uu.seUppsala University Publications
Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Beyerlein, Kenneth
    et al.
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Alonso-Mori, Roberto
    SLAC National Accelerator Laboratory, USA.
    Aquila, Andrew
    SLAC National Accelerator Laboratory, USA.
    Bajt, Sasa
    Photon Science, DESY, Hamburg, Germany.
    Barty, Anton
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Bean, Richard
    Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Koglin, Jason E.
    SLAC National Accelerator Laboratory, USA.
    Messerschmidt, Marc
    SLAC National Accelerator Laboratory, USA.
    Ragazzon, Davide
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Soklaras, Dimosthenis
    SLAC National Accelerator Laboratory, USA.
    Williams, Garth J.
    SLAC National Accelerator Laboratory, USA.
    Hau-Riege, Stefan
    Lawrence Livermore National Laboratory, USA.
    Boutet, Sebastien
    SLAC National Accelerator Laboratory, USA.
    Chapman, Henry N.
    Center for Free-Electron Laser Science,Deutsches Elektronen-Synchrotron, Hamburg, Germany; Department of Physics, University of Hamburg, Hamburg, Germany; Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany .
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Center for Free-Electron Laser Science,Deutsches Elektronen-Synchrotron, Hamburg, Germany.
    Ultrafast non-thermal heating of water initiated by an X-ray laser2018In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 22, p. 5652-5657Article in journal (Refereed)
    Abstract [en]

    X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

  • 2.
    Beyerlein, Kenneth R.
    et al.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Dierksmeyer, Dennis
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Mariani, Valerio
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Kuhn, Manuela
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Sarrou, Iosifina
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Ottaviano, Angelica
    Calif State Univ Northridge, Dept Phys, Northridge, CA 91330 USA..
    Awel, Salah
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany..
    Knoska, Juraj
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany..
    Fuglerud, Silje
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Norwegian Univ Sci & Technol, Dept Phys, Trondheim, Norway..
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Stern, Stephan
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;European Xray Free Elect Laser Facil GmbH XFEL, Schenefeld, Germany..
    Wiedorn, Max O.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany..
    Yefanov, Oleksandr
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Adriano, Luigi
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Bean, Richard
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Burkhardt, Anja
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Fischer, Pontus
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Heymann, Michael
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Horke, Daniel A.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany..
    Jungnickel, Katharina E. J.
    Univ Oxford, Dept Biochem, Oxford, England..
    Kovaleva, Elena
    SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA USA..
    Lorbeer, Olga
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Metz, Markus
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Meyer, Jan
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Morgan, Andrew
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Pande, Kanupriya
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Panneerselvam, Saravanan
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Seuring, Carolin
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany..
    Tolstikova, Aleksandra
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Lieske, Julia
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Aplin, Steve
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Roessle, Manfred
    Fachhsch Lubeck, Lubeck, Germany..
    White, Thomas A.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Chapman, Henry N.
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany.;Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany..
    Meents, Alke
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Deutsch Elektronen Synchrotron DESY, Photon Sci, Hamburg, Germany..
    Oberthuer, Dominik
    Deutsch Elektronen Synchrotron DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Mix-and-diffuse serial synchrotron crystallography2017In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, no 6, p. 769-777Article in journal (Refereed)
    Abstract [en]

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.

  • 3.
    Caleman, Carl
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. DESY, Ctr Free Electron Laser Sci, Notkestr 85, Hamburg, Germany.
    Jönsson, Olof
    KTH Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden.
    Östlin, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala Univ, Dept Phys & Astron, Box 516, Uppsala, Sweden.
    Ultrafast dynamics of water exposed to XFEL pulses2019In: Optics Damage and Materials Processing by EUV/X-ray Radiation VII / [ed] Juha, L Bajt, S Guizard, S, SPIE - International Society for Optical Engineering, 2019, article id 1103507Conference paper (Refereed)
    Abstract [en]

    These proceedings investigate the ionization and temperature dynamics of water samples exposed to intense ultrashort X-ray free-electron laser pulses ranging from 10(4) - 10(7) J/cm(2), based on simulations using a non-local thermodynamic plasma code. In comparison to earlier work combining simulations and experiments, a regime where a hybrid simulations approach should be applicable is presented.

  • 4.
    Caleman, Carl
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Martin, Andrew V.
    Jönsson, H. Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Aquila, Andrew
    Barty, Anton
    Scott, Howard A.
    White, Thomas A.
    Chapman, Henry N.
    Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser2015In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 2, p. 1213-1231Article in journal (Refereed)
    Abstract [en]

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.

  • 5. Chapman, Henry N.
    et al.
    Fromme, Petra
    Barty, Anton
    White, Thomas A.
    Kirian, Richard A.
    Aquila, Andrew
    Hunter, Mark S.
    Schulz, Joachim
    DePonte, Daniel P.
    Weierstall, Uwe
    Doak, R. Bruce
    Maia, Filipe R. N. C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Martin, Andrew V.
    Schlichting, Ilme
    Lomb, Lukas
    Coppola, Nicola
    Shoeman, Robert L.
    Epp, Sascha W.
    Hartmann, Robert
    Rolles, Daniel
    Rudenko, Artem
    Foucar, Lutz
    Kimmel, Nils
    Weidenspointner, Georg
    Holl, Peter
    Liang, Mengning
    Barthelmess, Miriam
    Caleman, Carl
    Boutet, Sebastien
    Bogan, Michael J.
    Krzywinski, Jacek
    Bostedt, Christoph
    Bajt, Sasa
    Gumprecht, Lars
    Rudek, Benedikt
    Erk, Benjamin
    Schmidt, Carlo
    Hoemke, Andre
    Reich, Christian
    Pietschner, Daniel
    Strueder, Lothar
    Hauser, Guenter
    Gorke, Hubert
    Ullrich, Joachim
    Herrmann, Sven
    Schaller, Gerhard
    Schopper, Florian
    Soltau, Heike
    Kuehnel, Kai-Uwe
    Messerschmidt, Marc
    Bozek, John D.
    Hau-Riege, Stefan P.
    Frank, Matthias
    Hampton, Christina Y.
    Sierra, Raymond G.
    Starodub, Dmitri
    Williams, Garth J.
    Hajdu, Janos
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Seibert, M. Marvin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Andreasson, Jakob
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Rocker, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Svenda, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Stern, Stephan
    Nass, Karol
    Andritschke, Robert
    Schroeter, Claus-Dieter
    Krasniqi, Faton
    Bott, Mario
    Schmidt, Kevin E.
    Wang, Xiaoyu
    Grotjohann, Ingo
    Holton, James M.
    Barends, Thomas R. M.
    Neutze, Richard
    Marchesini, Stefano
    Fromme, Raimund
    Schorb, Sebastian
    Rupp, Daniela
    Adolph, Marcus
    Gorkhover, Tais
    Andersson, Inger
    SLU.
    Hirsemann, Helmut
    Potdevin, Guillaume
    Graafsma, Heinz
    Nilsson, Björn
    Spence, John C. H.
    Femtosecond X-ray protein nanocrystallography2011In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 470, no 7332, p. 73-77Article in journal (Refereed)
    Abstract [en]

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded(1-3). It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source(4). We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes(5). More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (similar to 200 nm to 2 mm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes(6). This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  • 6.
    Ekeberg, Tomas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Svenda, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Abergel, Chantal
    Maia, Filipe R. N. C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Seltzer, Virginie
    Claverie, Jean-Michel
    Hantke, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Nettelblad, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    van der Schot, Gijs
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Liang, Mengning
    DePonte, Daniel P.
    Barty, Anton
    Seibert, M. Marvin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Iwan, Bianca
    Andersson, Inger
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Loh, N. Duane
    Martin, Andrew V.
    Chapman, Henry
    Bostedt, Christoph
    Bozek, John D.
    Ferguson, Ken R.
    Krzywinski, Jacek
    Epp, Sascha W.
    Rolles, Daniel
    Rudenko, Artem
    Hartmann, Robert
    Kimmel, Nils
    Hajdu, Janos
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 114, no 9, p. 098102:1-6, article id 098102Article in journal (Refereed)
  • 7.
    Ekeberg, Tomas
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Svenda, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Seibert, M. Marvin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Abergel, Chantal
    CNRS, Informat Genom & Struct UMR7256, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France.;Aix Marseille Univ, Inst Microbiol Mediterranee FR3479, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France..
    Maia, Filipe R.N.C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Seltzer, Virginie
    CNRS, Informat Genom & Struct UMR7256, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France.;Aix Marseille Univ, Inst Microbiol Mediterranee FR3479, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France..
    DePonte, Daniel P.
    SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Aquila, Andrew
    SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.;European XFEL, Albert Einstein Ring 19, D-22761 Hamburg, Germany..
    Andreasson, Jakob
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Iwan, Bianca
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. Ctr Etud Saclay, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France..
    Jönsson, H. Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Westphal, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Odic, Dusko
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Andersson, Inger
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Barty, Anton
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Liang, Meng
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Martin, Andrew V.
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Melbourne, 161 Barry St, Melbourne, Vic 3010, Australia..
    Gumprecht, Lars
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Fleckenstein, Holger
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Bajt, Sasa
    DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Barthelmess, Miriam
    DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Coppola, Nicola
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Claverie, Jean-Michel
    CNRS, Informat Genom & Struct UMR7256, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France.;Aix Marseille Univ, Inst Microbiol Mediterranee FR3479, Parc Sci Luminy,Case 934, F-13288 Marseille 9, France..
    Loh, N. Duane
    SLAC Natl Accelerator Lab, Stanford PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.;Natl Univ Singapore, Ctr BioImaging Sci, 14 Sci Dr 4 Blk S1 A, Singapore 117546, Singapore..
    Bostedt, Christoph
    SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Bozek, John D.
    Synchrotron SOLEIL, Lorme Merisiers Roundabout St Aubin, F-91190 St Aubin, France..
    Krzywinski, Jacek
    SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Messerschmidt, Marc
    SLAC Natl Accelerator Lab, LCLS, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Bogan, Michael J.
    SLAC Natl Accelerator Lab, Stanford PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Hampton, Christina Y.
    SLAC Natl Accelerator Lab, Stanford PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Sierra, Raymond G.
    SLAC Natl Accelerator Lab, Stanford PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
    Frank, Matthias
    Lawrence Livermore Natl Lab, 7000 East Ave,Mail Stop L-211, Livermore, CA 94551 USA..
    Shoeman, Robert L.
    Lomb, Lukas
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany..
    Foucar, Lutz
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.;Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Epp, Sascha W.
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Rolles, Daniel
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.;Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Kansas State Univ, Dept Phys, JR Macdonald Lab, 116 Cardwell Hall, Manhattan, KS 66506 USA..
    Rudenko, Artem
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.;Kansas State Univ, Dept Phys, JR Macdonald Lab, 116 Cardwell Hall, Manhattan, KS 66506 USA..
    Hartmann, Robert
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany..
    Hartmann, Andreas
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany..
    Kimmel, Nils
    Max Planck Inst Halbleiterlabor, Otto Hahn Ring 6, D-81739 Munich, Germany.;Max Planck Inst Extraterr Phys, Giessenbachstr, D-85741 Garching, Germany..
    Holl, Peter
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany..
    Weidenspointner, Georg
    Max Planck Inst Halbleiterlabor, Otto Hahn Ring 6, D-81739 Munich, Germany.;Max Planck Inst Extraterr Phys, Giessenbachstr, D-85741 Garching, Germany..
    Rudek, Benedikt
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Erk, Benjamin
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Kassemeyer, Stephan
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany..
    Schlichting, Ilme
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.;Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Strueder, Lothar
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany.;Univ Siegen, Emmy Noether Campus,Walter Flex Str 3, D-57068 Siegen, Germany..
    Ullrich, Joachim
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany.;Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany..
    Schmidt, Carlo
    Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany..
    Krasniqi, Faton
    Max Planck Inst Med Res, Jahnstr 29, D-69120 Heidelberg, Germany.;Max Planck Adv Study Grp, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Hauser, Guenter
    Max Planck Inst Halbleiterlabor, Otto Hahn Ring 6, D-81739 Munich, Germany.;Max Planck Inst Extraterr Phys, Giessenbachstr, D-85741 Garching, Germany..
    Reich, Christian
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany..
    Soltau, Heike
    PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany..
    Schorb, Sebastian
    Tech Univ Berlin, Inst Opt & Atomare Phys, Hardenbergstr 36, D-10623 Berlin, Germany..
    Hirsemann, Helmut
    DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Wunderer, Cornelia
    DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Graafsma, Heinz
    DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Chapman, Henry
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.;Univ Hamburg, Notkestr 85, D-22607 Hamburg, Germany..
    Hajdu, Janos
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. European XFEL, Albert Einstein Ring 19, D-22761 Hamburg, Germany..
    Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser2016In: Scientific Data, E-ISSN 2052-4463, Vol. 3, article id UNSP 160060Article in journal (Refereed)
    Abstract [en]

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  • 8.
    Jönsson, H. Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Femtosecond Dynamics in Water and Biological Materials with an X-Ray Laser2016Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Using high intensity ultrashort pulses from X-ray free electron lasers to investigate soft matter is a recent and successful development. The last decade has seen the development of new variant of protein crystallography with femtosecond dynamics, and single particle imaging with atomic resolution is on the horizon. The work presented here is part of the effort to explain what processes influence the capability to achieve high resolution information in these techniques. Non-local thermal equilibrium plasma continuum modelling is used to predict signal changes as a function of pulse duration, shape and energy. It is found that ionization is the main contributor to radiation damage in certain photon energy and intensity ranges, and diffusion depending on heating is dominant in other scenarios. In femtosecond protein crystallography, self-gating of Bragg diffraction is predicted to quench the signal from the latest parts of an X-ray pulse. At high intensities ionization is dominant and the last part of the pulse will contain less information at low resolution. At lower intensities, displacement will dominate and high resolution information will be gated first. Temporal pulse shape is also an important factor. The difference between pulse shapes is most prominent at low photon energy in the form of a general increase or decrease in signal, but the resolution dependance is most prominent at high energies. When investigating the X-ray scattering from water a simple diffusion model can be replaced by a molecular dynamics simulation, which predicts structural changes in water on femtosecond timescales. Experiments performed at LCLS are presented that supports the simulation results on structural changes that occur in the solvent during the exposure.

    List of papers
    1. Simulations of Radiation Damage as a Function of the Temporal Pulse Profile in Femtosecond X-ray Protein Crystallography
    Open this publication in new window or tab >>Simulations of Radiation Damage as a Function of the Temporal Pulse Profile in Femtosecond X-ray Protein Crystallography
    Show others...
    2015 (English)In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 22, no 2, p. 256-266Article in journal (Refereed) Published
    Abstract [en]

    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10$\sp 4$ to 10$\sp 7$Jcm$\sp $-$2$ with photon energies from 2 to 12keV, up to 100fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination.

    Keywords
    X-ray free-electron laser, serial femtosecond crystallography, radiation damage, plasma simulations
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-245210 (URN)10.1107/S1600577515002878 (DOI)000350641100007 ()
    Available from: 2015-02-25 Created: 2015-02-25 Last updated: 2019-04-28
    2. Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser
    Open this publication in new window or tab >>Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser
    Show others...
    2015 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 2, p. 1213-1231Article in journal (Refereed) Published
    Abstract [en]

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.

    Keywords
    Ultrafast lasers, UV, EUV, and X-ray lasers, X-ray imaging, Diffraction theory, Ultrafast phenomena
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-242136 (URN)10.1364/OE.23.001213 (DOI)000349166100061 ()
    Note

    De två första författarna delar förstaförfattarskapet.

    Available from: 2015-01-21 Created: 2015-01-21 Last updated: 2017-12-05Bibliographically approved
    3. Ultrafast non-thermal heating of water initiated by an X-ray laser
    Open this publication in new window or tab >>Ultrafast non-thermal heating of water initiated by an X-ray laser
    Show others...
    2018 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 22, p. 5652-5657Article in journal (Refereed) Published
    Abstract [en]

    X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-294554 (URN)10.1073/pnas.1711220115 (DOI)000433283700046 ()29760050 (PubMedID)
    Funder
    Swedish Foundation for Strategic Research Swedish Research Council, 2013-3940The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Swedish National Infrastructure for Computing (SNIC)Carl Tryggers foundation
    Note

    De två första författarna delar förstaförfattarskapet

    Available from: 2016-05-24 Created: 2016-05-24 Last updated: 2018-08-20Bibliographically approved
  • 9.
    Jönsson, H. Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Center for Free- Electron Laser Science, Deutsches Elektronen-Synchrotron.
    Andreasson, Jakob
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. Czech Academy of Science, Chalmers University of Technology.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission2017In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, no 6, p. 778-784Article in journal (Refereed)
    Abstract [en]

    Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

  • 10.
    Jönsson, H. Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Östlin, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Scott, Howard A.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Simulations of Radiation Damage as a Function of the Temporal Pulse Profile in Femtosecond X-ray Protein Crystallography2015In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 22, no 2, p. 256-266Article in journal (Refereed)
    Abstract [en]

    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10$\sp 4$ to 10$\sp 7$Jcm$\sp $-$2$ with photon energies from 2 to 12keV, up to 100fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination.

  • 11.
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Ultrafast Structural and Electron Dynamics in Soft Matter Exposed to Intense X-ray Pulses2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Investigations of soft matter using ultrashort high intensity pulses have been made possible through the advent of X-ray free-electrons lasers. The last decade has seen the development of a new type of protein crystallography where femtosecond dynamics can be studied, and single particle imaging with atomic resolution is on the horizon. The pulses are so intense that any sample quickly turns into a plasma. This thesis studies the ultrafast transition from soft matter to warm dense matter, and the implications for structural determination of proteins.                   

    We use non-thermal plasma simulations to predict ultrafast structural and electron dynamics. Changes in atomic form factors due to the electronic state, and displacement as a function of temperature, are used to predict Bragg signal intensity in protein nanocrystals. The damage processes started by the pulse will gate the diffracted signal within the pulse duration, suggesting that long pulses are useful to study protein structure. This illustrates diffraction-before-destruction in crystallography.

    The effect from a varying temporal photon distribution within a pulse is also investigated. A well-defined initial front determines the quality of the diffracted signal. At lower intensities, the temporal shape of the X-ray pulse will affect the overall signal strength; at high intensities the signal level will be strongly dependent on the resolution.

    Water is routinely used to deliver biological samples into the X-ray beam. Structural dynamics in water exposed to intense X-rays were investigated with simulations and experiments. Using pulses of different duration, we found that non-thermal heating will affect the water structure on a time scale longer than 25 fs but shorter than 75 fs. Modeling suggests that a loss of long-range coordination of the solvation shells accounts for the observed decrease in scattering signal.

    The feasibility of using X-ray emission from plasma as an indicator for hits in serial diffraction experiments is studied. Specific line emission from sulfur at high X-ray energies is suitable for distinguishing spectral features from proteins, compared to emission from delivery liquids. We find that plasma emission continues long after the femtosecond pulse has ended, suggesting that spectrum-during-destruction could reveal information complementary to diffraction.

    List of papers
    1. Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser
    Open this publication in new window or tab >>Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser
    Show others...
    2015 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 2, p. 1213-1231Article in journal (Refereed) Published
    Abstract [en]

    In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.

    Keywords
    Ultrafast lasers, UV, EUV, and X-ray lasers, X-ray imaging, Diffraction theory, Ultrafast phenomena
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-242136 (URN)10.1364/OE.23.001213 (DOI)000349166100061 ()
    Note

    De två första författarna delar förstaförfattarskapet.

    Available from: 2015-01-21 Created: 2015-01-21 Last updated: 2017-12-05Bibliographically approved
    2. Simulations of Radiation Damage as a Function of the Temporal Pulse Profile in Femtosecond X-ray Protein Crystallography
    Open this publication in new window or tab >>Simulations of Radiation Damage as a Function of the Temporal Pulse Profile in Femtosecond X-ray Protein Crystallography
    Show others...
    2015 (English)In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 22, no 2, p. 256-266Article in journal (Refereed) Published
    Abstract [en]

    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 10$\sp 4$ to 10$\sp 7$Jcm$\sp $-$2$ with photon energies from 2 to 12keV, up to 100fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination.

    Keywords
    X-ray free-electron laser, serial femtosecond crystallography, radiation damage, plasma simulations
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-245210 (URN)10.1107/S1600577515002878 (DOI)000350641100007 ()
    Available from: 2015-02-25 Created: 2015-02-25 Last updated: 2019-04-28
    3. FreeDam – A Webtool for Free-Electron Laser-Induced Damage in Femtosecond X-ray Crystallography
    Open this publication in new window or tab >>FreeDam – A Webtool for Free-Electron Laser-Induced Damage in Femtosecond X-ray Crystallography
    Show others...
    2018 (English)In: High Energy Density Physics, ISSN 1574-1818, Vol. 26, p. 93-98Article in journal (Refereed) Published
    Abstract [en]

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

    Keywords
    FreeDam, non-local thermodynamic equilibrium, x-ray free-electron laser, radiation damage, serial femtosecond x-ray crystallography, Cretin, simulation, database
    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-329499 (URN)
    Available from: 2017-09-17 Created: 2017-09-17 Last updated: 2019-04-28
    4. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
    Open this publication in new window or tab >>Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
    Show others...
    2015 (English)In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 22, no 2, p. 225-238Article in journal (Refereed) Published
    Abstract [en]

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe–4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe–4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.

    Keywords
    free-electron laser, SFX, serial femtosecond crystallography, radiation damage, protein crystallography, metalloprotein
    National Category
    Structural Biology
    Identifiers
    urn:nbn:se:uu:diva-245011 (URN)10.1107/S1600577515002349 (DOI)000350641100004 ()
    Available from: 2015-02-23 Created: 2015-02-23 Last updated: 2017-12-04Bibliographically approved
    5. Ultrafast non-thermal heating of water initiated by an X-ray laser
    Open this publication in new window or tab >>Ultrafast non-thermal heating of water initiated by an X-ray laser
    Show others...
    2018 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 22, p. 5652-5657Article in journal (Refereed) Published
    Abstract [en]

    X-ray Free-Electron Lasers have opened the door to a new era in structural biology, enabling imaging of biomolecules and dynamics that were impossible to access with conventional methods. A vast majority of imaging experiments, including Serial Femtosecond Crystallography, use a liquid jet to deliver the sample into the interaction region. We have observed structural changes in the carrying water during X-ray exposure, showing how it transforms from the liquid phase to a plasma. This ultrafast phase transition observed in water provides evidence that any biological structure exposed to these X-ray pulses is destroyed during the X-ray exposure.The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2. These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

    National Category
    Atom and Molecular Physics and Optics
    Identifiers
    urn:nbn:se:uu:diva-294554 (URN)10.1073/pnas.1711220115 (DOI)000433283700046 ()29760050 (PubMedID)
    Funder
    Swedish Foundation for Strategic Research Swedish Research Council, 2013-3940The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Swedish National Infrastructure for Computing (SNIC)Carl Tryggers foundation
    Note

    De två första författarna delar förstaförfattarskapet

    Available from: 2016-05-24 Created: 2016-05-24 Last updated: 2018-08-20Bibliographically approved
    6. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
    Open this publication in new window or tab >>Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission
    2017 (English)In: IUCrJ, ISSN 0972-6918, E-ISSN 2052-2525, Vol. 4, no 6, p. 778-784Article in journal (Refereed) Published
    Abstract [en]

    Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

    Keywords
    hit detection, plasma emission spectra, serial femtosecond crystallography, protein structure
    National Category
    Biophysics
    Research subject
    Physics with specialization in Biophysics
    Identifiers
    urn:nbn:se:uu:diva-331934 (URN)10.1107/S2052252517014154 (DOI)000414266200011 ()29123680 (PubMedID)
    Funder
    Swedish Research CouncilSwedish National Infrastructure for Computing (SNIC), 2016-7-61Swedish Foundation for Strategic Research The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)ÅForsk (Ångpanneföreningen's Foundation for Research and Development)
    Available from: 2017-10-25 Created: 2017-10-25 Last updated: 2018-02-05Bibliographically approved
  • 12.
    Jönsson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Östlin, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala university.
    Scott, Howard A.
    Lawrence Livermore National Laboratory, Livermore, California, USA.
    Chapman, Henry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Aplin, Steve J.
    Center for Free-Electron Laser Science, DESY, Hamburg, Germany.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Caleman, C
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    FreeDam – A Webtool for Free-Electron Laser-Induced Damage in Femtosecond X-ray Crystallography2018In: High Energy Density Physics, ISSN 1574-1818, Vol. 26, p. 93-98Article in journal (Refereed)
    Abstract [en]

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  • 13.
    Jönsson, Olof
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Östlin, Christofer
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Scott, Howard A.
    Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
    Chapman, Henry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. DESY, Ctr Free Electron Laser Sci, Notkestr 85, DE-22607 Hamburg, Germany;Univ Hamburg, Dept Phys, Luruper Chaussee 149, DE-22761 Hamburg, Germany;Univ Hamburg, Ctr Ultrafast Imaging, Luruper Chaussee 149, DE-22761 Hamburg, Germany.
    Aplin, Steve J.
    DESY, Ctr Free Electron Laser Sci, Notkestr 85, DE-22607 Hamburg, Germany.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. DESY, Ctr Free Electron Laser Sci, Notkestr 85, DE-22607 Hamburg, Germany.
    FreeDam: A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography2018In: HIGH ENERGY DENSITY PHYSICS, ISSN 1574-1818, Vol. 26, p. 93-98Article in journal (Refereed)
    Abstract [en]

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  • 14.
    Lee, Yu-Jen
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Jönsson, Olof H.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Nordström, Karin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.
    Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 5, article id e0126265Article in journal (Refereed)
    Abstract [en]

    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response.

  • 15.
    Makita, M.
    et al.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Vartiainen, I.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Mohacsi, I.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland;LOrme Merisiers, Synchrotron SOLEIL, F-91190 Saint Aubin, France.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Deutsch Elektronen Synchrotron DESY, CFEL, D-22667 Hamburg, Germany.
    Diaz, A.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Jönsson, Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. KTH Royal Inst Technol, Dept Appl Phys, SE-10691 Stockholm, Sweden.
    Juranic, P.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Medvedev, N.
    Czech Acad Sci, Inst Phys, Prague 18221 8, Czech Republic;Czech Acad Sci, Inst Plasma Phys, Prague 18200 8, Czech Republic.
    Meents, A.
    Deutsch Elektronen Synchrotron DESY, CFEL, D-22667 Hamburg, Germany.
    Mozzanica, A.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Opara, N. L.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland;Univ Basel, C CINA Biozentrum, CH-4058 Basel, Switzerland.
    Padeste, C.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Panneels, V.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Saxena, V.
    Deutsch Elektronen Synchrotron DESY, CFEL, D-22667 Hamburg, Germany;Bhat, Inst Plasma Res, Gandhinagar 382428, India.
    Sikorski, M.
    SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
    Song, S.
    Vera, L.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Willmott, P. R.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Beaud, P.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Milne, C. J.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Ziaja-Motyka, B.
    Deutsch Elektronen Synchrotron DESY, CFEL, D-22667 Hamburg, Germany;Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
    David, C.
    Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
    Femtosecond phase-transition in hard x-ray excited bismuth2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, article id 602Article in journal (Refereed)
    Abstract [en]

    The evolution of bismuth crystal structure upon excitation of its A(1g) phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities (similar to 10(14) W/cm(2)). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300 fs, i.e. faster than one oscillation period of the A(1g) mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.

  • 16. Nass, Karol
    et al.
    Foucar, Lutz
    Barends, Thomas R. M.
    Hartmann, Elisabeth
    Botha, Sabine
    Shoeman, Robert L.
    Doak, R. Bruce
    Alonso-Mori, Roberto
    Aquila, Andrew
    Bajt, Saša
    Barty, Anton
    Bean, Richard
    Beyerlein, Kenneth R.
    Bublitz, Maike
    Drachmann, Nikolaj
    Gregersen, Jonas
    Jönsson, H. Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Kabsch, Wolfgang
    Kassemeyer, Stephan
    Koglin, Jason E.
    Krumrey, Michael
    Mattle, Daniel
    Messerschmidt, Marc
    Nissen, Poul
    Reinhard, Linda
    Sitsel, Oleg
    Sokaras, Dimosthenis
    Williams, Garth J.
    Hau-Riege, Stefan
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
    Chapman, Henry N.
    Boutet, Sébastien
    Schlichting, Ilme
    Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams2015In: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 22, no 2, p. 225-238Article in journal (Refereed)
    Abstract [en]

    Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe–4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe–4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.

  • 17.
    Östlin, Christofer
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Timneanu, Nicusor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Jönsson, H. Olof
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Ekeberg, Tomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular biophysics.
    Martin, Andrew V.
    University of Melbourne, School of Physics, ARC Centre of Excellence for Advanced Molecular Imaging.
    Caleman, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics. Center for Free-Electron Laser Science, DESY, Notkestraße 85, DE-22607 Hamburg, Germany .
    Reproducibility of Single Protein Explosions Induced by X-ray Lasers2018In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 18, p. 12381-12389Article in journal (Refereed)
    Abstract [en]

    Single particle imaging (SPI) using X-ray pulses has become increasingly attainable with the advent of high-intensity free electron lasers. Eliminating the need for crystallized samples enables structural studies of molecules previously inaccessible by conventional crystallography. While this emerging technique already demonstrates substantial promise, some obstacles need to be overcome before SPI can reach its full potential. One such problem is determining the spatial orientation of the sample at the time of X-ray interaction. Existing solutions rely on diffraction data and are computationally demanding and sensitive to noise. In this in silico study, we explore the possibility of aiding these methods by mapping the ion distribution as the sample undergoes a Coulomb explosion following the intense ionization. By detecting the ions ejected from the fragmented sample, the orientation of the original sample should be possible to determine. Knowledge of the orientation has been shown earlier to be of substantial advantage in the reconstruction of the original structure. 150 explosions of each of twelve separate systems – four polypeptides with different amounts of surface bound water – were simulated with molecular dynamics (MD) and the average angular distribution of carbon and sulfur ions was investigated independently. The results show that the explosion maps are reproducible in both cases, supporting the idea that orientation information is preserved. Additional water seems to restrict the carbon ion trajectories further through a shielding mechanism, making the maps more distinct. For sulfurs, water has no significant impact on the trajectories, likely due to their higher mass and greater ionization cross section, indicating that they could be of particular interest. Based on these findings, we conclude that explosion data can aid spatial orientation in SPI experiments and could substantially improve the capabilities of the novel technique.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf