uu.seUppsala University Publications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlgren, Kerstin M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Immunological Studies using Human and Canine Model Disorders2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The studies presented in this thesis focus on human and canine models for autoimmune disease, with the main aim to gain new knowledge about disease mechanisms and to further evaluate the dog as a model for autoimmune disease.

    Autoimmune Polyendocrine Syndrome type 1 (APS-1) is a hereditary human multiorgan disease caused by mutations in the autoimmune regulator (AIRE) gene. Hallmarks of APS-1 are chronic mucocutaneous candidiasis caused by Candida albicans, together with the autoimmune endocrine disorders hypoparathyroidism and adrenocortical failure. Many human diseases have an equivalent disease in dogs. Because humans share environment, and in part life style with the dogs they provide an interesting model for further genetic studies.

    Immune responses to Candida albicans in APS-1 patients displayed an increased secretion of the proinflammatory cytokine IL-17A and similar results were also found in AIRE deficient mice. Anticytokine autoantibodies to IL-17A, IL-17F and IL-22 were detected in APS-1 patients, and a radioligand binding assay for measuring these autoantibodies was developed and evaluated.

    In the canine studies we investigated whether canine diabetes mellitus could serve as a model for human autoimmune diabetes mellitus. Furthermore, we investigated type I IFN responses in Nova Scotia duck tolling retriever dogs with a systemic autoimmune disease resembling human SLE.

    Four assays were used in search for signs of humoral autoimmunity in diabetic dogs. However, no evidence for a type 1 diabetes-like phenotype in dogs was found. Sera from Nova Scotia duck tolling retrievers suffering from steroid-responsive meningitis arteritis elicited an increased expression of IFN-inducible genes in the canine MDCK cell line. This suggests that these dogs have an IFN signature, as seen in human SLE.

    List of papers
    1. Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model
    Open this publication in new window or tab >>Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model
    Show others...
    2011 (English)In: European Journal of Immunology, ISSN 0014-2980, E-ISSN 1521-4141, Vol. 41, no 1, p. 235-245Article in journal (Refereed) Published
    Abstract [en]

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. Chronic mucocutaneous candidiasis, hypoparathyroidism and adrenal failure are hallmarks of the disease. The critical mechanisms causing chronic mucocutaneous candidiasis in APS-1 patients have not been identified although autoantibodies to cytokines are implicated in the pathogenesis. To investigate whether the Th reactivity to Candida albicans (C. albicans) and other stimuli was altered, we isolated PBMC from APS-1 patients and matched healthy controls. The Th17 pathway was upregulated in response to C. albicans in APS-1 patients, whereas the IL-22 secretion was reduced. Autoantibodies against IL-22, IL-17A and IL-17F were detected in sera from APS-1 patients by immunoprecipitation. In addition, Aire-deficient (Aire(0/0) ) mice were much more susceptible than Aire(+/+) mice to mucosal candidiasis and C. albicans-induced Th17- and Th1-cell responses were increased in Aire(0/0) mice. Thus an excessive IL-17A reactivity towards C. albicans was observed in APS-1 patients and Aire(0/0) mice.

    Keywords
    Autoimmunity, Cytokines, Fungal, T cells
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:uu:diva-140180 (URN)10.1002/eji.200939883 (DOI)000285933000024 ()21182094 (PubMedID)
    Available from: 2011-01-04 Created: 2011-01-04 Last updated: 2017-12-11Bibliographically approved
    2. Measuring autoantibodies against IL17F and IL-22 in  autoimmune polyendocrine syndromme type I by radioligand binding assay using fusion proteins
    Open this publication in new window or tab >>Measuring autoantibodies against IL17F and IL-22 in  autoimmune polyendocrine syndromme type I by radioligand binding assay using fusion proteins
    Show others...
    2011 (English)In: Scandinavian Journal of Immunology, ISSN 0300-9475, E-ISSN 1365-3083, Vol. 74, no 3, p. 327-333Article in journal (Refereed) Published
    Abstract [en]

    Autoantibodies against interleukin (IL)-17A, IL-17F and IL-22 have recently been described in patients with autoimmune polyendocrine syndrome type I (APS I), and their presence is reported to be highly correlated with chronic mucocutaneous candidiasis (CMC). The aim of this study was to develop a robust high-throughput radioligand binding assays (RLBA) measuring IL-17F and IL-22 antibodies, to compare them with current enzyme-linked immunosorbent assays (ELISA) of IL-17F and IL-22 and, moreover, to correlate the presence of these antibodies with the presence of CMC. Interleukins are small molecules, which makes them difficult to express in vitro. To overcome this problem, they were fused as dimers, which proved to increase the efficiency of expression. A total of five RLBAs were developed based on IL-17F and IL-22 monomers and homo- or heterodimers. Analysing the presence of these autoantibodies in 25 Norwegian APS I patients revealed that the different RLBAs detected anti-IL-17F and anti-IL-22 with high specificity, using both homo- and heterodimers. The RLBAs based on dimer proteins are highly reproducible with low inter- and intravariation and have the advantages of high throughput and easy standardization compared to ELISA, thus proving excellent choices for the screening of IL-17F and IL-22 autoantibodies.

    National Category
    Immunology in the medical area
    Identifiers
    urn:nbn:se:uu:diva-153870 (URN)10.1111/j.1365-3083.2011.02573.x (DOI)000293635900014 ()21535082 (PubMedID)
    Available from: 2011-05-20 Created: 2011-05-20 Last updated: 2018-01-12Bibliographically approved
    3. Diabetes mellitus in dog -: No evidence for a type-1-like phenotype
    Open this publication in new window or tab >>Diabetes mellitus in dog -: No evidence for a type-1-like phenotype
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Aims/hypothesis

    Diabetes mellitus (DM) is one of the most common endocrine disorders in dogs, and is commonly proposed to be of autoimmune origin. Although the clinical symptoms of human type 1 diabetes (T1D) and canine DM are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported.

    Methods

     Sera from 121 diabetic dogs representing 38 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs from 40 breeds. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immunoprecipitation.

    Results

    None of the canine sera analyzed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay.

    Conclusions/interpretations

    Based on sera from 121 diabetic dogs from 38 different breeds were tested for humoral autoreactivity using four different assays, contrary to previous observations, we find no support for an autoimmune aetiology  in canine diabetes.

    Keywords
    Autoimmunity, autoantibodies, canine, diabetes mellitus, GAD65, ICA
    National Category
    Immunology
    Research subject
    Medicine
    Identifiers
    urn:nbn:se:uu:diva-160539 (URN)
    Available from: 2011-10-25 Created: 2011-10-25 Last updated: 2011-11-23
    4. Type I Interferon signature in Nova Scotia duck tolling retriever dogs with steroid responsive meningitis-arteritis
    Open this publication in new window or tab >>Type I Interferon signature in Nova Scotia duck tolling retriever dogs with steroid responsive meningitis-arteritis
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    Objective: Dogs of the breed Nova Scotia duck tolling retriever (NSDTR) are prone to develop a disease complex in some aspects resembling human systemic lupus erythematosus (SLE). Peripheral blood mononuclear cells (PBMCs) from human SLE patients have an increased mRNA expression type I interferon (IFN) regulated genes. However, it is unknown whether diseased dogs also display the typical type I IFN signature.

    Methods: To test canine sera for their capacity to induce type I IFN response Mardin-Darby canine kidney (MDCK) cells were cultured with sera from healthy dogs (n=25),  immune-mediated rheumatic disease (IMRD) dogs with anti-nuclear antibodies (ANA+) (n=30) or dogs with steroid responsive meningitis-arteritis (SRMA) (n=25). mRNA expression of the genes MX1, IFIT1 and CXCL10 was measured by quantitative Real Time PCR.

    Results: A highly significant (p=0.0009) increase in mRNA expression of the type I IFN responsive gene MX1 was detected in cells stimulated by sera from dogs with SRMA, but not from IMRD ANA+ dogs. Expression of IFIT1 was twice as high in cells stimulated by sera from dogs with SRMA compared to both healthy dogs and ANA+ dogs. The mean expression of CXCL10 was nearly ten times higher in cells stimulated by sera from SRMA dogs than by ANA+ dogs and four times higher compared to cells stimulated by control dogs.

    Conclusion: Presence of type I IFN in sera from diseased NSDTR dogs was found in this study. This implies that this canine model can be used for identification of pathways of importance for autoimmune disorders in humans and for testing of novel therapeutic approaches. Our results can also be a step on the way towards personalized drugs in these dogs.

    Keywords
    Autoimmunity, Interferon signaling, Nova Scotia duck tolling retriever, Steroid Responsive Meningitis Arteritis, SLE
    National Category
    Veterinary Science
    Research subject
    Medical Science
    Identifiers
    urn:nbn:se:uu:diva-160540 (URN)
    Available from: 2011-10-25 Created: 2011-10-25 Last updated: 2012-02-16
  • 2.
    Ahlgren, Kerstin M
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fall, Tove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Landegren, Nils
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Grimelius, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    von Euler, Henrik
    Sundberg, Katarina
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lobell, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hedhammar, Åke
    Andersson, Göran
    Hansson-Hamlin, Helene
    Lernmark, Åke
    Kämpe, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 8, p. e105473-Article in journal (Refereed)
    Abstract [en]

    AIMS/HYPOTHESIS:

    Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D) and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported.

    METHODS:

    Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide.

    RESULTS:

    None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted.

    CONCLUSIONS/INTERPRETATIONS:

    Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus.

  • 3.
    Ahlgren, Kerstin. M
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Fall, Tove
    Landegren, Nils
    von Euler, Henrik
    Sundberg, Katarina
    Lindblad-Toh, Kerstin
    Lobell, Anna
    Hedhammar, Åke
    Andersson, Göran
    Hansson-Hamlin, Helene
    Lernmark, Åke
    Kämpe, Olle
    Diabetes mellitus in dog -: No evidence for a type-1-like phenotypeManuscript (preprint) (Other academic)
    Abstract [en]

    Aims/hypothesis

    Diabetes mellitus (DM) is one of the most common endocrine disorders in dogs, and is commonly proposed to be of autoimmune origin. Although the clinical symptoms of human type 1 diabetes (T1D) and canine DM are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported.

    Methods

     Sera from 121 diabetic dogs representing 38 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs from 40 breeds. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immunoprecipitation.

    Results

    None of the canine sera analyzed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay.

    Conclusions/interpretations

    Based on sera from 121 diabetic dogs from 38 different breeds were tested for humoral autoreactivity using four different assays, contrary to previous observations, we find no support for an autoimmune aetiology  in canine diabetes.

  • 4.
    Ahlgren, Kerstin M.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Moretti, Silvia
    Lundgren, Brita Ardesjö
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Karlsson, Iulia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Åhlin, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Norling, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hallgren, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Perheentupa, Jaakko
    Gustafsson, Jan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Women's and Children's Health, Pediatrics.
    Rorsman, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Crewther, Pauline E.
    Rönnelid, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology.
    Bensing, Sophie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Scott, Hamish S.
    Kämpe, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Romani, Luigina
    Lobell, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model2011In: European Journal of Immunology, ISSN 0014-2980, E-ISSN 1521-4141, Vol. 41, no 1, p. 235-245Article in journal (Refereed)
    Abstract [en]

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. Chronic mucocutaneous candidiasis, hypoparathyroidism and adrenal failure are hallmarks of the disease. The critical mechanisms causing chronic mucocutaneous candidiasis in APS-1 patients have not been identified although autoantibodies to cytokines are implicated in the pathogenesis. To investigate whether the Th reactivity to Candida albicans (C. albicans) and other stimuli was altered, we isolated PBMC from APS-1 patients and matched healthy controls. The Th17 pathway was upregulated in response to C. albicans in APS-1 patients, whereas the IL-22 secretion was reduced. Autoantibodies against IL-22, IL-17A and IL-17F were detected in sera from APS-1 patients by immunoprecipitation. In addition, Aire-deficient (Aire(0/0) ) mice were much more susceptible than Aire(+/+) mice to mucosal candidiasis and C. albicans-induced Th17- and Th1-cell responses were increased in Aire(0/0) mice. Thus an excessive IL-17A reactivity towards C. albicans was observed in APS-1 patients and Aire(0/0) mice.

  • 5.
    Ahlgren, Kerstin, M.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Wilbe, Maria
    Sundberg, Katarina
    Eloranta, Maija-Leena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Lindblad-Toh, Kerstin
    Andersson, Göran
    Lobell, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Hansson-Hamlin, Helene
    Kämpe, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Type I Interferon signature in Nova Scotia duck tolling retriever dogs with steroid responsive meningitis-arteritisManuscript (preprint) (Other academic)
    Abstract [en]

    Objective: Dogs of the breed Nova Scotia duck tolling retriever (NSDTR) are prone to develop a disease complex in some aspects resembling human systemic lupus erythematosus (SLE). Peripheral blood mononuclear cells (PBMCs) from human SLE patients have an increased mRNA expression type I interferon (IFN) regulated genes. However, it is unknown whether diseased dogs also display the typical type I IFN signature.

    Methods: To test canine sera for their capacity to induce type I IFN response Mardin-Darby canine kidney (MDCK) cells were cultured with sera from healthy dogs (n=25),  immune-mediated rheumatic disease (IMRD) dogs with anti-nuclear antibodies (ANA+) (n=30) or dogs with steroid responsive meningitis-arteritis (SRMA) (n=25). mRNA expression of the genes MX1, IFIT1 and CXCL10 was measured by quantitative Real Time PCR.

    Results: A highly significant (p=0.0009) increase in mRNA expression of the type I IFN responsive gene MX1 was detected in cells stimulated by sera from dogs with SRMA, but not from IMRD ANA+ dogs. Expression of IFIT1 was twice as high in cells stimulated by sera from dogs with SRMA compared to both healthy dogs and ANA+ dogs. The mean expression of CXCL10 was nearly ten times higher in cells stimulated by sera from SRMA dogs than by ANA+ dogs and four times higher compared to cells stimulated by control dogs.

    Conclusion: Presence of type I IFN in sera from diseased NSDTR dogs was found in this study. This implies that this canine model can be used for identification of pathways of importance for autoimmune disorders in humans and for testing of novel therapeutic approaches. Our results can also be a step on the way towards personalized drugs in these dogs.

  • 6.
    Bergmann, Astrid
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Schilling, Thomas
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Ahlgren, Kerstin M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Kretzschmar, Moritz
    Kozian, Alf
    Hachenberg, Thomas
    Pulmonary effects of remote ischemic preconditioning in a porcine model of ventilation-induced lung injury.2018In: Respiratory Physiology & Neurobiology, ISSN 1569-9048, E-ISSN 1878-1519, Vol. 259, p. 111-118Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: One-lung ventilation (OLV) may result in lung injury due to increased mechanical stress and tidal recruitment. As a result, a pulmonary inflammatory response is induced. The present randomized, controlled, animal experiment was undertaken to assess the effects of remote ischemic preconditioning (RIP) on diffuse alveolar damage and immune response after OLV.

    METHODS: Fourteen piglets (26 ± 2 kg) were randomized to control (n = 7) and RIP group (n = 7). For RIP, a blood pressure cuff at hind limb was inflated up to 200 mmHg for 5 min and deflated for another 5 min, this being done four times before OLV. Mechanical ventilation settings were constant throughout the experiment: VT = 10 ml/kg, FIO2 = 0.40, PEEP = 5cmH2O. OLV was performed by left-sided bronchial blockade. Number of cells was counted from BAL fluid; cytokines were assessed by immunoassays in lung tissue and serum samples. Lung tissue samples were obtained for histological analysis and assessment of diffuse alveolar damage (DAD) score.

    RESULTS: Hemodynamic and respiratory data were similar in both groups. Likewise, no differences in pulmonary tissue TNF-α and protein content were found, but fewer leukocytes were counted in the ventilated lung after RIP. DAD scores were high without any differences between controls and RIP. On the other hand, alveolar edema and microhemorrhage were significantly increased after RIP.

    CONCLUSIONS: OLV results in alveolar injury, possibly enhanced by RIP. On the other hand, RIP attenuates the immunological response and decreased alveolar leukocyte recruitment in a porcine model of OLV.

  • 7.
    Eriksson, D.
    et al.
    Karolinska Inst, Dept Med Solna, Ctr Mol Med, Stockholm, Sweden.;Metab & Diabet Karolinska Univ Hosp, Dept Endocrinol, Stockholm, Sweden..
    Bianchi, Matteo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Landegren, Nils
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Med Solna, Ctr Mol Med, Stockholm, Sweden..
    Nordin, Jessika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dalin, Frida
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Dermatology and Venereology. Uppsala University, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Med Solna, Ctr Mol Med, Stockholm, Sweden..
    Mathioudaki, Argyri
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Eriksson, G. N.
    Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden..
    Hultin-Rosenberg, Lina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dahlqvist, Johanna
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Zetterqvist, H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Karlsson, Andreas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hallgren, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Infectious Diseases. Uppsala University, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Med Solna, Ctr Mol Med, Stockholm, Sweden..
    Farias, F. H. G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Murén, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ahlgren, Kerstin M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lobell, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Andersson, G.
    Swedish Univ Agr Sci, Dept Anim Breeding & Genet, Uppsala, Sweden..
    Tandre, Karolina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Dahlqvist, S. R.
    Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Soderkvist, P.
    Linkoping Univ, Dept Clin & Expt Med, Linkoping, Sweden..
    Rönnblom, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Rheumatology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hulting, A. -L
    Wahlberg, J.
    Linkoping Univ, Dept Endocrinol, Dept Med & Hlth Sci, Dept Clin & Expt Med, Linkoping, Sweden..
    Ekwall, O.
    Univ Gothenburg, Sahlgrenska Acad, Dept Pediat, Inst Clin Sci, Gothenburg, Sweden.;Univ Gothenburg, Dept Rheumatol & Inflammat Res, Inst Med, Sahlgrenska Acad, Gothenburg, Sweden..
    Dahlqvist, P.
    Umea Univ, Dept Publ Hlth & Clin Med, Umea, Sweden..
    Meadows, Jennifer R. S.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Bensing, S.
    Metab & Diabet Karolinska Univ Hosp, Dept Endocrinol, Stockholm, Sweden.;Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden..
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Inst MIT & Harvard, Cambridge, MA USA..
    Kämpe, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Med Solna, Ctr Mol Med, Stockholm, Sweden.;Metab & Diabet Karolinska Univ Hosp, Dept Endocrinol, Stockholm, Sweden..
    Pielberg, Gerli R.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
    Extended exome sequencing identifies BACH2 as a novel major risk locus for Addison's disease2016In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 286, no 6, p. 595-608Article in journal (Refereed)
    Abstract [en]

    BackgroundAutoimmune disease is one of the leading causes of morbidity and mortality worldwide. In Addison's disease, the adrenal glands are targeted by destructive autoimmunity. Despite being the most common cause of primary adrenal failure, little is known about its aetiology. MethodsTo understand the genetic background of Addison's disease, we utilized the extensively characterized patients of the Swedish Addison Registry. We developed an extended exome capture array comprising a selected set of 1853 genes and their potential regulatory elements, for the purpose of sequencing 479 patients with Addison's disease and 1394 controls. ResultsWe identified BACH2 (rs62408233-A, OR = 2.01 (1.71-2.37), P = 1.66 x 10(-15), MAF 0.46/0.29 in cases/controls) as a novel gene associated with Addison's disease development. We also confirmed the previously known associations with the HLA complex. ConclusionWhilst BACH2 has been previously reported to associate with organ-specific autoimmune diseases co-inherited with Addison's disease, we have identified BACH2 as a major risk locus in Addison's disease, independent of concomitant autoimmune diseases. Our results may enable future research towards preventive disease treatment.

  • 8.
    Höstman, Staffan
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Borges, João Batista
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Suarez-Sipmann, Fernando
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Ahlgren, Kerstin M
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Engström, Joakim
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    THAM reduces CO2-associated increase in pulmonary vascular resistance: an experimental study in lung-injured piglets2015In: Critical Care, ISSN 1364-8535, E-ISSN 1466-609X, Vol. 19, no 1, article id 331Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION: Low tidal volume (VT) ventilation is recommended in patients with acute respiratory distress syndrome (ARDS). This may increase arterial carbon dioxide tension (PaCO2), decrease pH, and augment pulmonary vascular resistance (PVR). We hypothesized that Tris(hydroxymethyl)aminomethane (THAM), a pure proton acceptor, would dampen these effects, preventing the increase in PVR.

    METHODS: A one-hit injury ARDS model was established by repeated lung lavages in 18 piglets. After ventilation with VT of 6 ml/kg to maintain normocapnia, VT was reduced to 3 ml/kg to induce hypercapnia. Six animals received THAM for 1 h, six for 3 h, and six serving as controls received no THAM. In all, the experiment continued for 6 h. The THAM dosage was calculated to normalize pH and exhibit a lasting effect. Gas exchange, pulmonary, and systemic hemodynamics were tracked. Inflammatory markers were obtained at the end of the experiment.

    RESULTS: In the controls, the decrease in VT from 6 to 3 ml/kg increased PaCO2 from 6.0±0.5 to 13.8±1.5 kPa and lowered pH from 7.40±0.01 to 7.12±0.06, whereas base excess (BE) remained stable at 2.7±2.3 mEq/L to 3.4±3.2 mEq/L. In the THAM groups, PaCO2 decreased and pH increased above 7.4 during the infusions. After discontinuing the infusions, PaCO2 increased above the corresponding level of the controls (15.2±1.7 kPa and 22.6±3.3 kPa for 1-h and 3-h THAM infusions, respectively). Despite a marked increase in BE (13.8±3.5 and 31.2±2.2 for 1-h and 3-h THAM infusions, respectively), pH became similar to the corresponding levels of the controls. PVR was lower in the THAM groups (at 6 h, 329±77 dyn∙s/m(5) and 255±43 dyn∙s/m(5) in the 1-h and 3-h groups, respectively, compared with 450±141 dyn∙s/m(5) in the controls), as were pulmonary arterial pressures.

    CONCLUSIONS: The pH in the THAM groups was similar to pH in the controls at 6 h, despite a marked increase in BE. This was due to an increase in PaCO2 after stopping the THAM infusion, possibly by intracellular release of CO2. Pulmonary arterial pressure and PVR were lower in the THAM-treated animals, indicating that THAM may be an option to reduce PVR in acute hypercapnia.

  • 9.
    Isaksson, Magnus
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Ardesjö Lundgren, Brita
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Ahlgren, Kerstin M
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Kämpe, Olle
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Lobell, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE2012In: European Journal of Immunology, ISSN 0014-2980, E-ISSN 1521-4141, Vol. 42, no 10, p. 2555-2563Article in journal (Refereed)
    Abstract [en]

    EAE, an animal model for multiple sclerosis, is a Th17- and Th1-cell-mediated auto-immune disease, but the mechanisms leading to priming of encephalitogenicTcells in autoimmune neuroinflammation are poorly understood. To investigate the role of dendritic cells (DCs) in the initiation of autoimmuneTh17- andTh1-cell responses andEAE, we used mice transgenic for a simian diphtheria toxin receptor (DTR) expressed under the control of the murineCD11c promoter (CD11c-DTRmice onC57BL/6 background).EAEwas induced by immunization with myelin oligodendrocyte glycoprotein (MOG) protein in CFA. DCs were depleted on the day before and 8 days afterMOG immunization. The mean clinicalEAEscore was only mildly reduced inDC-depleted mice when DCs were ablated beforeEAEinduction. The frequency of activatedTh cells was not altered, andMOG-inducedTh17 orTh1-cell responses were not altered, in the spleens ofDC-depleted mice. Similar results were obtained ifDCswere ablated the first 10 days afterMOGimmunization with repeatedDCdepletions. Unexpectedly, transient depletion of DCs did not affect priming or differentiation of MOG-inducedTh17 andTh1-cell responses or the incidence ofEAE. Thus, the mechansim of priming ofTh cells inEAEremains to be elucidated.

  • 10.
    Marchesi, Silvia
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Larsson, A.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Ahlgren, Kerstin M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity.
    Lattuada, M.
    Policlin Milano, Milan, Italy..
    Ortiz-Nieto, Francisco
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Physiology.
    Enhanced Abdominal Inflammation In Acute Respiratory Failure - Is The Culprit Ventilator Associated Abdominal Edema Or Inadequate Perfusion?: A Magnetic Resonance Imaging Pilot Study2015In: American Journal of Respiratory and Critical Care Medicine, ISSN 1073-449X, E-ISSN 1535-4970, Vol. 191Article in journal (Other academic)
  • 11.
    Marchesi, Silvia
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Ortiz-Nieto, Francisco
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ahlgren, Kerstin M.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Roneus, Agneta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Feinstein, Ricardo
    Statens Veterinärmedicinska Anstalt, Uppsala, Sweden.
    Lipcsey, Miklós
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Larsson, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
    Ahlström, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Hedenstierna, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Hedenstierna laboratory.
    Abdominal organ perfusion and inflammation in experimental sepsis: a magnetic resonance imaging study2019In: American Journal of Physiology - Gastrointestinal and Liver Physiology, ISSN 0193-1857, E-ISSN 1522-1547, Vol. 316, no 1, p. G187-G196Article in journal (Refereed)
    Abstract [en]

    Diffusion-weighted magnetic resonance imaging (DW-MRI) uses water as contrast and enables the study of perfusion in many organs simultaneously in situ. We used DW-MRI in a sepsis model, comparing abdominal organs perfusion with global hemodynamic measurements and inflammation. Sixteen anesthetized piglets were randomized into 3 groups: HighMAP (mean arterial pressure, MAP > 65 mmHg), LowMAP (MAP between 50 and 60 mmHg) and Healthy Controls (HC). Sepsis was obtained with endotoxin and the desired MAP maintained with noradrenaline. After 6 hours DW-MRI was performed. Acute inflammation was assessed with IL-6 and TNFα in abdominal organs, ascites, and blood and by histology of intestine (duodenum). Perfusion of abdominal organs was reduced in the LowMAP group compared to the HighMAP group and HC. Liver perfusion was still reduced by 25% in the HighMAP group compared with HC. Intestinal perfusion did not differ significantly between the study groups. Cytokines concentration were generally higher in the LowMAP group but did not correlate with global hemodynamics. However, cytokines correlated with regional perfusion and, for liver and intestine, also with intra-abdominal pressure. Histopathology of intestine worsened with decreasing perfusion. In conclusion, although a low MAP (≤60 mmHg) indicated impeded abdominal perfusion in experimental sepsis, it did not predict inflammation, nor did other global measures of circulation. Decreased abdominal perfusion predicted partially inflammation but intestine, occupying most of the abdomen, and liver, were also affected by intra-abdominal pressure.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf