uu.seUppsala University Publications
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blom, Henning
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Jerve, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Qu, Qingming
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Chen, Donglei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Märss, Tiiu
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Dupret, Vincent
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    The affinity of Lophosteus and the evolution of osteichthyan characters2011Conference paper (Other academic)
  • 2.
    Blom, Henning
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Jerve, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Qu, Qinming
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Chen, Dong Lei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Märss, Tiiu
    Tallinn University of Technology.
    Dupret, Vincent
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    The affinity of Lophosteus  and the evolution of osteichthyan characters2011Conference paper (Refereed)
  • 3.
    Chen, Dong Lei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Alavi, Yasaman
    Univ Melbourne, Sch BioSci, Australia.
    Brazeau, Martin D.
    Imperial Coll London, Dept Life Sci, Berks, England.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Millward, David
    British Geol Survey, Lyell Ctr, Edinburgh, Midlothian, Scotland.
    Ahlberg, Per E.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    A partial lower jaw of a tetrapod from "Romer's Gap"2018In: Earth and environmental science transactions of the Royal Society of Edinburgh, ISSN 1755-6910, E-ISSN 1755-6929, Vol. 108, no 1, p. 55-65Article in journal (Refereed)
    Abstract [en]

    The first half of the Mississippian or Early Carboniferous (Tournaisian to mid-Visean), an interval of about 20 million years, has become known as "Romer's Gap" because of its poor tetrapod record. Recent discoveries emphasise the differences between pre-"Gap" Devonian tetrapods, unambiguous stem-group members retaining numerous "fish" characters indicative of an at least partially aquatic lifestyle, and post-"Gap" Carboniferous tetrapods, which are far more diverse and include fully terrestrial representatives of the main crown-group lineages. It seems that "Romer's Gap" coincided with the cladogenetic events leading to the origin of the tetrapod crown group. Here, we describe a partial right lower jaw ramus of a tetrapod from the late Tournaisian or early Visean of Scotland. The large and robust jaw displays a distinctive character combination, including a significant mesial lamina of the strongly sculptured angular, an open sulcus for the mandibular lateral line, a non-ossified narrow Meckelian exposure, a well-defined dorsal longitudinal denticle ridge on the prearticular, and a mesially open adductor fossa. A phylogenctic analysis places this specimen in a trichotomy with Crassigyrinus and baphetids + higher tetrapods in the upper part of the tetrapod stem group, above Whatcheeria, Pederpes, Ossinodus, Sigournea and Greererpeton. It represents a small but significant step in the gradual closure of "Romer's Gap".

  • 4.
    Chen, Dong Lei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Tafforeau, Paul
    Estonian Marine Institute, University of Tartu.
    Märss, Tiiu
    Estonian Marine Institute, University of Tartu.
    Ahlberg, Per E.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Development of cyclic shedding teeth from semi-shedding teeth: the inner dental arcade of the stem osteichthyan Lophosteus 2017In: Royal Society Open Science, E-ISSN 2054-5703, Vol. 4, no 5, article id 161084Article in journal (Refereed)
    Abstract [en]

    The numerous cushion-shaped tooth-bearing plates attributed to the stem-group osteichthyan Lophosteus superbus, which are argued here to represent the ancient form of inner dental arcade, display a unique and presumably primitive way of tooth shedding by basal hard tissue resorption. They carry regularly spaced, recumbent, gently recurved teeth arranged in transverse tooth files that diverge towards the lingual margin of the cushion. Three-dimensional (3D) reconstruction from propagation phase contrast synchrotron microtomography (PPC-SRμCT) reveals remnants of the first-generation teeth embedded in the basal plate that have never been discerned in any taxa. These teeth were shed by semi-basal resorption with the periphery of their bases retained as dentine rings. The rings are highly overlapped, which evidences tooth shedding prior to adding the next first-generation tooth. Later teeth at the same sites underwent cyclical replacing and shedding through basal resorption, producing stacks of buried resorption surfaces separated by bone of attachment. The number and spatial arrangement of resorption surfaces elucidates that basal resorption of replacement teeth had taken place at the older tooth sites before the addition of the youngest first-generation teeth at the lingual margin. Thus the replacement tooth buds cannot have been generated by a single permanent dental lamina, but must have arisen either from successional dental laminae associated with the predecessor teeth, or directly from the dental epithelium of these teeth. The virtual histological dissection of these Late Silurian microfossils broadens our understanding of the development of the gnathostome dental systems and the acquisition of the osteichthyan-type of tooth replacement. 

  • 5.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    A Partial Tetrapod Lower Jaw from “Romer’s Gap”2009In: SVP 69th Annual Meeting and the 57th Symposium of Vertebrate Palaeontology and Comparative Anatomy (SVPCA), 2009Conference paper (Other academic)
  • 6.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Dental Development of the Stem Osteichthyan Andreolepis hedei Revealed by Three-dimensional Synchrotron Virtual Paleohistology2013In: Program and Abstracts: Society of Vertebrate Paleontology 73rd Annual meeting, 2013, p. 103-103Conference paper (Other academic)
  • 7.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Dental Development of the Stem Osteichthyan Andreolepis hedei Revealed by Three-dimensional Synchrotron Virtual Paleohistology2013Conference paper (Other academic)
  • 8. Chen, Donglei
    et al.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Scale morphology and squamation of Andreolepis from the Late Silurian of Gotland, Sweden.2011Conference paper (Other academic)
  • 9.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Scale morphology and squamation of Andreolepis from the Late Silurian of Gotland, Sweden2011In: GFF, ISSN 1103-5897, E-ISSN 2000-0863, Vol. 133, no 1-2, p. 60-61p. 60-61Article in journal (Refereed)
  • 10.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Three-dimensional histology of tooth cushions of Lophosteus from the Late Silurian of Estonia2011In: Program and Abstracts: 71st Annual Meeting, Society of Vertebrate Paleontolog, Philadelphia: Society of Vertebrate Paleontology , 2011, p. 87-87Conference paper (Other academic)
  • 11.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Three-dimensional histology of tooth cushions of Lophosteus from the Upper Silurian of Estonia2011In: Abstracts: The 2nd Wiman meeting: Carl Wiman's Legacy: 100 years of Swedish Palaeontology: Uppsala 17–18 November 2011 / [ed] Benjamin P. Kear and Michael Streng, 2011, p. 5-6Conference paper (Other academic)
    Abstract [en]

    Lophosteus superbus from the Late Silurian of Estonia is one of the oldest and most plesiomorphic osteichthyans described to date. Unfortunately at present it is known only from fragmented dermal microremains. The affinities of Lophosteus are therefore controversial with the taxon placed as either basal to both actinopterygians and sarcopterygians, or ambiguously linked to either placoderms or acanthodians. To confound matters further, the character states diagnosing actinopterygians and sarcopterygians have recently been brought into question, and even monophyly of the traditional placoderm and acanthodian clades has been challenged. As a possible stem osteichthyan, Lophosteus could thus be central to our understanding of early gnathostome evolution and the origin of the osteichthyan body plan. Often the best-preserved, although incompletely documented, elements of Lophosteus are tooth cushions. These tooth-bearing arched ossicles could arguably be homologous with the parasymphysial tooth whorls in chondrichthyans, acanthodians, and sarcopterygians, or even the parasymphysial tooth plates in tetrapodomorphs. High-resolution synchrotron scans of 6 isolated tooth cushions from the Upper Silurian of Estonia has permitted a detailed reconstruction of their three-dimensional architecture. The absence of an enamel layer and the presence of large hollows (bigger than normal osteocytes) in the deepest lamellar layer confirmed assignment of the specimens to Lophosteus. The external surface displays irregularly distributed denticles and there are large parallel vessels running horizontally on the basal bone that feed the denticle rows internally. The odontodes have two distinct generations (with successive odontodes accreted between those of the preceding buried generation) and are organised in a similar manner to those found on Lophosteus scales. This new histological data on vascularization provides insight into early gnathostome tooth patterning and could contribute to future phylogenetic assessments.

  • 12.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Sanchez, Sophie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology. Uppsala University, Science for Life Laboratory, SciLifeLab. European Synchrotron Radiat Facil, 6 Rue Jules Horowitz, F-38043 Grenoble, France..
    Tafforeau, Paul
    European Synchrotron Radiat Facil, 6 Rue Jules Horowitz, F-38043 Grenoble, France..
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The stem osteichthyan Andreolepis and the origin of tooth replacement2016In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 539, no 7628, p. 237-+Article in journal (Refereed)
    Abstract [en]

    The teeth of gnathostomes (jawed vertebrates) show rigidly patterned, unidirectional replacement that may or may not be associated with a shedding mechanism. These mechanisms, which are critical for the maintenance of the dentition, are incongruently distributed among extant gnathostomes. Although a permanent tooth-generating dental lamina is present in all chondrichthyans, many tetrapods and some teleosts, it is absent in the non-teleost actinopterygians. Tooth-shedding by basal hard tissue resorption occurs in most osteichthyans (including tetrapods) but not in chondrichthyans. Here we report a three-dimensional virtual dissection of the dentition of a 424-million-year-old stem osteichthyan, Andreolepis hedei, using propagation phase-contrast synchrotron microtomography, with a reconstruction of its growth history. Andreolepis, close to the common ancestor of all extant osteichthyans, shed its teeth by basal resorption but probably lacked a permanent dental lamina. This is the earliest documented instance of resorptive tooth shedding and may represent the primitive osteichthyan mode of tooth replacement.

  • 13.
    Chen, Donglei
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Janvier, Philippe
    Département Histoire de la Terre, Muséum National d'Histoire Naturelle,.
    Ahlberg, Per
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology.
    Scale morphology and squamation of the Late Silurian osteichthyan Andreolepis from Gotland, Sweden2012In: Historical Biology, ISSN 0891-2963, E-ISSN 1029-2381, Vol. 24, no 4, p. 411-423Article in journal (Refereed)
    Abstract [en]

    The origin of osteichthyans (bony fishes and tetrapods) dates back to the Late Silurian, but the early evolution of the group is poorly understood. Andreolepis is one of the oldest known osteichthyans, but exclusively documented by detached and fragmentary dermal microremains. A large data-set of Andreolepis scales from the Silurian of Gotland has been used to explore the scale morphology on different parts of the body. Landmark-based geometric morphometrics together with comparative anatomy and functional morphology has allowed 10 morphotypes to be identified and incorporated into a squamation model, in which scales are allocated to anterior-mid lateral flank scales, posterior lateral flank scales, caudal peduncle scales, pectoral peduncle scales, dorsal flank scales, dorsal fulcral scales, caudal fulcral scales, ventral flank scales, medioventral scales and cranial scales. The scale morphology and squamation pattern ofAndreolepis may be primitive for the Osteichthyes and thus informative about the acquisition of the osteichthyan body plan.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf