uu.seUppsala University Publications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Discovery and evaluation of direct acting antivirals against hepatitis C virus2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Until recently, the standard therapy for hepatitis C treatment has been interferon and ribavirin. Such treatment has only 50% efficacy and is not well tolerated. The emergence of new drugs has increased the treatment efficacy to 90%. Despite such an achievement, the success is limited since the virus mutates rapidly, causing the emergence of drug resistant forms. In addition, most new drugs were developed to treat genotype 1 infections. Thus, development of new potent antivirals is needed and drug discovery against hepatitis C is continued.

    In this thesis, a FRET-based protease assay was used to evaluate new pyrazinone based NS3 protease inhibitors that are structurally different to the newly approved and currently developing drugs. Several compounds in this series showed good potencies in the nanomolar range against NS3 proteases from genotype 1, 3, and the drug resistance variant R155K. We assume that these compounds can be further developed into drug candidates that possess activity against above mentioned enzyme variants.

    By using SPR technology, we analyzed interaction mechanisms and characteristics of allosteric inhibitors targeting NS5B polymerases from genotypes 1 and 3. The compounds exhibited different binding mechanisms and displayed a low affinity against NS5B from genotype 3.

    In order to evaluate the activity and inhibitors of the NS5B polymerase, we established an SPR based assay, which enables the monitoring of polymerization and its inhibition in real time. This assay can readily be implemented for the discovery of inhibitors targeting HCV.

    An SPR based fragment screening approach has also been established. A screen of a fragment library has been performed in order to identify novel scaffolds that can be used as a starting point for development of new allosteric inhibitors against NS5B polymerase. Selected fragments will be further elaborated to generate a new potent allosteric drug candidate.

    Alternative approaches have successfully been developed and implemented to the discovery of potential lead compounds targeting two important HCV drug targets.

    List of papers
    1. Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease
    Open this publication in new window or tab >>Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease
    Show others...
    2016 (English)In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 24, no 12, p. 2603-2620Article in journal (Refereed) Published
    Abstract [en]

    Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wildtype and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.

    Keywords
    Hepatitis C virus; Drug resistance; Pyrazinone; NS3 protease inhibitors; R155K
    National Category
    Organic Chemistry
    Research subject
    Medicinal Chemistry
    Identifiers
    urn:nbn:se:uu:diva-243315 (URN)10.1016/j.bmc.2016.03.066 (DOI)000376727800002 ()27160057 (PubMedID)
    Funder
    Swedish Research Council, D0571301
    Available from: 2015-02-08 Created: 2015-02-08 Last updated: 2017-12-04Bibliographically approved
    2. Pyrazinone based hepatitis C virus NS3 protease inhibitors targeting genotype 1a, 3a and the drug-resistant enzyme variant R155K
    Open this publication in new window or tab >>Pyrazinone based hepatitis C virus NS3 protease inhibitors targeting genotype 1a, 3a and the drug-resistant enzyme variant R155K
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265295 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    3. Resolution of the Interaction Mechanisms and Characteristics of Non-nucleoside Inhibitors of Hepatitis C Virus Polymerase - Laying the Foundation for Discovery of Allosteric HCV Drugs
    Open this publication in new window or tab >>Resolution of the Interaction Mechanisms and Characteristics of Non-nucleoside Inhibitors of Hepatitis C Virus Polymerase - Laying the Foundation for Discovery of Allosteric HCV Drugs
    Show others...
    2013 (English)In: Antiviral Research, ISSN 0166-3542, E-ISSN 1872-9096, Vol. 97, no 3, p. 356-368Article in journal (Other academic) Published
    Abstract [en]

    Development of allosteric inhibitors into efficient drugs is hampered by their indirect mode-of-action and complex structure-kinetic relationships. To enablethe design of efficient allosteric drugs targeting the polymerase of hepatitis C virus(NS5B), the interaction characteristics of three non-nucleoside compounds (filibuvir, VX-222, and tegobuvir) inhibiting HCV replication via NS5B have been analyzed. Since there was no logical correlation between the anti-HCV replicative and enzyme inhibitory effects of the compounds, surface plasmon resonance biosensor technology was used to resolve the mechanistic, kinetic, thermodynamic and chemodynamic features of their interactions with their target and their effect on itsinteraction with RNA. Tegobuvir could not be seen to interact with NS5B at all while filibuvir interacted in a single reversible step (except at low temperatures) and VX-222 in two serial steps, interpreted as an induced fit mechanism. Both filibuvir and VX-222 interfered with the interaction between NS5B and RNA. They competed for binding to the enzyme, suggesting that they had a common inhibition mechanism and identical or overlapping binding sites. The greater anti-HCV replicative activityof VX-222 over filibuvir is hypothesized to be due to a greater allosteric conformational effect, resulting in the formation of a less catalytically competent complex. In addition, the induced fit mechanism of VX-222 gives it a kinetic advantage over filibuvir, exhibited as a longer residence time. These insights have important consequences for the selection and optimization of new allosteric NS5Binhibitors.

    Keywords
    HCV, NS5B, filibuvir, VX-222, tegobuvir, allosteric inhibitor, induced fit, kinetics, chemodynamics, thermodynamics
    National Category
    Biochemistry and Molecular Biology
    Research subject
    Biochemistry; Biochemistry
    Identifiers
    urn:nbn:se:uu:diva-171996 (URN)10.1016/j.antiviral.2012.12.027 (DOI)000317709400018 ()
    Available from: 2012-04-03 Created: 2012-03-31 Last updated: 2017-12-07Bibliographically approved
    4. Characterization of allosteric inhibitors of hepatitis C virus polymerase – a genotype comparative study
    Open this publication in new window or tab >>Characterization of allosteric inhibitors of hepatitis C virus polymerase – a genotype comparative study
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265287 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    5. A time-resolved surface plasmon resonance based hepatitis C virus NS5B polymerase assay and its application for drug discovery
    Open this publication in new window or tab >>A time-resolved surface plasmon resonance based hepatitis C virus NS5B polymerase assay and its application for drug discovery
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265290 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
    6. Fragment library screening addressing Hepatitis C protein NS5B from genotypes 1 and 3 using an SPR-based approach
    Open this publication in new window or tab >>Fragment library screening addressing Hepatitis C protein NS5B from genotypes 1 and 3 using an SPR-based approach
    Show others...
    (English)Manuscript (preprint) (Other academic)
    National Category
    Biochemistry and Molecular Biology
    Identifiers
    urn:nbn:se:uu:diva-265292 (URN)
    Available from: 2015-10-26 Created: 2015-10-26 Last updated: 2016-01-13
  • 2.
    Abdurakhmanov, Eldar
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Solbak, Sara Oie
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Biophysical Mode-of-Action and Selectivity Analysis of Allosteric Inhibitors of Hepatitis C Virus (HCV) Polymerase2017In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 9, no 6, article id 151Article in journal (Refereed)
    Abstract [en]

    Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.

  • 3.
    Al-Amin, Rasel A.
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Science for Life Laboratory, SciLifeLab, Science for Life Laboratory, SciLifeLab.
    Johansson, Lars
    Division of Translational Medicine & Chemical Biology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet.
    Landegren, Nils
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Autoimmunity. Uppsala University, Science for Life Laboratory, SciLifeLab. Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet.
    Löf, Liza
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Blokzijl, Andries
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Svensson, Richard
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lönn, Peter
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Dept. Of Immunology, Genetics and Pathology,.
    Söderberg, Ola
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Kamali-Moghaddam, Masood
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences.
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Artursson, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundbäck, Thomas
    Division of Translational Medicine & Chemical Biology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet.
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Target Engagement-Mediated Amplification for Monitoring Drug-Target Interactions in SituManuscript (preprint) (Other academic)
    Abstract [en]

    It is important to determine the localization of drugs or drug candidates at cellular and subcellular resolution in relevant clinical specimens. This is necessary to evaluate drug candidates from early stages of drug development to clinical evaluation of mutations potentially causing resistance to targeted therapy. We describe a technology where oligonucleotide-conjugated drug molecules are used to visualize and measure target engagement in situ via rolling-circle amplification (RCA) of circularized oligonucleotide probes (padlock probes). We established this target engagement-mediated amplification (TEMA) technique using kinase inhibitor precursor compounds, and we applied the assay to investigate target interactions by microscopy in pathology tissue sections and using flow cytometry for blood samples from patients, as well as in commercial arrays including almost half of all human proteins.  In the variant proxTEMAtechnique, in situ proximity ligation assays were performed by combining drug-DNA conjugates with antibody-DNA conjugates to specifically reveal drug binding to particular on- or off-targets in pathological tissues sections. In conclusion, the TEMA methods successfully visualize drug-target interaction by experimental and clinically approved kinase inhibitors in situ and with kinases among a large collection of arrayed proteins. 

  • 4.
    Belfrage, Anna Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Åkerblom, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery.
    Brandt, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery.
    Alogheli, Hiba
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery.
    Neyts, Johan
    Rega Institute, Department of Microbiology and Immunology, University of Leuven, B-3000 Leuven, Belgium.
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Johansson, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Drug Design and Discovery.
    Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold2018In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 148, p. 453-464Article in journal (Refereed)
    Abstract [en]

    Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors and show that elongated R-3 urea substituents were associated with increased inhibitory potencies over several NS3 protein variants. The inhibitors are believed to rely on beta-sheet mimicking hydrogen bonds which are similar over different genotypes and current drug resistant variants and correspond to the beta-sheet interactions of the natural peptide substrate. Inhibitor 36, for example, with a urea substituent including a cyclic imide showed balanced nanomolar inhibitory potencies against genotype la, both wild-type (K-i=30 nM) and R155K (K-i=2 nM), and genotype 3a (K-i=5 nM).

  • 5.
    Belfrage, Anna Karin
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Åkerblom, Eva
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Brandt, Peter
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Oshalim, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Gising, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Skogh, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Neyts, Johan
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Sandström, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Discovery of pyrazinone based compounds that potently inhibit the drug resistant enzyme variant R155K of the hepatitis C virus NS3 protease2016In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 24, no 12, p. 2603-2620Article in journal (Refereed)
    Abstract [en]

    Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wildtype and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.

  • 6.
    Solbak, Sara M.Ø.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Vedeler, Anni
    University of Bergen, Department of Biomedicine.
    Danielson, U. Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Characterization of interactions between hepatitis C virus NS5B polymerase, annexin A2 and RNA - effects on NS5B catalysis and allosteric inhibition2017In: Virology Journal, ISSN 1743-422X, E-ISSN 1743-422X, Vol. 14, article id 236Article in journal (Refereed)
    Abstract [en]

    Background: Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy.

    Methods: Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition.

    Results: No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (K D = 30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences.

    Conclusions: The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors.

  • 7.
    Winquist, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Abdurakhmanov, Eldar
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Baraznenok, Vera
    Medivir.
    Henderson, Ian
    Medivir.
    Vrang, Lotta
    Medivir.
    Danielson, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Biochemistry.
    Resolution of the Interaction Mechanisms and Characteristics of Non-nucleoside Inhibitors of Hepatitis C Virus Polymerase - Laying the Foundation for Discovery of Allosteric HCV Drugs2013In: Antiviral Research, ISSN 0166-3542, E-ISSN 1872-9096, Vol. 97, no 3, p. 356-368Article in journal (Other academic)
    Abstract [en]

    Development of allosteric inhibitors into efficient drugs is hampered by their indirect mode-of-action and complex structure-kinetic relationships. To enablethe design of efficient allosteric drugs targeting the polymerase of hepatitis C virus(NS5B), the interaction characteristics of three non-nucleoside compounds (filibuvir, VX-222, and tegobuvir) inhibiting HCV replication via NS5B have been analyzed. Since there was no logical correlation between the anti-HCV replicative and enzyme inhibitory effects of the compounds, surface plasmon resonance biosensor technology was used to resolve the mechanistic, kinetic, thermodynamic and chemodynamic features of their interactions with their target and their effect on itsinteraction with RNA. Tegobuvir could not be seen to interact with NS5B at all while filibuvir interacted in a single reversible step (except at low temperatures) and VX-222 in two serial steps, interpreted as an induced fit mechanism. Both filibuvir and VX-222 interfered with the interaction between NS5B and RNA. They competed for binding to the enzyme, suggesting that they had a common inhibition mechanism and identical or overlapping binding sites. The greater anti-HCV replicative activityof VX-222 over filibuvir is hypothesized to be due to a greater allosteric conformational effect, resulting in the formation of a less catalytically competent complex. In addition, the induced fit mechanism of VX-222 gives it a kinetic advantage over filibuvir, exhibited as a longer residence time. These insights have important consequences for the selection and optimization of new allosteric NS5Binhibitors.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf