uu.seUppsala University Publications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Danielsson, Ulf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Theoretical Physics.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Theoretical Physics.
    Larfors, Magdalena
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Theoretical Physics.
    The world next door: Results in landscape topography2007In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 03, p. 080-Article in journal (Refereed)
    Abstract [en]

    Recently, it has become clear that neighboring multiple vacua might have interesting consequences for the physics of the early universe. In this paper we investigate the topography of the string landscape corresponding to complex structure moduli of flux compactified type IIB string theory. We find that series of continuously connected vacua are common. The properties of these series are described, and we relate the existence of infinite series of minima to certain unresolved mathematical problems in group theory. Numerical studies of the mirror quintic serve as illustrating examples.

  • 2.
    Englund, Carl-Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Agåker, Marcus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Fredriksson, Pierre
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Olsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rubensson, Jan-Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Nordgren, Joseph
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    An ultra-high vacuum chamber for scattering experiments featuring in-vacuum continuous in-plane variation of the angle between entrance and exit vacuum ports2015In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 86, no 9, article id 095110Article in journal (Refereed)
    Abstract [en]

    A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30 degrees-150 degrees, while the pressure change is less than 2 x 10(-10) mbars.

  • 3.
    Goryashko, Vitaliy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Rutambhara A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Proposal for Design and Test of a 352 MHz Spoke RF Source2012Report (Other academic)
    Abstract [en]

    More than a dozen of spoke resonators prototypes (SSR, DSR, TSR) have been constructed and tested worldwide. None have accelerated beam until now and the ESS LINAC will be the first accelerator to operate with spoke cavities. Experience with other types of superconducting cavities indicates that high-power test is vital for reliable operation of the cavity in an accelerator. Although characteristics of a bare cavity can be obtained in a low-power test some important features of a `dressed' cavity like the electroacoustic stability and tuning system can be studied only in a high-power test stand. The ESS LINAC is a pulsed machine and the Lorentz detuning originating from the electromagnetic pressure on the cavity walls is expected to be strong. The Lorentz force along with the cavity sensitivity to mechanical excitations at some resonant frequencies may lead to self-sustained mechanical vibrations which make cavity operation dicult. Practical experience shows that increasing the boundary stiness will decrease the static Lorentz force detuning but not necessarily the dynamic one. Therefore, the FREIA group at Uppsala University is building a high-power test stand able to study performance of the ESS spoke cavity at high power. The RF test stand will be able to drive the cavity not only in the self-excitation mode but also with closed RF loop and fixed frequency. The later technique will be used to reproduce the shape of the cavity voltage pulse as it is expected to be in the cavity operating in the ESS LINAC such that the cavity tuning compensation system will be tested under realistic conditions.

  • 4.
    Holmberg, Max
    et al.
    Uppsala Univ, Dept Engn Sci, Angstrom Lab, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hjörvarsson, Björgvin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Marattukalam, Jithin James
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Andersson, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    On Surface Losses in Direct Metal Laser Sintering Printed Millimeter and Submillimeter Waveguides2018In: Journal of Infrared, Millimeter and Terahertz Waves, ISSN 1866-6892, E-ISSN 1866-6906, Vol. 39, no 6, p. 535-545Article in journal (Refereed)
    Abstract [en]

    Different lengths of WR3 (220-330 GHz) and WR10 (75-110 GHz) waveguides are fabricated through direct metal laser sintering (DMLS). The losses in these waveguides are measured and modelled using the Huray surface roughness model. The losses in WR3 are around 0.3 dB/mm and in WR10 0.05 dB/mm. The Huray equation model is accounting relatively good for the attenuation in the WR10 waveguide but deviates more in the WR3 waveguide. The model is compared to finite element simulations of the losses assuming an approximate surface structure similar to the resulting one from the DMLS process.

  • 5.
    Holmberg, Måns
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Hjörvarsson, Björgvin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Jansson, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Marattukalam, Jithin J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Physics.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Andersson, Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Direct metal laser sintering printed millimeter and submillimeter waveguides2018Conference paper (Other academic)
  • 6.
    Jonsson, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Gråsjö, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Nordström, Josefina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Frenning, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
    An apparatus for confined triaxial testing of single particles2015In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 270, p. 121-127Article in journal (Refereed)
    Abstract [en]

    A novel triaxial apparatus employing overlapping rigid boundaries has been designed and constructed for experimental measurement of contact forces under confined compression of single granules in the mm-scale. The performance of the apparatus was evaluated by performing uniaxial and triaxial compression experiments on ideal elastic-plastic materials. Compression curves were compared with the fully plastic Abbott-Firestone contact model and with results from FEM simulations. The increase in contact force associated with confined conditions was observed in the compression curves from triaxial compression experiments, as supported by predictions from simulations using single particle contact models. Hence, a new method for the assessment of mechanical behaviour of single particles under confined compression can be considered as established.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf