, Dept Phys, TR-34134 Istanbul, Turkey.
    Al Azri, H.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Algora, A.
    MTA Atomki, H-4001 Debrecen, Hungary;Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain.
    de Angelis, G.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Atac, A.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Back, T.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Boso, A.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.
    Clement, E.
    CEA DSM CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France.
    Debenham, D. M.
    Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
    Dombradi, Zs.
    MTA Atomki, H-4001 Debrecen, Hungary.
    Erturk, S.
    Nigde Omer Halisdemir Univ, Sci & Art Fac, Dept Phys, TR-51200 Nigde, Turkey.
    Gadea, A.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain.
    Moradi, F. Ghazi
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Gottardo, A.
    Univ Paris Saclay, CNRS IN2P3, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France.
    Huyuk, T.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain.
    Ideguchi, E.
    Osaka Univ, Nucl Phys Res Ctr, Osaka, Japan.
    Li, H.
    Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
    Michelagnoli, C.
    CEA DSM CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France.
    Modamio, V.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Univ Warsaw, Heavy Ion Lab, Pasteura 5A, PL-02093 Warsaw, Poland.
    Petrache, C. M.
    Univ Paris Saclay, CNRS IN2P3, Ctr Sci Nucl & Sci Mat, F-91405 Orsay, France.
    Recchia, F.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.
    Sandzelius, M.
    Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland.
    Siciliano, M.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Timar, J.
    MTA Atomki, H-4001 Debrecen, Hungary.
    Valiente-Dobon, J. J.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
    Xiao, Z. G.
    Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
    M1 And E2 Transition Rates From Core-Excited States In Semi-Magic Ru-942018In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 54, no 9, article id 145Article in journal (Refereed)
    Abstract [en]

    Lifetimes of high-spin states have been measured in the semi-magic (N = 50) nucleus Ru-94. Excited states in Ru-94 were populated in the Ni-58(Ca-40, 4p)Ru-94* fusion-evaporation reaction at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex. DSAM lifetime analysis was performed on the Doppler broadened line shapes in energy spectra obtained from gamma-rays emitted while the residual nuclei were slowing down in a thick 6 mg/cm(2) metallic Ni-58 target. In total eight excited-state lifetimes in the angular momentum range I = (13-20)h have been measured, five of which were determined for the first time. The corresponding B(M1) and B(E2) reduced transition strengths are discussed within the framework of large-scale shell model calculations to study the contribution of different particle-hole configurations, in particular for analyzing contributions from core-excited configurations.

  • 24. Guastalla, G.
    et al.
    DiJulio, D. D.
    Gorska, M.
    Cederkall, J.
    Boutachkov, P.
    Golubev, P.
    Pietri, S.
    Grawe, H.
    Nowacki, F.
    Sieja, K.
    Algora, A.
    Ameil, F.
    Arici, T.
    Atac, A.
    Bentley, M. A.
    Blazhev, A.
    Bloor, D.
    Brambilla, S.
    Braun, N.
    Camera, F.
    Dombradi, Zs.
    Domingo Pardo, C.
    Estrade, A.
    Farinon, F.
    Gerl, J.
    Goel, N.
    Grebosz, J.
    Habermann, T.
    Hoischen, R.
    Jansson, K.
    Jolie, J.
    Jungclaus, A.
    Kojouharov, I.
    Knoebel, R.
    Kumar, R.
    Kurcewicz, J.
    Kurz, N.
    Lalovic, N.
    Merchan, E.
    Moschner, K.
    Naqvi, F.
    Singh, B. S. Nara
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Nociforo, C.
    Obertelli, A.
    Pfuetzner, M.
    Pietralla, N.
    Podolyak, Z.
    Prochazka, A.
    Ralet, D.
    Reiter, P.
    Rudolph, D.
    Schaffner, H.
    Schirru, F.
    Scruton, L.
    Sohler, D.
    Swaleh, T.
    Taprogge, J.
    Vajta, Zs.
    Wadsworth, R.
    Warr, N.
    Weick, H.
    Wendt, A.
    Wieland, O.
    Winfield, J. S.
    Wollersheim, H. J.
    Coulomb Excitation of Sn-104 and the Strength of the Sn-100 Shell Closure2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 110, no 17, p. 172501-Article in journal (Refereed)
    Abstract [en]

    A measurement of the reduced transition probability for the excitation of the ground state to the first 2(+) state in Sn-104 has been performed using relativistic Coulomb excitation at GSI. Sn-104 is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus Sn-100. The value B(E2; 0(+) -> 2(+)) = 0.10(4) e(2)b(2) is significantly lower than earlier results for Sn-106 and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.

  • 25. Guastalla, G
    et al.
    DiJulio, D D
    Górska, M
    CederkÀll, J
    Boutachkov, P
    Golubev, P
    Pietri, S
    Grawe, H
    Nowacki, F
    Algora, A
    Ameil, F
    Arici, T
    Atac, A
    Bentley, M A
    Blazhev, A
    Bloor, D
    Brambilla, S
    Braun, N
    Camera, F
    Pardo, C Domingo
    Estrade, A
    Farinon, F
    Gerl, J
    Goel, N
    Grȩbosz, J
    Habermann, T
    Hoischen, R
    Jansson, K
    Jolie, J
    Jungclaus, A
    Kojouharov, I
    Knoebel, R
    Kumar, R
    Kurcewicz, J
    Kurz, N
    Lalović, N
    Merchan, E
    Moschner, K
    Naqvi, F
    Singh, B S Nara
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Nociforo, C
    Obertelli, A
    PfÃŒtzner, M
    Pietralla, N
    Podolyák, Z
    Prochazka, A
    Ralet, D
    Reiter, P
    Rudolph, D
    Schaffner, H
    Schirru, F
    Scruton, L
    Swaleh, T
    Taprogge, J
    Wadsworth, R
    Warr, N
    Weick, H
    Wendt, A
    Wieland, O
    Winfield, J S
    Wollersheim, H J
    Analysis and results of the 104 Sn Coulomb excitation experiment2014In: Journal of Physics: Conference Series, Vol. 533, no 1Article in journal (Refereed)
    Abstract [en]

    The analysis of the Coulomb excitation experiment conducted on 104 Sn required a strict selection of the data in order to reduce the large background present in the γ-ray energy spectra and identify the γ-ray peak corresponding to the Coulomb excitation events. As a result the B(E2; 0 + → 2 + ) value could be extracted, which established the downward trend towards 100 Sn and therefore the robustness of the N=Z=50 core against quadrupole excitations.

  • 26. Hinke, C. B.
    et al.
    Boehmer, M.
    Boutachkov, P.
    Faestermann, T.
    Geissel, H.
    Gerl, J.
    Gernhaeuser, R.
    Gorska, M.
    Gottardo, A.
    Grawe, H.
    Grebosz, J. L.
    Kruecken, R.
    Kurz, N.
    Liu, Z.
    Maier, L.
    Nowacki, F.
    Pietri, S.
    Podolyak, Zs
    Sieja, K.
    Steiger, K.
    Straub, K.
    Weick, H.
    Wollersheim, H. -J
    Woods, P. J.
    Al-Dahan, N.
    Alkhomashi, N.
    Atac, A.
    Blazhev, A.
    Braun, N. F.
    Celikovic, I. T.
    Davinson, T.
    Dillmann, I.
    Domingo-Pardo, C.
    Doornenbal, P. C.
    de France, G.
    Farrelly, G. F.
    Farinon, F.
    Goel, N.
    Habermann, T. C.
    Hoischen, R.
    Janik, R.
    Karny, M.
    Kaskas, A.
    Kojouharov, I. M.
    Kroell, Th
    Litvinov, Y.
    Myalski, S.
    Nebel, F.
    Nishimura, S.
    Nociforo, C.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Parikh, A. R.
    Prochazka, A.
    Regan, P. H.
    Rigollet, C.
    Schaffner, H.
    Scheidenberger, C.
    Schwertel, S.
    Soederstroem, P. -A
    Steer, S. J.
    Stolz, A.
    Strmen, P.
    Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn2012In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 486, no 7403, p. 341-345Article in journal (Refereed)
    Abstract [en]

    The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During beta(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of Sn-100, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the beta-decay of Sn-100, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear beta-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, In-100, are well reproduced by modern, large-scale shell model calculations.

  • 27. Hüyük, Tayfun
    et al.
    Di Nitto, Antonio
    Jaworski, Grzegorz
    Gadea, Andrés
    Valiente-Dobón, José Javier
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, Marcin
    Söderström, Pär-Anders
    Aliaga-Varea, Ramon Jose
    de Angelis, Giacomo
    Ataç, Ay\cse
    Collado, Javier
    Domingo-Pardo, Cesar
    Egea, Javier Francisco
    Erduran, Nizamettin
    Ertürk, Sefa
    de France, Gilles
    Gadea, Rafael
    González, Vicente
    Herrero-Bosch, Vicente
    Ka\cska\cs, Ay\cse
    Modamio, Victor
    Moszynski, Marek
    Sanchis, Enrique
    Triossi, Andrea
    Wadsworth, Robert
    Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA2016In: European Physical Journal A, ISSN 1434-6001, E-ISSN 1434-601X, Vol. 52, no 3, article id 55Article in journal (Refereed)
    Abstract [en]

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large $ \gamma$ -ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- $ \gamma$ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  • 28. Javier Egea, Francisco
    et al.
    Sanchis, Enrique
    Gonzalez, Vicente
    Gadea, Andres
    Maria Blasco, Jose
    Barrientos, Diego
    Dobon, J. J. Valiente
    Tripon, Michel
    Boujrad, Abderrahman
    Houarner, Charles
    Jastrzab, Marcin
    Blaizot, Maria
    Bourgault, Patrice
    de Angelis, Giacomo
    Erduran, M. Nizamettin
    Erturk, Sefa
    De France, Gilles
    Huyuk, Tayfun
    Jaworski, Grzegorz
    Di Nitto, Antonio
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Söderström, Pär-Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, Marcin
    Pipidis, A.
    Tarnowski, R.
    Triossi, Andrea
    Wadsworth, R.
    Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments2013In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 60, no 5, p. 3526-3531Article in journal (Refereed)
    Abstract [en]

    This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.

  • 29.
    Jaworski, G.
    et al.
    INFN, LNL, Legnaro, Italy; Univ Warsaw, Heavy Ion Lab, Warsaw, Poland.
    Goasduff, A.
    INFN, LNL, Legnaro, Italy; Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy.
    Canet, F. J. Egea
    INFN, LNL, Legnaro, Italy; Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy; Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Modamio, V
    INFN, LNL, Legnaro, Italy; Univ Oslo, Dept Phys, Oslo, Norway.
    Huyuk, T.
    Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Triossi, A.
    Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy; CERN, Meyrin, Switzerland.
    Jastrzab, M.
    Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
    Soderstrom, P-A
    Extreme Light Infrastruct Nucl Phys ELI NP, Bucharest, Romania.
    Carturan, S. M.
    Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy.
    Di Nitto, A.
    Helmholtz Inst Mainz, Darmstadt, Germany; GSI Darmstadt, Darmstadt, Germany.
    de Angelis, G.
    INFN, LNL, Legnaro, Italy.
    De France, G.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Erduran, N.
    Istanbul Zaim Univ, Fac Eng & Nat Sci, Istanbul, Turkey.
    Gadea, A.
    Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Moszynski, M.
    Natl Ctr Nucl Res, Otwock, Poland.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Univ Warsaw, Heavy Ion Lab, Warsaw, Poland.
    Valiente, J.
    INFN, LNL, Legnaro, Italy.
    Wadsworth, R.
    Univ York, Dept Phys, York, N Yorkshire, England.
    Aliaga, R.
    Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Aufranc, C.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Bezard, M.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Beaulieu, G.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Bednarczyk, P.
    Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
    Bisiato, E.
    INFN, LNL, Legnaro, Italy.
    Boujrad, A.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Burrows, I
    TFC Daresbury Lab, Warrington, Cheshire, England.
    Clement, E.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Cocconi, P.
    INFN, LNL, Legnaro, Italy.
    Colucci, G.
    Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy.
    Conventi, D.
    INFN, LNL, Legnaro, Italy.
    Cordwell, M.
    TFC Daresbury Lab, Warrington, Cheshire, England.
    Coudert, S.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Deltoro, J. M.
    INFN, LNL, Legnaro, Italy.
    Ducroux, L.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Dupasquier, T.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Erturk, S.
    Nigde Omer Halisdemir Univ, Dept Phys, Nigde, Turkey.
    Fabian, X.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Gonzalez, V
    Univ Valencia, Dept Elect Engn, Burjassot, Spain.
    Gottardo, A.
    INFN, LNL, Legnaro, Italy.
    Grant, A.
    TFC Daresbury Lab, Warrington, Cheshire, England.
    Hadynska-Klek, K.
    INFN, LNL, Legnaro, Italy;Univ Surrey, Dept Phys, Guildford, Surrey, England.
    Illana, A.
    INFN, LNL, Legnaro, Italy.
    Jurado-Gomez, M. L.
    Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Kogimtzis, M.
    TFC Daresbury Lab, Warrington, Cheshire, England.
    Lazarus, I
    TFC Daresbury Lab, Warrington, Cheshire, England.
    Legeard, L.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Ljungvall, J.
    Univ Paris Sud, IN2P3, CNRS, CSNSM, Orsay, France.
    Maj, A.
    Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
    Pasqualato, G.
    Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy.
    Perez-Vidal, R. M.
    Univ Valencia, IFIC, CSIC, Paterna, Spain.
    Raggio, A.
    INFN, LNL, Legnaro, Italy; Univ Padua, Dept Phys & Astron, Padua, Italy.
    Ralet, D.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Redon, N.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Saillant, F.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Sanchis, E.
    Univ Valencia, Dept Elect Engn, Burjassot, Spain.
    Saygi, B.
    Ege Univ, Phys Dept, Izmir, Turkey.
    Scarcioffolo, M.
    INFN, Div Padua, Padua, Italy.
    Siciliano, M.
    INFN, LNL, Legnaro, Italy.
    Stezowski, O.
    Univ Lyon, IPN Lyon, IN2P3, CNRS, Villeurbanne, France.
    Testov, D.
    Univ Padua, Dept Phys & Astron, Padua, Italy; INFN, Div Padua, Padua, Italy.
    Tripon, M.
    GANIL, CEA, DSAM, Caen, France; CNRS, IN2P3, Caen, France.
    Zanon, I
    INFN, LNL, Legnaro, Italy.
    The New Neutron Multiplicity Filter NEDA and Its First Physics Campaign with AGATA2019In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 50, no 3, p. 585-590Article in journal (Refereed)
    Abstract [en]

    A new neutron multiplicity filter NEDA, after a decade of design, R&D and construction, was employed in its first physics campaign with the AGATA spectrometer. Properties and performance of the array are discussed.

  • 30. Jaworski, G.
    et al.
    Palacz, M.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Angelis, G. de
    France, G. de
    Nitto, A. Di
    Egea, J.
    Erduran, M. N.
    Ertürk, S.
    Farnea, E.
    Gadea, A.
    González, V.
    Gottardo, A.
    Hüyük, T.
    Kownacki, J.
    Pipidis, A.
    Roeder, B.
    Söderström, Pär-Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Sanchis, E.
    Tarnowski, R.
    Triossi, A.
    Wadsworth, R.
    Dobon, J.J. Valiente
    Monte Carlo simulation of a single detector unit for the neutron detector array NEDA2012In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 673, p. 64-72Article in journal (Refereed)
    Abstract [en]

    A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501

  • 31.
    Klintefjord, M.
    et al.
    Univ Oslo, Dept Phys, N-0316 Oslo, Norway..
    Ljungvall, J.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Gorgen, A.
    Univ Oslo, Dept Phys, N-0316 Oslo, Norway..
    Lenzi, S. M.
    Dipartimento Fis Astron Univ, I-35131 Padua, Italy.;INFN, Sez Padova, I-35131 Padua, Italy..
    Garrote, F. L. Bello
    Univ Oslo, Dept Phys, N-0316 Oslo, Norway..
    Blazhev, A.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Clement, E.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    de France, G.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    Delaroche, J. -P
    Desesquelles, P.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Dewald, A.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Doherty, D. T.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Fransen, C.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany..
    Gengelbach, Aila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Georgiev, G.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Girod, M.
    CEA, DAM, DIF, F-91297 Arpajon, France..
    Goasduff, A.
    INFN, Lab Nazl Legnaro, Viale Univ 2, I-35020 Legnaro, Italy..
    Gottardo, A.
    Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France..
    Hadynska-Klek, K.
    Univ Oslo, Dept Phys, N-0316 Oslo, Norway..
    Jacquot, B.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    Konstantinopoulos, T.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Korichi, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Lemasson, A.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    Libert, J.
    Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France..
    Lopez-Martens, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Michelagnoli, C.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    Navin, A.
    CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen, France..
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Perez-Vidal, R. M.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain..
    Roccia, S.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France..
    Sahin, E.
    Univ Oslo, Dept Phys, N-0316 Oslo, Norway..
    Stefan, I.
    Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France..
    Stuchbery, A. E.
    Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia..
    Zielinska, M.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Barrientos, D.
    CERN, CH-1211 Geneva 23, Switzerland..
    Birkenbach, B.
    Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.;Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England..
    Boston, A.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England..
    Charles, L.
    CNRS, UNISTRA, IPHC, 23 Rue Loess, F-67200 Strasbourg, France..
    Ciemala, M.
    Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Dudouet, J.
    Univ Lyon 1, CNRS IN2P3, UMR5822, IPNL, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France..
    Eberth, J.
    Gadea, A.
    Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain..
    Gonzalez, V.
    Univ Valencia, Dept Ingn Elect, Burjassot, Valencia, Spain..
    Harkness-Brennan, L.
    Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England..
    Hess, H.
    Jungclaus, A.
    CSIC, Inst Estruct Mat, E-28006 Madrid, Spain..
    Korten, W.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Menegazzo, R.
    INFN, Sez Padova, I-35131 Padua, Italy..
    Mengoni, D.
    Dipartimento Fis Astron Univ, I-35131 Padua, Italy.;INFN, Sez Padova, I-35131 Padua, Italy.;INFN, Sez Padova, I-35131 Padua, Italy..
    Million, B.
    INFN, Sez Padova, I-35131 Padua, Italy..
    Pullia, A.
    Univ Milan, Dept Phys, I-20133 Milan, Italy.;INFN Milano, I-20133 Milan, Italy..
    Ralet, D.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.;GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany..
    Recchia, F.
    INFN, Sez Padova, I-35131 Padua, Italy..
    Reiter, P.
    Salsac, M. D.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Sanchis, E.
    Univ Valencia, Dept Ingn Elect, Burjassot, Valencia, Spain..
    Stezowski, O.
    Univ Lyon 1, CNRS IN2P3, UMR5822, IPNL, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France..
    Theisen, Ch.
    Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France..
    Dobon, J. J. Valiente
    INFN, Lab Nazl Legnaro, Viale Univ 2, I-35020 Legnaro, Italy..
    Measurement of lifetimes in Fe-62,Fe-64, Co-61,Co-63, and Mn-592017In: PHYSICAL REVIEW C, ISSN 2469-9985, Vol. 95, no 2, article id 024312Article in journal (Refereed)
    Abstract [en]

    Lifetimes of the 4(1)(+) states in Fe-62,Fe-64 and the 11/2(1)(-) states in Co-61,Co-63 and Mn-59 were measured at the Grand Accelerateur National d'Ions Lourds (GANIL) facility by using the Advanced Gamma Tracking Array (AGATA) and the large-acceptance variable mode spectrometer (VAMOS++). The states were populated through multinucleon transfer reactions with a U-238 beam impinging on a Ni-64 target, and lifetimes in the picosecond range were measured by using the recoil distance Doppler shift method. The data show an increase of collectivity in the iron isotopes approaching N = 40. The reduction of the subshell gap between the nu 2p(1/2) and nu 1g(9/2) orbitals leads to an increased population of the quasi-SU(3) pair (nu 1g(9/2), nu 2d(5/2)), which causes an increase in quadrupole collectivity. This is not observed for the cobalt isotopes withN < 40 for which the neutron subshell gap is larger due to the repulsive monopole component of the tensor nucleon-nucleon interaction. The extracted experimental B(E2) values are compared with large-scale shell-model calculations and with beyond-mean-field calculations with the Gogny D1S interaction. A good agreement between calculations and experimental values is found, and the results demonstrate in particular the spectroscopic quality of the Lenzi, Nowacki, Poves, and Sieja (LNPS) shell-model interaction.

  • 32.
    Lalovic, N.
    et al.
    Lund Univ, Dept Phys, SE-22100 Lund, Sweden.;GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany..
    Louchart, C.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany..
    Michelagnoli, C.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France..
    Perez-Vidal, R. M.
    CSIC Univ Valencia, Inst Fis Corpuscular, E-46920 Valencia, Spain..
    Ralet, D.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.;Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany..
    Gerl, J.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany..
    Rudolph, D.
    Lund Univ, Dept Phys, SE-22100 Lund, Sweden..
    Arici, T.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.;Univ Giessen, D-35392 Giessen, Germany..
    Bazzacco, D.
    Univ Padua, INFN Sez Padova, IT-35131 Padua, Italy.;Univ Padua, Dipartimento Fis, IT-35131 Padua, Italy..
    Clement, E.
    CEA DSM CNRS IN2P3, GANIL, F-14076 Caen, France..
    Gadea, A.
    CSIC Univ Valencia, Inst Fis Corpuscular, E-46920 Valencia, Spain..
    Kojouharov, I.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany..
    Korichi, A.
    CSNSM, F-91405 Orsay, France..
    Labiche, M.
    STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England..
    Ljungvall, J.
    CSNSM, F-91405 Orsay, France..
    Lopez-Martens, A.
    CSNSM, F-91405 Orsay, France..
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pietralla, N.
    Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany..
    Pietri, S.
    GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany..
    Stezowski, O.
    Univ Lyon, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France..
    Performance of the AGATA gamma-ray spectrometer in the PreSPEC set-up at GSI2016In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 806, p. 258-266Article in journal (Refereed)
    Abstract [en]

    In contemporary nuclear physics, the European Advanced GAmma Tracking Array (AGATA) represents a crucial detection system for cutting-edge nuclear structure studies. AGATA consists of highly segmented high-purity germanium crystals and uses the pulse-shape analysis technique to determine both the position and the energy of the y-ray interaction points in the crystals. It is the tracking algorithms that deploy this information and enable insight into the sequence of interactions, providing information on the full or partial absorption of the 7 ray. A series of dedicated performance measurements for an AGATA set-up comprising 21 crystals is described. This set-up was used within the recent PreSPEC-AGATA experimental campaign at the GSI Helmholtzzentrum fur Schwerionenforschung. Using the radioactive sources Co-56, Co-60 and Eu-152, absolute and normalized efficiencies and the peak-to-total of the array were measured. These quantities are discussed using different data analysis procedures. The quality of the pulse-shape analysis and the tracking algorithm are evaluated. The agreement between the experimental data and the Geant4 simulations is also investigated.

  • 33. Lalovic, N.
    et al.
    Perez-Vidal, R. M.
    Louchart, C.
    Michelagnoli, C.
    Ralet, D.
    Arici, T.
    Bazzacco, D.
    Clement, E.
    Gadea, A.
    Gerl, J.
    Kojouharov, I.
    Korichi, A.
    Labiche, M.
    Ljungvall, J.
    Lopez-Martens, A.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pietralla, N.
    Pietri, S.
    Rudolph, D.
    Stezowski, O.
    Analysis of the Response of AGATA Detectors at GSI2015In: CGS15 - CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, 2015, Vol. 93, p. 07007-, article id 07007Conference paper (Refereed)
    Abstract [en]

    In 2012 and 2014 the gamma-ray tracking spectrometer AGATA was operated at the SIS/FRS facility at GSI in Darmstadt, Germany. The performance of the array is discussed, outlining some important aspects of the offline data processing and analysis. Relying on the data obtained from measurements with standard gamma-ray sources, a first estimate of the photopeak efficiency and peak-to-total (P/T) is presented.

  • 34. Lemasson, A.
    et al.
    Navin, A.
    Rejmund, M.
    Keeley, N.
    Zelevinsky, V.
    Bhattacharyya, S.
    Shrivastava, A.
    Bazin, D.
    Beaumel, D.
    Blumenfeld, Y.
    Chatterjee, A.
    Gupta, D.
    de France, G.
    Jacquot, B.
    Labiche, M.
    Lemmon, R.
    Nanal, V.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Pillay, R. G.
    Raabe, R.
    Ramachandran, K.
    Scarpaci, J. A.
    Schmitt, C.
    Simenel, C.
    Stefan, I.
    Timis, C. N.
    Pair and single neutron transfer with Borromean 8He2011In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 697, no 5, p. 454-458Article in journal (Refereed)
    Abstract [en]

    Direct observation of the survival of 199Au residues after 2n transfer in the He 8 + Au 197 system and the absence of the corresponding 67Cu in the He 8 + Cu 65 system at various energies are reported. The measurements of the surprisingly large cross sections for 199Au, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to 1n transfer cross sections from 8He to a heavy target. A comparison of the transfer cross sections for 6,8He on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.

  • 35.
    Luo, X. L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics. Acad Mil Med Sci, Natl Innovat Inst Def Technol, Beijing 100010, Peoples R China.
    Modamio, V.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Valiente-Dobon, J. J.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Nishada, Q.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    de Angelis, G.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Agramunt, J.
    Univ Valencia, CSIC, IFIC, Valencia, Spain.
    Egea, F. J.
    Univ Valencia, CSIC, IFIC, Valencia, Spain;Univ Valencia, Dept Elect Engn, E-46071 Valencia, Spain.
    Erduran, M. N.
    Istanbul Sabahattin Zaim Univ, Fac Engn & Nat Sci, Istanbul, Turkey.
    Erturk, S.
    Omer Halisdemir Univ, Nigde, Turkey.
    de France, G.
    CEA, DSAM, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France;CNRS, IN2P3, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France.
    Gadea, A.
    Univ Valencia, CSIC, IFIC, Valencia, Spain.
    Gonzalez, V.
    Univ Valencia, Dept Elect Engn, E-46071 Valencia, Spain.
    Goasduff, A.
    Univ Padua, Dipartimento Fis & Astron, Padua, Italy.
    Huyuk, T.
    Univ Valencia, CSIC, IFIC, Valencia, Spain.
    Jaworski, G.
    Warsaw Univ Technol, Fac Phys, Ul Koszykowa 75, PL-00662 Warsaw, Poland;Univ Warsaw, Heavy Ion Lab, Ul Pasteura 5A, PL-02093 Warsaw, Poland.
    Moszynski, M.
    Univ Warsaw, Heavy Ion Lab, Ul Pasteura 5A, PL-02093 Warsaw, Poland;Natl Ctr Nucl Res, A Soltana 7, PL-05400 Otwock, Poland.
    Di Nitto, A.
    Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.
    Palacz, M.
    Univ Warsaw, Heavy Ion Lab, Ul Pasteura 5A, PL-02093 Warsaw, Poland.
    Soederstroem, P. -A
    Sanchis, E.
    Univ Valencia, Dept Elect Engn, E-46071 Valencia, Spain.
    Triossi, A.
    Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy.
    Wadsworth, R.
    Univ York, Dept Phys, York, N Yorkshire, England.
    Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors2018In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 897, p. 59-65Article in journal (Refereed)
    Abstract [en]

    The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and.. standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or gamma rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-gamma discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.

  • 36.
    Luo, X. L.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Modamio, V.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Valiente-Dobon, J. J.
    Nishada, Q.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    de Angelis, G.
    Agramunt, J.
    Egea, F. J.
    Erduran, M. N.
    Erturk, S.
    de France, G.
    Gadea, A.
    Gonzalez, V.
    Hueyuek, T.
    Jaworski, G.
    Moszynski, M.
    Di Nitto, A.
    Palacz, M.
    Soederstroem, P. -A
    Sanchis, E.
    Triossi, A.
    Wadsworth, R.
    Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)2014In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 767, p. 83-91Article in journal (Refereed)
    Abstract [en]

    A comparative study of the neutron-gamma discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and gamma rays emitted by a Cf-252 source. In both methods, the neutron-gamma discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish gamma rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron-gamma discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron-gamma discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.

  • 37.
    Mach, Henryk
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Fraile, L.M.
    Arndt, O.
    Blazhev, A.
    Boelaert, N.
    Borge, M.J.G.
    Boutami, R.
    Bradley, H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Braun, N.
    Brown, B.A.
    Butler, P.A.
    Covello, A.
    Dlouhy, Z.
    Fransen, C.
    Fynbo, H.O.Y.
    Gargano, A.
    Hinke, Ch.
    Hoff, P.
    Joinet, A.
    Jokinen, A.
    Jolie, J.
    Köster, U.
    Korgul, A.
    Kratz, K.-L.
    Kröll, T.
    Kurcewicz, W.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Reillo, E.-M.
    Ruchowska, E.
    Schwerdtfeger, W.
    Simpson, G.S.
    Stanoiu, M.
    Tengblad, O.
    Thirolf, P.G.
    Ugryumov, U.
    Walters, W.B.
    The single-particle and collective features in the nuclei just above Sn-1322007In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 38, no 4, p. 1213-1218Article in journal (Refereed)
    Abstract [en]

    The Advanced Time Delayed method has been used to measure the lifetimes of excited states in the exotic nuclei Sb-134, Sb-135 and Te-136 populated in the beta decay of Sn-134, Sn-135 and Sn-136, respectively. High purity Sn beams were extracted at the ISOLDE separator using a novel production technique utilizing the molecular SnS+ beams to isolate Sn from contaminating other fission products. Among the new results we have identified the 1/2(+) state in Sb-135 and its E2 transition to the lower-lying 5/2(+) state was found to be surprisingly collective. This measurement represents also one of the first applications of the LaBr3 scintillator to ultra fast timing.

  • 38.
    Mach, Henryk
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates2009In: AIP conference Proceedings, 2009, Vol. 1090, p. 5502-Conference paper (Refereed)
  • 39.
    Mach, Henryk
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Structure of heavy Fe nuclei at the point of transition at N ~ 372009In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 40, p. 477-480Article in journal (Refereed)
  • 40.
    Mach, Henryk
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    The single-particle and collective features in the nuclei just above 132Sn2007In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 38, p. 1213-1218Article in journal (Refereed)
  • 41. Macková, Anna
    et al.
    MacGregor, DouglasAzaiez, FaiçalNyberg, JohanUppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.Piasetzky, Eli
    Nuclear physics for cultural heritage: A topical review by the Nuclear Physics Division of the European Physical Society2016Collection (editor) (Other (popular science, discussion, etc.))
    Abstract [en]

    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work.

    The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Macková, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work.

    The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity.

  • 42. Modamio, V.
    et al.
    Valiente-Dobon, J. J.
    Jaworski, G.
    Hueyuek, T.
    Triossi, A.
    Egea, J.
    Di Nitto, A.
    Soederstroem, P. -A
    Agramunt Ros, J.
    de Angelis, G.
    de France, G.
    Erduran, M. N.
    Erturk, S.
    Gadea, A.
    Gonzalez, V.
    Kownacki, J.
    Moszynski, M.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Palacz, M.
    Sanchis, E.
    Wadsworthm, R.
    Digital pulse-timing technique for the neutron detector array NEDA2015In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 775, p. 71-76Article in journal (Refereed)
    Abstract [en]

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.

  • 43. Moradi, F. Ghazi
    et al.
    Cederwall, B.
    Qi, C.
    Back, T.
    Atac, A.
    Liotta, R.
    Doncel, M.
    Johnson, A.
    de France, G.
    Clement, E.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Gengelbach, Aila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Nyako, B. M.
    Gal, J.
    Kalinka, G.
    Molnar, J.
    Timar, J.
    Sohler, D.
    Dombradi, Zs.
    Kuti, I.
    Juhasz, K.
    Napoli, D. R.
    Gottardo, A.
    Modamio, V.
    Wadsworth, R.
    Henry, T. W.
    Nichols, A. J.
    Al-Azri, H.
    Palacz, M.
    Ideguchi, E.
    Aktas, O.
    Di Nitto, A.
    Dijon, A.
    Hueyuek, T.
    Jaworski, G.
    John, P. R.
    Yilmaz, B.
    Spectroscopy of the neutron-deficient N=50 nucleus Rh-952014In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 89, no 4, p. 044310-Article in journal (Refereed)
    Abstract [en]

    The neutron-deficient semimagic (neutron number N = 50) Rh-95 nucleus has been produced at high spins using the projectile-target system Ca-40 + Ni-58 at 125 MeV beam energy. The gamma-decays of levels populated by the 3p fusion evaporation reaction channel were studied using gamma-gamma coincidences, and 20 new gamma-ray transitions involving 15 new positive-and negative-parity states were observed. Spin and parity for many of the excited states were firmly deduced for the first time using the combined directional angular correlation and direction-polarization techniques. The observed structures are discussed within the framework of large-scale shell model calculations. E1 transition strengths were deduced and used together with the results of the shell model calculations to study the contribution of different particle-hole configurations, in particular for analyzing contributions from core-excited configurations.

  • 44. Moradi, F. Ghazi
    et al.
    Qi, C.
    Cederwall, B.
    Atac, A.
    Baeck, T.
    Liotta, R.
    Doncel, M.
    Johnson, A.
    de France, G.
    Clement, E.
    Dijon, A.
    Wadsworth, R.
    Henry, T. W.
    Nichols, A. J.
    Al-Azri, H.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Gengelbach, Aila
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Hueyuek, T.
    Nyako, B. M.
    Timar, J.
    Sohler, D.
    Dombradi, Zs.
    Kuti, I.
    Juhasz, K.
    Palacz, M.
    Jaworski, G.
    Lenzi, S. M.
    John, P. R.
    Napoli, D. R.
    Gottardo, A.
    Modamio, V.
    Di Nitto, A.
    Yilmaz, B.
    Aktas, O.
    Ideguchi, E.
    Character of particle-hole excitations in Ru-94 deduced from gamma-ray angular correlation and linear polarization measurements2014In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 89, no 1, p. 014301-Article in journal (Refereed)
    Abstract [en]

    Linear polarization and angular correlations of gamma-rays depopulating excited states in the neutron-deficient nucleus Ru-94(44)50 have been measured, enabling firm spin-parity assignments for several excited states in this nucleus. The deduced multipolarities of strong transitions in the yrast structure were found to be mostly of stretched M1, E1, and E2 types and, in most cases, in agreement with previous tentative assignments. The deduced multipolarity of the 1869 keV and the connecting 257 and 1641 keV transitions indicates that the state at 6358 keV excitation energy has spin parity 12(1)(-) rather than 12(3)(+) as proposed in previous works. The presence of a 12(1)(-) state is interpreted within the framework of large-scale shell-model calculations as a pure proton-hole state dominated by the pi(p(1/2)(-1)circle times g(9/2)(-5)) and pi(p(3/2)(-1) g(9/2)(-5)) configurations. A new positive-parity state is observed at 6103 keV and is tentatively assigned as 12(2)(+). The 14(1)(-) state proposed earlier is reassigned as 13(4)(-) and is interpreted as being dominated by neutron particle-hole core excitations. The strengths of several E1 transitions have been measured and are found to provide a signature of core-excited configurations.

  • 45. Nara Singh, B. S.
    et al.
    Wadsworth, R.
    Boutachkov, P.
    Blazhev, A.
    Liu, Z.
    Grawe, H.
    Brock, T. S.
    Braun, N.
    Go, M.
    Pietri, S.
    Rudolph, D.
    Domingo‐Pardo, C.
    Steer, S. J.
    Atac, A.
    Bettermann, L.
    Cáceres, L.
    Eppinger, K.
    Engert, T.
    Faestermann, T.
    Farinon, F.
    Finke, F.
    Geibel, K.
    Gerl, J.
    GernhÀuser, R.
    Goel, N.
    Gottardo, A.
    Grȩbosz, J.
    Hinke, C.
    Hoischen, R.
    llie, G.
    Iwasaki, H.
    Jolie, J.
    Kaşkaş, A.
    Kojouharov, I.
    KrÃŒcken, R.
    Kurz, N.
    Merchánt, E.
    Nociforo, C.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    PfÃŒtzner, M.
    Prochazka, A.
    Podolyák, Zs.
    Regan, P. H
    Reiter, P.
    Rinta‐Antila, S.
    Scholl, C.
    Schaffner, H.
    Söderström, P. ‐A.
    Warr, N.
    Weick, H.
    Wollersheim, H. ‐J.
    Woods, P. J.
    Nowacki, F.
    Sieja, K.
    Exotic nuclear studies around and below A = 1002011In: AIP Conference Proceedings, Vol. 1409, no 1, p. 19-24Article in journal (Refereed)
  • 46.
    Nyberg, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Valiente Dobon, Jose Javier
    NEDA Technical Design Report2015Report (Other academic)
  • 47. Palacz, M
    et al.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Odd-parity 100 Sn Core Excitations2013In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 44, p. 491-Article in journal (Refereed)
  • 48. Palacz, M.
    et al.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Grawe, H.
    Sieja, K.
    de Angelis, G.
    Bednarczyk, P.
    Blazhev, A.
    Curien, D.
    Dombradi, Z.
    Dorvaux, O.
    Ekman, J.
    Galkowski, J.
    Gorska, M.
    Iwanicki, J.
    Jaworski, G.
    Kownacki, J.
    Ljungvall, J.
    Moszynski, M.
    Nowacki, F.
    Rudolph, D.
    Sohler, D.
    Wolski, D.
    Zieblinski, M.
    N=50 core excited states studied in the 4696Pd50 nucleus2012In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490X, Vol. 86, no 1, p. 014318-Article in journal (Refereed)
    Abstract [en]

    The four-proton hole Pd-96 neighbor of the doubly-magic Sn-100 nucleus was studied in-beam, using a fusion-evaporation reaction of a Ni-58 beam on a Sc-45 target. States of Pd-96 were established up to an excitation energy of 9707 keV. A core-excited odd-parity isomer with T-1/2 = 37.7(1.1) ns was identified. Shell model calculations were performed in four different model spaces. Even-parity states of Pd-96 are very well reproduced in large-scale shell model (LSSM) calculations in which excitations are allowed of up to five g(9/2) protons and neutrons across the N = Z = 50 gap, to the g(7/2), d(5/2), d(3/2), and s(1/2) orbitals. The odd-parity isomer can be only qualitatively interpreted though, employing calculation in the full fpg shell model space, with just one particle-hole core excitation.

  • 49. Palacz, M.
    et al.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Grawe, H.
    Sieja, K.
    de Angelis, G.
    Bednarczyk, P.
    Blazhev, A.
    Curien, D.
    Dombradi, Z.
    Dorvaux, O.
    Ekman, J.
    Galkowski, J.
    Gorska, M.
    Iwanicki, J.
    Jaworski, G.
    Kownacki, J.
    Ljungvall, J.
    Moszynski, M.
    Nowacki, F.
    Rudolph, D.
    Sohler, D.
    Wolski, D.
    Zieblinski, M.
    Odd-Parity Sn-100 Core Excitations2013In: Acta Physica Polonica B, ISSN 0587-4254, E-ISSN 1509-5770, Vol. 44, no 3, p. 491-500Article in journal (Refereed)
    Abstract [en]

    Odd-parity core excited states have been identified in two close neighbors of Sn-100: Pd-96 and Ag-97. This was done in an fusion-evaporation experiment, using a Ni-58 beam on a Sc-45 target. Even-parity core excited states in these nuclei are very well reproduced in large scale (LSSM) calculations in which particle-hole excitations are allowed with up to five g(9/2) protons and neutrons across the N = Z = 50 gap, to the g(7/2), d(5/2), d(3/2), and s(1/2) orbitals. The odd-parity states can only be qualitatively interpreted though, employing calculations in the full fpg shell model space, but with just one particle-hole core excitation allowed. A more complete model including odd-parity orbitals is need for the description of core excited states in the region of Sn-100. 

  • 50.
    Rahman, Mahbubur
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
    Cooray, Vernon
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
    Ahmad, Noor Azlinda
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
    Nyberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Rakov, V. A.
    Sharma, Sriram
    X rays from 80-cm long sparks in air2008In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 35, no 6, p. L06805-Article in journal (Refereed)
12 1 - 50 of 72
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf