uu.seUppsala University Publications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hallberg, Pär
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Smedje, Hans
    Division of Child and Adolescent Psychiatry, Karolinska Institutet, Stockholm, Sweden.
    Eriksson, Niclas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kohnke, Hugo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Daniilidou, Makrina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Öhman, Inger
    Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden.
    Yue, Qun-Ying
    Medical Products Agency, Uppsala, Sweden.
    Cavalli, Marco
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Wadelius, Claes
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medicinsk genetik och genomik.
    Magnusson, Patrik K. E.
    Swedish Twin Registry, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Landtblom, Anne-Marie
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology.
    Wadelius, Mia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival2019In: EBioMedicine, E-ISSN 2352-3964, Vol. 40, p. 595-604Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The incidence of narcolepsy rose sharply after the swine influenza A (H1N1) vaccination campaign with Pandemrix. Narcolepsy is an immune-related disorder with excessive daytime sleepiness. The most frequent form is strongly associated with HLA-DQB1*06:02, but only a minority of carriers develop narcolepsy. We aimed to identify genetic markers that predispose to Pandemrix-induced narcolepsy.

    METHODS: We tested for genome-wide and candidate gene associations in 42 narcolepsy cases and 4981 controls. Genotyping was performed on Illumina arrays, HLA alleles were imputed using SNP2HLA, and single nucleotide polymorphisms were imputed using the haplotype reference consortium panel. The genome-wide significance threshold was p < 5 × 10-8, and the nominal threshold was p < 0.05. Results were replicated in 32 cases and 7125 controls. Chromatin data was used for functional annotation.

    FINDINGS: Carrying HLA-DQB1*06:02 was significantly associated with narcolepsy, odds ratio (OR) 39.4 [95% confidence interval (CI) 11.3, 137], p = 7.9 × 10-9. After adjustment for HLA, GDNF-AS1 (rs62360233) was significantly associated, OR = 8.7 [95% CI 4.2, 17.5], p = 2.6 × 10-9, and this was replicated, OR = 3.4 [95% CI 1.2-9.6], p = 0.022. Functional analysis revealed variants in high LD with rs62360233 that might explain the detected association. The candidate immune-gene locus TRAJ (rs1154155) was nominally associated in both the discovery and replication cohorts, meta-analysis OR = 2.0 [95% CI 1.4, 2.8], p = 0.0002.

    INTERPRETATION: We found a novel association between Pandemrix-induced narcolepsy and the non-coding RNA gene GDNF-AS1, which has been shown to regulate expression of the essential neurotrophic factor GDNF. Changes in regulation of GDNF have been associated with neurodegenerative diseases. This finding may increase the understanding of disease mechanisms underlying narcolepsy. Associations between Pandemrix-induced narcolepsy and immune-related genes were replicated.

  • 2. Howard, Rebecca
    et al.
    Leathart, Julian B S
    French, David J
    Krishan, Elaina
    Kohnke, Hugo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical Pharmacology.
    Wadelius, Mia
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis.
    van Schie, Rianne
    Verhoef, Talitha
    Maitland-van der Zee, Anke-Hilse
    Daly, Ann K
    Barallon, Rita
    Genotyping for CYP2C9 and VKORC1 alleles by a novel point of care assay with HyBeacon® probes2011In: Clinica Chimica Acta, ISSN 0009-8981, E-ISSN 1873-3492, Vol. 412, no 23-24, p. 2063-2069Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Coumarin anticoagulants such as warfarin are used to treat and prevent thromboembolic events in patients. The required dosage is difficult to predict and the risk of over or under anticoagulation are dependent on several environmental and clinical factors, such as concurrent medication, diet, age and genotype for polymorphisms in two genes CYP2C9 and VKORC1.

    METHODS: A novel fluorescent PCR genotyping assay using HyBeacon® probes, was developed to enable clinical staff to genotype the CYP2C9*2 and CYP2C9*3 alleles and the VKORC1 G-1639A polymorphism directly from unextracted blood samples. A prototype PCR instrument, Genie 1, suitable for point of care use was developed to carry out the assays. The panel of tests was validated by analysing blood samples from 156 individuals and comparing genotypes with data obtained using DNA samples from the same individuals. The accuracy of genotypes obtained with the Genie 1 was compared against results from well validated real time PCR and PCR-restriction fragment length polymorphism analysis.

    RESULTS: Identical results were obtained for the newly developed HyBeacon® method and the validation method in all cases except for one where no result was obtained for the VKORC1 polymorphism on the Genie instrument. The samples used for validation represented all six possible *2 and *3 allele-related CYP2C9 genotypes and all three VKORC1 G-1639A genotypes.

    CONCLUSIONS: We observed excellent accuracy for the newly developed method which can determine genotype in less than 2 h.

  • 3.
    Wadelius, Mia
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Eriksson, Niclas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Medicinska och farmaceutiska vetenskapsområdet, centrumbildningar mm, UCR-Uppsala Clinical Research Center. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Kreutz, Reinhold
    Universitätsmedizin Berlin, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany.
    Bondon-Guitton, Emmanuelle
    Service de Pharmacologie Médicale et Clinique, Centre Hospitalier Universitaire, Faculté de Médecine de l'Université de Toulouse, Toulouse, France.
    Ibañez, Luisa
    Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Fundació Institut Català de Farmacologia, Barcelona, Spain.
    Carvajal, Alfonso
    Centro de Estudios sobre la Seguridad de los Medicamentos, Universidad de Valladolid, Valladolid, Spain.
    Lucena, M Isabel
    S Farmacologia Clinica, Instituto de Investigación Biomedica de Málaga (IBIMA), H Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Madrid, Spain.
    Sancho Ponce, Esther
    Servei d'Hematologia i Banc de Sang, Hospital General de Catalunya, Sant Cugat del Vallès, Spain.
    Molokhia, Mariam
    NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London Department of Primary Care and Public Health Sciences, London, U.
    Martin, Javier
    Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada, Spain.
    Axelsson, Tomas
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine.
    Kohnke, Hugo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis.
    Yue, Qun-Ying
    Medical Products Agency, Uppsala, Sweden.
    Magnusson, Patrik K E
    Swedish Twin Registry, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Bengtsson, Mats
    Uppsala University, Science for Life Laboratory, SciLifeLab.
    Hallberg, Pär
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Clinical pharmacogenomics and osteoporosis. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Sulfasalazine-Induced Agranulocytosis Is Associated With the Human Leukocyte Antigen Locus.2018In: Clinical Pharmacology and Therapeutics, ISSN 0009-9236, E-ISSN 1532-6535, Vol. 103, no 5, p. 843-853Article in journal (Refereed)
    Abstract [en]

    Agranulocytosis is a serious, although rare, adverse reaction to sulfasalazine, which is used to treat inflammatory joint and bowel disease. We performed a genome‐wide association study comprising 9,380,034 polymorphisms and 180 HLA alleles in 36 cases of sulfasalazine‐induced agranulocytosis and 5,170 population controls. Sulfasalazine‐induced agranulocytosis was significantly associated with the HLA region on chromosome 6. The top hit (rs9266634) was located close to HLA‐B, odds ratio (OR) 5.36 (95% confidence interval (CI) (2.97, 9.69) P = 2.55 × 10−8). We HLA‐sequenced a second cohort consisting of 40 cases and 142 treated controls, and confirmed significant associations with HLA‐B*08:01, OR = 2.25 (95% CI (1.02, 4.97) P = 0.0439), in particular the HLA‐B*08:01 haplotype HLA‐DQB1*02:01‐DRB1*03:01‐B*08:01‐C*07:01, OR = 3.79 (95% CI (1.63, 8.80) P = 0.0019), and with HLA‐A*31:01, OR = 4.81 (95% CI (1.52, 15.26) P = 0.0077). The number needed to test for HLA‐B*08:01 and HLA‐A*31:01 to avoid one case was estimated to be 1,500. We suggest that intensified monitoring or alternative treatment should be considered for known carriers of HLA‐B*08:01 or HLA‐A*31:01.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf