Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
Refine search result
1234 1 - 50 of 177
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Araujo, Rafael B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Banerjee, Amitava
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Panigrahi, Puspamitra
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Hindustan Univ, Ctr Clean Energy & Nanoconvergence, Madras, Tamil Nadu, India.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Araujo, C. Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Royal Inst Technol KTH, Dept Mat, Appl Mat Phys, S-10044 Stockholm, Sweden.; Royal Inst Technol KTH, Dept Engn, S-10044 Stockholm, Sweden.
    Assessing Electrochemical Properties of Polypyridine and Polythiophene for Prospective Application in Sustainable Organic Batteries2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 4, p. 3307-3314Article in journal (Refereed)
    Abstract [en]

    Conducting polymers are being considered promising candidates for sustainable organic batteries mainly due to their fast electron transport properties and high recyclability. In this work, key properties of polythiophene and polypyridine have been assessed through a combined theoretical and experimental study focusing on such applications. A theoretical protocol has been developed to calculate redox potentials in solution within the framework of the density functional theory and using continuous solvation models. Here, the evolution of the electrochemical properties of solvated oligomers as a function of the length of the chain is analyzed and then the polymer properties are estimated via linear regressions using ordinary least square. The predicted values were verified against our electrochemical experiments. This protocol can now be employed to screen a large database of compounds in order to identify organic electrodes with superior properties.

  • 2.
    Araujo, Rafael B.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Banerjee, Amitava
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Panigrahi, Puspamitra
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Hindustan Univ, Ctr Clean Energy & Nanoconvergence, Chennai, Tamil Nadu, India.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Araujo, C. Moyses
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, S-10044 Stockholm, Sweden.
    Designing strategies to tune reduction potential of organic molecules for sustainable high capacity batteries application2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 9, p. 4430-4454Article in journal (Refereed)
    Abstract [en]

    Organic compounds evolve as a promising alternative to the currently used inorganic materials in rechargeable batteries due to their low-cost, environmentally friendliness and flexibility. One of the strategies to reach acceptable energy densities and to deal with the high solubility of known organic compounds is to combine small redox active molecules, acting as capacity carrying centres, with conducting polymers. Following this strategy, it is important to achieve redox matching between the chosen molecule and the polymer backbone. Here, a synergetic approach combining theory and experiment has been employed to investigate this strategy. The framework of density functional theory connected with the reaction field method has been applied to predict the formal potential of 137 molecules and identify promising candidates for the referent application. The effects of including different ring types, e.g. fused rings or bonded rings, heteroatoms, [small pi] bonds, as well as carboxyl groups on the formal potential, has been rationalized. Finally, we have identified a number of molecules with acceptable theoretical capacities that show redox matching with thiophene-based conducting polymers which, hence, are suggested as pendent groups for the development of conducting redox polymer based electrode materials.

  • 3.
    Banerjee, Amitava
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Araujo, Rafael Barros
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Ahuja, Rajeev
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory. Royal Inst Technol KTH, Appl Mat Phys, Dept Mat, S-10044 Stockholm, Sweden;Royal Inst Technol KTH, Appl Mat Phys, Dept Engn, S-10044 Stockholm, Sweden.
    Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries2018In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 47, p. 301-308Article in journal (Refereed)
    Abstract [en]

    The ever-increasing consumption of energy storage devices has pushed the scientific community to realize strategies toward organic electrodes with superior properties. This is owed to advantages such as economic viability and eco-friendliness. In this context, the family of conjugated dicarboxylates has emerged as an interesting candidate for the application as negative electrodes in advanced Li-ion batteries due to the revealed thermal stability, rate capability, high capacity and high cyclability. This work aims to rationalize the effects of small molecular modifications on the electrochemical properties of the terephthalate anode by means of first principles calculations. The crystal structure prediction of the investigated host compounds dilithium terephthalate (Li2TP) and diethyl terephthalate (Et2Li0TP) together with their crystal modification upon battery cycling enable us to calculate the potential profile of these materials. Distinct underlying mechanisms of the redox reactions were obtained where Li2TP comes with a disproportionation reaction while Et2Li0TP displays sequential redox reactions. This effect proved to be strongly correlated to the Li coordination number evolution upon the Li insertion into the host structures. Finally, the calculations of sublimation enthalpy inferred that polymerization techniques could easily be employed in Et2Li0TP as compared to Li2TP. Similar results are observed with methyl, propyl, and vinyl capped groups. That could be a strategy to enhance the properties of this compound placing it into the gallery of the new anode materials for state of art Li-batteries.

  • 4.
    Carlsson, Daniel O
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyström, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mihranyan, Albert
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Stability of Cladophora Cellulose/Polypyrrole Nanocomposites in Aqueous solutions2010Conference paper (Refereed)
  • 5.
    Carlsson, Daniel O.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    A Comparative Study of the Effects of Rinsing and Aging of Polypyrrole/Nanocellulose Composites on Their Electrochemical Properties2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 14, p. 3900-3910Article in journal (Refereed)
    Abstract [en]

    The effects of polymerization conditions, rinsing, and storage on composites composed of polypyrrole (PPy) and Cladophora nanocellulose in terms of purity, chemical composition, conductivity, and electroactivity were investigated using conductivity measurements, cyclic voltammetry, FTIR-ATR, XPS, and ICP-AES. A clear correlation between rinsing volume and PPy degradation was found using water- or NaCl-rinsing solutions as evidenced by conductivity and electroactivity losses. It was further found, through FTIR-ATR as well as XPS-measurements, that this degradation was caused by incorporation of hydroxyl groups in the PPy-layer. The extent of degradation correlated with a shift in the FTIR-ATR peak around 1300 cm(-1), showing that FTIR-ATR may be used as a quick diagnostic tool to evaluate the extent of degradation. By the use of acidic rinsing solution, this degradation effect was eliminated and resulted in superior samples in terms of both conductivity and electroactivity and also in a more efficient removal of reactants. Upon ambient storage, over a period of 200 days, a gradual decrease in conductivity was found for initially highly conductive samples. The electroactivity, on the other hand, was relatively unaffected by storage, showing that conductivity measurements alone are ineffective to determine the degree of polymer degradation if the water content is not controlled. Also, FTIR-ATR measurements indicated that the oxidation state did not change to any large extent upon storage and that only minor degradation of PPy occurred. The results presented herein thus offer valuable guidelines on how to develop simple and reliable postsynthesis treatments of conducting polymer paper composites with performance fulfilling requirements on stability, electroactivity, and purity in applications such as environmentally friendly energy storage devices and biomedical applications.

  • 6.
    Emanuelsson, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Kosgei, Cosmas Kipyego
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone based conducting redox polymers for electrical energy storage2017In: Russian journal of electrochemistry, ISSN 1023-1935, E-ISSN 1608-3342, Vol. 53, no 1, p. 8-15Article in journal (Refereed)
    Abstract [en]

    Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

  • 7.
    Emanuelsson, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Kosgei, Cosmas Kipyego
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone based conducting redox polymers for electrical energy storage2017In: Elektrokhimiya, ISSN 0424-8570, Vol. 53, no 1, p. 11-20Article in journal (Refereed)
    Abstract [en]

    Conducting redox polymers (CRPs) constitute a promising class of materials for the development of organic matter based batteries with the potential to overcome the main limitations connected to this type of rechargeable battery systems including low conductivity and dissolution problems. In this report we show that the potential of quinones can be effectively tuned into the conducting region of polypyrrole (PPy), both in water based solutions and in acetonitrile, which is a prerequisite for profitable combination of the two units. We also present a device where both anode and cathode are made from PPy substituted with different quinone pendant groups and where good rate performance is achieved without any conductivity additives thus providing support for the hypothesized synergetic effect of a conducting polymer backbone and a covalently attached redox active pendant group. This device constitutes, to the best of our knowledge, the first all-CRP based battery reported to date.

  • 8.
    Emanuelsson, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sterby, Mia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    All-Organic Proton Batteries from Conducting Redox Polymers2017Conference paper (Refereed)
  • 9.
    Emanuelsson, Rikard
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sterby, Mia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    An All-Organic Proton Battery2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, no 13, p. 4828-4834Article in journal (Refereed)
    Abstract [en]

    Rechargeable batteries that use organic matter as. the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li+ or Na+. However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDQT-AQ) or, benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e(-)/2H(+) quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g(-1), which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries.

  • 10. Fernández-Benito, A.
    et al.
    Rodrí­guez, G.
    Arenas-Esteban, D.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Navalpotro, P.
    Rodríguez-Caballero, D.
    Ávila-Brande, D.
    López-Manchado, M. Á.
    Carretero-González, J.
    Multifunctional metal-free rechargeable polymer composite nanoparticles boosted by CO22020In: Materials Today Sustainability, ISSN 2589-2347, Vol. 10, article id 100048Article in journal (Refereed)
    Abstract [en]

    Herein, we present a multigram scale-up route for the preparation of novel polymer composite nanoparticles as potential multifunctional rechargeable material for future, sustainable batteries. The nanoparticles (20 nm) comprise three innocuous yet functional interpenetrated macromolecular networks: polypyrrole, methylcellulose, and lignin. They are uniquely assembled in strands or chains (∌200 nm) such as necklace beads and show long-term stability as water dispersion. We find that an aqueous suspension of this hierarchical nanomaterial shows two sets of reversible redox peaks, separated by ∌600 mV, originating from the catechol moieties present in the lignin biopolymer. Remarkably, the addition of carbon dioxide increased the capacity of one of the redox processes by 500%. Importantly, the three redox stages occur in the presence of the same nanostructured polymer so being a potentially bifunctional material to be used in advanced electrochemical systems. The new properties are attributed to an intrinsic chemical and electronic coupling at the nanoscale among the different building blocks of the metal-free polymer composite and the structural rearrangement of the interpenetrated polymer network by the incorporation of CO2. We have provided both a new electrochemically multifunctional hierarchically structured material and a facile route that could lead to novel sustainable energy applications.

  • 11.
    Gaiser, Philipp
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Zaar, Felicia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Surface immobilization of molecular catalysts using conducting redox polymers2022Conference paper (Refereed)
  • 12.
    Gaiser, Philipp
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Zaar, Felicia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Surface immobilization of molecular catalysts using conducting redox polymers2022Conference paper (Refereed)
    Abstract [en]

    Electrocatalysts play an essential role in converting electrical energy into fuel and vice versa. A wide variety of well defined molecular catalysts have been developed to catalyze key reactions like water oxidation, proton reduction, carbon dioxide reduction etc..[1] Immobilizing molecular catalyst on electrode surface combines the benefits of having a well defined catalytic center with the benefits of heterogeneous catalysts such as efficient electronic connection between the electrode and the catalytic center.[1]

    Having surface constrained catalytic sites and using electrochemical methods enables the investigation of catalytic reactions at various potentials and the determination of kinetic thermodynamic parameters without mass transport limitations.[1]

    The immobilization of molecular catalysts on an electrode surface can be achieved by incorporating them in a conducting redox polymer.[1-3] These polymers consist of a conducting polymer backbone, such as polythiophene, and covalently bound redox active pendant groups. 

    In this poster we present the synthesis and electrochemical characterization of conducting redox polymers bearing molecular catalysts as pendant groups. Functionalized derivatives of molecular catalysts are coupled with monomeric or trimeric units of 3,4-ethylenedioxythiophene (EDOT) or 3,4-propylenedioxythiophene (ProDOT). Subsequent electro polymerization yields functionalized electrodes which are investigated by cyclic voltammetry as well as a variety of in situ methods such as UV-vis spectroscopy, and conductance measurements.[4]

    References 

    [1]   R. M. Bullock et al., Chem. Eur. J. 23 (2017) 7626–7641.

    [2]   L. Wang et al. Chem., Commun. 51 (2015) 7883–7886.

    [3]   D. Curran et al., Chem. Soc. Rev. 20 (1991) 391.

    [4]   M. Sterby et al., Electrochimica Acta 308 (2019) 277–284.

  • 13.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Based Polypyrroles for Energy Storage Materials2015Conference paper (Refereed)
  • 14.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Functionalized Polypyrroles: Organic Materials for Energy Storage2015Conference paper (Refereed)
    Abstract [en]

    Quinones, which are naturally occurring redox active organic compounds,have been proposed as cathode materials in lithium ionbatteries for their high theoretical specific capacities and more environmentallyfriendly manufacturing compared to conventional inorganiccathode materials (see figure on the right). However,many of them suffer from poor kinetics as well as capacity lossdue to dissolution.¹ In our work, by attaching quinones as pendantmoieties onto conducting polmers, e.g. polypyrroles, we havecomposed conducting redox polymers, which are expected to decreaseproblems with resistance and dissolution while retainingcapacity and cyclability² (see figure on the left). A series of monomericcompounds incorporating pyrrole and quinone units weresynthesized and polymerized electrochemically. The resultingpolymers were studied by in-situ spectro-electrochemical techniquesas well as by EQCM to elucidate the redox chemistry ofthe quinone units as well as the kinetics ofpolymer redox performance.

  • 15.
    Hao, Huang
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Functionalized Pyrroles: Polymeric Materials for Energy Storage2015Conference paper (Refereed)
  • 16.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sterby, Mia
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Based Conducting Redox Polymer for Energy Storage2017Conference paper (Refereed)
  • 17.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Mamedov, Fikret
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, A
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan..
    Polaron Disproportionation Charge Transport in a Conducting Redox Polymer2017In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, no 24, p. 13078-13083Article in journal (Refereed)
    Abstract [en]

    Herein we report a mechanistic study of the charge transport in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole by conductance measurements at various temperatures performed in situ during doping of the polypyrrole backbone in contact with an aqueous electrolyte. Charge transport was found to occur by electron hopping with associated electron transfer activation energies in the range of 0.08-0.2 eV. In situ electron paramagnetic resonance experiments indicated polarons as the dominant charge carriers and the charge transport was found to follow a second-order dependence with respect to the number of accumulated charges. Based on the findings, we present a polaron comproportionation/disproportionation model for electron conduction in poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, thus, providing a complement to existing models for charge propagation in conducting polymers.

  • 18.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Monomers And Polymers Of Quinone Functionalized Pyrrole For Organic Energy Storage2014Conference paper (Refereed)
  • 19.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Synthesis and Characterization of Poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on Backbone/Pendant Interactions in a Conducting Redox Polymer2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 16, p. 10427-10435Article in journal (Refereed)
    Abstract [en]

    We herein report the synthesis and electrochemical characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole, consisting of a polypyrrole backbone derivatized at the beta position by a vinyl-hydroquinone pendant group. The structure of the polymer was characterized by solid state NMR spectroscopy. The interactions between the polypyrrole backbone and the oxidized quinone or reduced hydroquinone pendant groups are probed by several in situ methods. In situ attenuated total reflectance-Fourier transform infrared spectroscopy shows spectroscopic response from both the doping of the polymer backbone and the redox activity of the pendant groups. Using an in situ Electrochemical Quartz Crystal Microbalance we reveal that the polymer doping is unaffected by the pendant group redox chemistry, as opposed to previous reports. Despite the continuous doping the electrochemical conversion from the hydroquinone state to the quinone state results in a significant conductance drop, as observed by in situ conductivity measurements using an InterDigitated Array electrode set-up. Twisting of the conducting polymer backbone as a result of a decreased separation between pendant groups due to π-π stacking in the oxidized state is suggested as the cause of this conductance drop.

  • 20.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Hydroquinone–pyrrole dyads with varied linkers2016In: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, p. 89-96Article in journal (Refereed)
    Abstract [en]

    A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

    Download full text (pdf)
    fulltext
  • 21.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Karlsson, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Quinone Functionalized Pyrrole For Organic Energy Storage2014Conference paper (Refereed)
  • 22.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Gogoll, A
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Potential-tuning in quinone-pyrrole dyad-based conducting redox polymers2021In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 389, p. 19099-19108Article in journal (Refereed)
    Abstract [en]

    In this study, conducting redox polymers (CRPs), which consist of a polypyrrole conducting polymer backbone with attached quinone pendant groups, have been explored as electrode materials for organic batteries. A modular organic synthetic approach is presented that allows the assembly of pyrrole and quinone units into quinone-pyrrole dyads and modifying the dyads by varying the substitution pattern on the quinone moiety. These dyad monomers were copolymerized electrochemically with pyrrole to yield the CRPs with quinone formal potentials varying within a 0.6 V range. With access to CRP materials with tunable quinone formal potentials an all-organic water-based battery was constructed by choosing CRPs with different quinone potentials as anode and cathode material. Galvanostatic charge-discharge of the cell showed that the cell potentials coincided well with the difference in redox potential between the quinone substituents used in the anode and cathode CRP.

  • 23.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Exploring the Redox Behavior of Quinone in Conducting Redox Polymers2016Conference paper (Refereed)
  • 24.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Exploring the Redox Behavior of Quinone in Conducting Redox Polymers2016Conference paper (Refereed)
    Abstract [en]

    Quinones have been suggested as alternative electrodes materials in battery applications for their attractive redox chemistry on the ketone groups where oxidation/reduction reaction occurs at well-defined potential. By attaching quinone onto a conducting polymer (CP) backbone e.g polypyrrole, a conducting redox polymer was constructed, which is expected to offer solutions for the general drawbacks of using small electro-active molecules in a battery system, e.g. dissolution in electrolyte which causes capacity fading and slow kinetics due to limitad electronic conductivities. With substitution on the quinones, the potential for the redox reaction can be tuned. A series of monomers with various functional groups on the quinone ring which is covalently linked to pyrrole was synthesized. DFT calculations were performed to predict the potentials for the candidates and to further understand the redox properties of the molecules at electronic level. All the monomers were electrochemically co-polymerized with pyrrole and the resulting polymers were studied by electrochemical in order to obtain the redox characteristics of the co-polymers. Comparison of computational results and experimental results for the redox potential were made and more insight of modulating the quinone unit was gained for further molecular design in the quinone-based electrode materials. 

  • 25.
    Huang, Hao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Tuning potentials in quinone based polypyrroles : Understanding pendent group effects on Conducting Redox polymers2016Conference paper (Refereed)
  • 26.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Synthesis and Redox Properties of Thiophene Terephthalate Building Blocks for Low-Potential Conducting Redox Polymers2015In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 49, p. 27247-27254Article in journal (Refereed)
    Abstract [en]

    Terephthalate-substituted thiophene derivatives are promising redox-active components for anode materials in lithium-ion batteries. In this study, we present the synthesis of substituted 2-(thiophen-3-yl)terephthalate derivatives (TTDs) as suitable monomers for thiophene-based conducting redox polymers, along with their characterization by electrochemical and spectroscopic techniques. Density functional theory (DFT) calculations, utilizing the universal solvation model based on solute electron density (SMD), were used to predict both the first and the second reduction potentials of these TTDs. The computational results showed good agreement with the experimental data in nonaqueous acetonitrile solvent, with mean absolute errors of 30 and 40 mV for the first and second reduction steps, respectively. Time-dependent (TD) DFT calculations on TTDs indicated terephthalate local transitions at both 200 and 240 nm and charge-transfer transitions above 300 nm by examination of the involved molecular orbitals.

  • 27.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Bergquist, Jonas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    A versatile route to polythiophenes with functional pendant groups using alkyne chemistry2016In: Beilstein Journal of Organic Chemistry, ISSN 2195-951X, E-ISSN 1860-5397, Vol. 12, p. 2682-2688Article in journal (Refereed)
    Abstract [en]

    A new versatile polythiophene building block, 3-(3,4-ethylenedioxythiophene)prop-1-yne (pyEDOT) (3), is prepared from glycidol in four steps in 28% overall yield. pyEDOT features an ethynyl group on its ethylenedioxy bridge, allowing further functionalization by alkyne chemistry. Its usefulness is demonstrated by a series of functionalized polythiophene derivatives that were obtained by pre- and post-electropolymerization transformations, provided by the synthetic ease of the Sonogashira coupling and click chemistry.

    Download full text (pdf)
    fulltext
  • 28.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    The n-type polymers pending with terephthalate group attempt for organic anode material2014Conference paper (Refereed)
  • 29.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    The n-type polymers with terephthalate group attempt for organic anode material2014Conference paper (Refereed)
  • 30.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Synthesis and Redox Properties of Thiophene-Terephthalate Building Blocks for Low Potential Conducting Redox Polymers2015In: 66th Annual Meeting of the International Society of Electrochemistry Proceeding., 2015Conference paper (Refereed)
  • 31.
    Huang, Xiao
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Organic Chemistry.
    3-(3,4-ethylenedioxythiophene)prop-1-yne (pyEDOT): A new versatile building block for functionalized PEDOTs2016In: 25th Organikerdagarna, 2016Conference paper (Refereed)
  • 32.
    Irebo, Tania
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Reece, Steven Y.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
    Nocera, Daniel G.
    Hammarström, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science, Chemical Physics.
    Proton-coupled electron transfer of tyrosine oxidation: buffer dependence and parallel mechanisms2007In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 129, no 50, p. 15462-15464Article in journal (Refereed)
    Abstract [en]

    The proton-coupled electron transfer (PCET) from tyrosine covalently linked to a metal complex has been studied. The reaction was induced by laser flash excitation of the metal complex, and PCET was bidirectional, with electron transfer to the excited or flash-quenched oxidized metal complex and proton transfer to water or added buffers in the solution. We found a competition between three different PCET mechanisms: (1) A concerted PCET with water as the proton acceptor, which indeed shows a pH-dependence as earlier reported (Sjödin, M.; Styring, S.; Åkermark, B.; Sun, L.; Hammarström, L. J. Am. Chem. Soc. 2000, 122, 3932); (2) a stepwise electron transfer-proton transfer (ETPT) that is pH-independent; (3) a buffer-assisted concerted PCET. The relative importance of reaction 2 increases with oxidant strength, while that of reaction 1 increases with pH. At higher buffer concentrations reaction 3 becomes important, and the rate follows the expected first-order dependence on the concentration of the buffer base. Most importantly, the pH-dependence of reaction 1, with a slope of 0.4-0.5 in a plot of log k vs pH, is independent of buffer and cannot be explained by reaction schemes with simple first-order dependencies on [OH-], [H3O+], or buffer species.

  • 33. Ivanko, Iryna
    et al.
    Lindfors, Tom
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials.
    Conjugated redox polymer with poly(3,4-ethylenedioxythiophene) backbone and hydroquinone pendant groups as the solid contact in potassium-selective electrodes2021In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 329, article id 129231Article in journal (Refereed)
    Abstract [en]

    We have used for the first time a conjugated redox polymer with hydroquinone (HQ) pendant groups covalently attached to the poly(3,4-ethylenedioxythiophene) (PEDOT) backbone as the solid contact (SC) in plasticized poly(vinyl chloride) (PVC) based K+-selective electrodes (K-SCISE). Redox couples are one of the simplest ways to precisely adjust the standard potential (E°) of the SCISEs, but usually the initially high E° reproducibility is lost quite quickly due to leaching out of non-covalently bound redox molecules from the SCISE. In PEDOT-HQ, the covalently attached HQ groups prevent the leaching and simultaneously allow additional charge storage in PEDOT-HQ that is ca. 25–30 times higher than for unsubstituted PEDOT. Before the ion-selective membrane (ISM) deposition, we controlled the potential of the SC with high reproducibility (±0.4 mV, n = 5) by pre-polarization in a mixture of acetonitrile containing potassium tetrakis(pentafluorophenyl)borate and perchloric acid as proton source. Pre-polarization of the SC close to the formal potential where the redox buffer capacity is highest gave the best potential reproducibility. However, after the ISM deposition, the K-SCISEs showed in the best case an E° reproducibility of ±2.8 mV (n = 5). Chronopotentiometric measurements reveal that only a minor fraction of the very high redox capacitance of PEDOT-HQ can be utilized for the ion-to-electron transduction beneath the ISM. The influence of this shortcoming on the E° reproducibility of the SCISEs has been underestimated for most SC materials. Modification of the commonly used PVC-ISM formulations to allow faster ion transfer at the SC/ISM interface could be one way of overcoming the disadvantage.

  • 34.
    Jämstorp, Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nyström, Gustav
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    On the self-discharge and degradation of polypyrrole electrodes for energy storage2011In: MRS Spring conference, San Francisco, 2011Conference paper (Refereed)
  • 35.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Investigation of the Redox Chemistry of Isoindole-4,7-diones2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 2, p. 894-901Article in journal (Refereed)
    Abstract [en]

    Quinone derivatives have been proposed as active components in lithium ion battery (LIB) electrode materials. In this work the electrochemistry of a series of substituted isoindole-4,7-diones (IIDs) was investigated. Three new IID derivatives were synthesized and characterized by various electrochemical and spectroscopic techniques. Polymerization was attempted to achieve a conducting polymer with redox active quinone side groups, which would be advantageous in a LIB application. A combination of in situ spectroelectrochemical measurements and density functional theory (DFT) calculations was used to investigate the proton coupled redox reactions of the IIDs. Results from a previous computational study of the IIDs were compared with experimental data here, and the agreement was very good. The energy of the spectroscopic transitions in the UV and in the visible region showed different correlation with redox potential and quinone substituent in the series of IIDs. This behavior was rationalized by examination of the involved molecular orbitals. The results indicated that the properties of the quinone unit, such as the redox potential, could be selectively varied by substitution.

  • 36.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Kinetics of conducting polymers with side chain quinone units2013Conference paper (Refereed)
    Abstract [en]

    Quinones have been suggested as active material in organic lithium ion battery (LIB) cathodes. They are expected to have higher specific capacities and to be cheaper and more environmentally friendly than the inorganic lithium intercalation compounds used in LIBs today. However, quinone compounds suggested for this purpose often suffer from slow kinetics and low cyclability due to dissolution. In this work, conducting polymers containing pending quinone moieties were synthesized. Immobilizing the redox active quinone units on a conducting polymer matrix decreases both resistance and solubility, which improves the speed and the cyclability of the system, while maintaining a high specific capacity. The two-electron redox reaction of the quinone units in these polymers yields a theoretical capacity of ~300 mAh/g. The polymers were studied electrochemically and spectroscopically to elucidate the kinetics of the polymer charging and the redox cycling of the quinone units.

  • 37.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Conference paper (Refereed)
  • 38.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Olsson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Poly(pyrrol-3-ylhydroquinone) – A Conducting Redox Polymer for Electric Energy Storage2013Conference paper (Refereed)
  • 39.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods2015In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 179, p. 336-342Article in journal (Refereed)
    Abstract [en]

    Polypyrrole functionalized with redox active pendant groups constitutes a so called conducting redox polymer, and functions both as a conducting polymer and as a redox polymer. The electrochemical response reveals capacitive charging of the conducting backbone as well as redox cycling of the pendant groups. While the backbone provides an electrically conducting matrix for fast electron transport through the material, the pendant groups offer a large charge storage capacity, much greater than that of polypyrrole itself. We have investigated such polypyrrole-hydroquinone conducting redox polymers, with focus on their in situ conductivity during electrochemical cycling, in order to understand the charge transport mechanisms in this type of system. The most notable feature is that oxidation of the pendant groups leads to a large decrease in the polymer conductivity. The causes of this phenomenon are discussed, as well as the rate limitations of fast redox cycling of the polymer, which are investigated through a combination of bipotentiostat cyclic voltammetry and potential steps of polymer films on interdigitated array electrodes.

  • 40.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Charge transport in pyrrole/quinone conducting redox polymers2014Conference paper (Refereed)
  • 41.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2013Conference paper (Refereed)
  • 42.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Conducting Redox Polymers – New Candidates for Organic Electrode Materials2014Conference paper (Refereed)
  • 43.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Impact of Linker in Polypyrrole/Quinone Conducting Redox Polymers2015In: RSC Advances, E-ISSN 2046-2069, Vol. 5, no 15, p. 11309-11316Article in journal (Refereed)
    Abstract [en]

    Organic conducting redox polymers are being investigated as the active component for secondary battery applications, as they have the potential to solve two of the main problems with small molecule-based organic electrodes for electrical energy storage, viz dissolution of the active compound in the electrolyte, and slow charge transport through the material. Herein we report the synthesis of a series of conducting redox polymers based on polypyrrole with hydroquinone pendant groups that are attached to the backbone via different linkers, and we investigate the impact of the linker on the interaction between the backbone and the pendant groups. For the directly linked polymer, oxidation of the pendant groups leads to a decrease of bipolaron absorbance, as well as a decrease in mass of the polymer film, both of which are reversible. The origin of these effects is discussed in light of the influence of the linker unit, electrolyte polarity, and electrolyte salt. For the longest linkers in the series, no interaction was observed, which was deemed the most beneficial situation for energy storage applications, as the energy storage capacity of the pendant groups can be utilized without disturbing the conductivity of the polymer backbone.

  • 44.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions2013In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 45, p. 23558-23567Article in journal (Refereed)
    Abstract [en]

    While various organic molecules have been suggested as environmentally friendly alternatives to inorganic electrode materials for lithium ion batteries, most of them suffer from slow kinetics as well as capacity fading due to dissolution. Herein we present the synthesis of poly(pyrrol-3-ylhydroquinone) (PPyQ), a polypyrrole (PPy) derivative with pending hydroquinone groups, for investigation of the use of a conducting polymer to immobilize redox active quinone units. This strategy eliminates dissolution of the active material while also increasing the conductivity. The quinone pending groups in PPyQ cycle reversibly in the potential region where the polymer backbone is conducting and chemically stable. In situ spectroelectrochemistry on PPyQ films reveals UV/vis transitions inherent to PPy, as well as quinone centered transitions, allowing detailed investigation of the interplay between the polymer doping process and the quinone redox conversion. Intriguingly, it is found that the charging of the PPy backbone halts during the redox reaction of the quinone pending groups. This opens up for the possibility of using PPy at low and constant doping levels while utilizing the charge storage capacity of the quinone pending groups when creating electric energy storage materials based on sustainable and renewable components.

  • 45.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Probing Polymer-Pendant Interactions in the Conducting Redox Polymer Poly(pyrrol-3-ylhydroquinone)2014In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 41, p. 23499-23508Article in journal (Refereed)
    Abstract [en]

    Conducting polymers with redox active pendant groups show properties typical of both conducting polymers (i.e., capacitive charging and intrinsic conductivity) and redox polymers (i.e., electrochemical surface response at the formal potential of the pendant groups). The two components can also exert significant interaction on each other during their separate electrochemical reactions. In poly(pyrrol-3-ylhydroquinone), a polypyrrole derivative functionalized with hydroquinone units, the redox conversion of the pendant groups has a large impact on the polymer backbone. This interaction is manifested by a loss of bipolaron states during the hydroquinone oxidation, leading to a decreasing p-doping level with increasing potential, something which, to the best of our knowledge, has never been observed for a conducting polymer. Another effect is a contraction of the polymer film, and subsequent mass loss due to solvent expulsion upon hydroquinone oxidation, which counteracts the normal swelling of polypyrrole with increased potential. The conducting redox polymer under investigation has been synthesized via two routes, leading to different fractions of subunits bearing redox active hydroquinone groups. While the redox potentials are unaffected by the synthesis route, the backbone/pendant group interaction varies notably depending on the degree of quinone functionalization. This type of polymers could find use in, e.g., organic energy storage materials, since the polymer backbone both increases the electronic conductivity and prevents dissolution of the active material, as well as in actuator application, due to polymer contraction over the relatively narrow potential region where the pendant group redox chemistry occurs.

  • 46.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Synthetical Organic Chemistry.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone Pendant Group Kinetics in Poly(pyrrol-3-ylhydroquinone)2014In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 735, p. 95-98Article in journal (Refereed)
    Abstract [en]

    Herein, we investigate the kinetics of the redox processes occurring in acidic aqueous electrolyte in electropolymerized poly(pyrrol-3-ylhydroquinone), which has been proposed for electrical energy storage applications. The redox conversion of the pendant groups is found to be limited by the quinone redox kinetics in thin films, rather than by the conduction through the polypyrrole backbone. Rate constants for the elementary steps involved in this 2e, 2H+ process are reported. As the films are made thicker, a gradual transition to a diffusion limited reaction is observed. The origin of the diffusion process, as well as the elementary reaction steps limiting the pendant group redox conversion is analyzed using DFT computations. The fact that the electron transport through the thin film conducting polymer backbone is not limiting the quinone reaction kinetics should allow for design of battery electrodes with high rate capabilities based on the studied material.

  • 47.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Huang, Hao
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Yang, Li
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Quinone pending groups on polypyrrole affect the backbone doping behavior2014Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 48.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Jämstorp, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials2012In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 5, p. 3793-3801Article in journal (Refereed)
    Abstract [en]

    Prediction of the redox behavior of electroactive molecules enables screening of a variety of compounds and can serve as a guideline in the search for organic molecules for use as cathode materials in, for example, Li ion batteries. In this study, we present a computational strategy, based on density functional theory, to calculate redox potentials and acid dissociation constants for a series of 16 isoindole-4,7-dione (IID) derivatives. The calculations take all possible electron and proton transfers into account, and the results were found to correlate very well with electrochemical and spectroscopic measurements. The possibility of polymerizing the IID derivatives was also assessed computationally, as polymerization serves as a straightforward route to immobilize the active material. Three of the considered IIDs (5,6-dicyano-2-methyl-isoindole-4,7-dione, 5,6-dihydroxy-2-methyl-isoindole-4,7-dione, and 2-methyl-5-(trifluoromethyl)-isoindole-4,7-dione) are predicted to be particularly interesting for making polymers for organic cathodes because these are calculated to have high redox potentials and high specific capacities and to be readily polymerizable. The presented strategy is general and can be applied in the prediction of the electrochemical behavior of quinones as well as other systems involving proton and electron transfers.

  • 49.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Jämstorp, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Strømme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Isoindole-4,7-diones as Candidates for Organic Lithium Ion Battery Polymer Cathodes2012In: GRADuate School in Advanced Materials for the 21st century: Workshop 2012, February 8, 2012, Uppsala, 2012Conference paper (Refereed)
    Download full text (pdf)
    Poster
  • 50.
    Karlsson, Christoffer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Nicholas, James
    Univ South Australia, Future Ind Inst, Thin Film Coatings Grp, Adelaide, SA 5001, Australia.; Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England.
    Evans, Drew
    Univ South Australia, Future Ind Inst, Thin Film Coatings Grp, Adelaide, SA 5001, Australia.
    Forsyth, Maria
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Strömme, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Sjödin, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
    Howlett, Patrick C
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Pozo-Gonzalo, Cristina
    Deakin Univ, ARC Ctr Excellence Electromat Sci, Burwood 3125, Australia.
    Stable Deep Doping of Vapor-Phase Polymerized Poly(3,4-ethylenedioxythiophene)/Ionic Liquid Supercapacitors.2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 16, p. 2112-2121Article in journal (Refereed)
    Abstract [en]

    Liquid-solution polymerization and vapor-phase polymerization (VPP) have been used to manufacture a series of chloride- and tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT) carbon paper electrodes. The electrochemistry, specific capacitance, and specific charge were determined for single electrodes in 1-ethyl-3-methylimidazolium dicyanamide (emim dca) ionic liquid electrolyte. VPP-PEDOT exhibits outstanding properties with a specific capacitance higher than 300 F g(-1) , the highest value reported for a PEDOT-based conducting polymer, and doping levels as high as 0.7 charges per monomer were achieved. Furthermore, symmetric PEDOT supercapacitor cells with the emim dca electrolyte exhibited a high specific capacitance (76.4 F g(-1) ) and high specific energy (19.8 Wh kg(-1) ). A Ragone plot shows that the VPP-PEDOT cells combine the high specific power of conventional ("pure") capacitors with the high specific energy of batteries, a highly sought-after target for energy storage.

1234 1 - 50 of 177
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf