The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Multigrid for matrix-free high-order finite element computations on graphics processorsKronbichler, Martin

et al.

Ljungkvist, Karl

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

2. Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes

Ljungkvist, Karl

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

3. Matrix-free finite-element operator application on graphics processing units

Ljungkvist, Karl

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

4. Techniques for finite element methods on modern processors

Ljungkvist, Karl

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

In this thesis, methods for efficient utilization of modern computer hardware for numerical simulation are considered. In particular, we study techniques for speeding up the execution of finite-element methods.

One of the greatest challenges in finite-element computation is how to efficiently perform the the system matrix assembly efficiently in parallel, due to its complicated memory access pattern. The main difficulty lies in the fact that many entries of the matrix are being updated concurrently by several parallel threads. We consider transactional memory, an exotic hardware feature for concurrent update of shared variables, and conduct benchmarks on a prototype processor supporting it. Our experiments show that transactions can both simplify programming and provide good performance for concurrent updates of floating point data.

Furthermore, we study a matrix-free approach to finite-element computation which avoids the matrix assembly. Motivated by its computational properties, we implement the matrix-free method for execution on graphics processors, using either atomic updates or a mesh coloring approach to handle the concurrent updates. A performance study shows that on the GPU, the matrix-free method is faster than a matrix-based implementation for many element types, and allows for solution of considerably larger problems. This suggests that the matrix-free method can speed up execution of large realistic simulations.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Tillenius, Martin

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Black-Schaffer, David

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.

Holmgren, Sverker

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Karlsson, Martin

Larsson, Elisabeth

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Show others...

2011 (English)In: Proc. 25th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum, Piscataway, NJ: IEEE , 2011, p. 1660-1667Conference paper, Published paper (Refereed)

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

2014 (English)In: Euro-Par 2014: Parallel Processing Workshops, Part II, Springer, 2014, p. 450-461Conference paper, Published paper (Refereed)

5. Multigrid for matrix-free finite element computations on graphics processors

Ljungkvist, Karl

et al.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

6. Using hardware transactional memory for high-performance computing

Ljungkvist, Karl

et al.

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Tillenius, Martin

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Black-Schaffer, David

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Systems.

Holmgren, Sverker

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Karlsson, Martin

Larsson, Elisabeth

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

7. Early results using hardware transactional memory for high-performance computing applicationsLjungkvist, Karl

et al.

Tillenius, Martin

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Holmgren, Sverker

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.

Karlsson, Martin

Larsson, Elisabeth

Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.