uu.seUppsala University Publications
Change search
Refine search result
1 - 22 of 22
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bhattacharyya, Anirban
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Olvegård, Maja
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    ESS RF Source and Spoke Cavity Test Plan2015Report (Other academic)
    Abstract [en]

    This report describes the test plan for the first high power RF source, ESS prototype double spoke cavity and ESS prototype cryomodule at the FREIA Laboratory.

  • 2.
    Goryashko, Vitaliy
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Johansson, Niklas
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Rutambhara A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Proposal for Design and Test of a 352 MHz Spoke RF Source2012Report (Other academic)
    Abstract [en]

    More than a dozen of spoke resonators prototypes (SSR, DSR, TSR) have been constructed and tested worldwide. None have accelerated beam until now and the ESS LINAC will be the first accelerator to operate with spoke cavities. Experience with other types of superconducting cavities indicates that high-power test is vital for reliable operation of the cavity in an accelerator. Although characteristics of a bare cavity can be obtained in a low-power test some important features of a `dressed' cavity like the electroacoustic stability and tuning system can be studied only in a high-power test stand. The ESS LINAC is a pulsed machine and the Lorentz detuning originating from the electromagnetic pressure on the cavity walls is expected to be strong. The Lorentz force along with the cavity sensitivity to mechanical excitations at some resonant frequencies may lead to self-sustained mechanical vibrations which make cavity operation dicult. Practical experience shows that increasing the boundary stiness will decrease the static Lorentz force detuning but not necessarily the dynamic one. Therefore, the FREIA group at Uppsala University is building a high-power test stand able to study performance of the ESS spoke cavity at high power. The RF test stand will be able to drive the cavity not only in the self-excitation mode but also with closed RF loop and fixed frequency. The later technique will be used to reproduce the shape of the cavity voltage pulse as it is expected to be in the cavity operating in the ESS LINAC such that the cavity tuning compensation system will be tested under realistic conditions.

  • 3.
    Junquera, Tomas
    et al.
    Accelerator and Cryogenic Systems.
    Bujard, P.
    Accelerator and Cryogenic Systems.
    Chevalier, N.
    Accelerator and Cryogenic Systems.
    Thermeau, J.P.
    Accelerator and Cryogenic Systems.
    Saugnac, Herve
    IPN, CNRS-IN2P3, Univ. Paris Sud.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Design of a New Horizontal Test Cryostat for Scrfcavities at the Uppsala University2014In: SRF2013: Proceedings of the 16th International Conference on RF Superconductivity, 2014, p. 325-327Conference paper (Other academic)
    Abstract [en]

    At Uppsala University, the FREIA facility for researchand development of new accelerators and associatedinstrumentation, is presently in construction. Associatedto a new Helium Liquefier, a Horizontal Test Cryostat willbe used for high power RF tests of completely equippedSC cavities. This paper presents the main characteristicsof the cryostat. Two types of cavities have beenconsidered for test purpose: SC elliptical cavities forfuture free electron lasers and SC cavities for highintensity proton accelerators. A special valve boxincluding a subcooling stage and power coupler coolingwith supercritical Helium supply have been designed, fortemperature operation ranging from 2 K to 4.2 K. Thisfacility will play an essential role in the development andtest of cavities, couplers and cryomodules for the ESSproject. High power RF sources will be installed in orderto allow unique and complete tests of spoke cavities andcryomodules at high nominal peak power.

  • 4.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    High power testing of the first ESS Spoke cavity Package2017In: Proceedings of the 18th International Conference on RF Superconductivity, 2017Conference paper (Other academic)
    Abstract [en]

    The first double spoke cavity for the ESS project was tested with high power in the HNOSS cryostat at the FREIA Laboratory.  This cavity is designed for 325.21MHz, pulsed mode with 14 Hz repetition rate, up to a peak power of 360 kW. The qualification of the cavity package in a horizontal test, involving a superconducting spoke cavity, a fundamental power coupler (FPC), LLRF system and RF station, represents an important verification before the module assembly. This paper presents the test configuration, RF conditioning history and first high power performance of this cavity.

  • 5.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Olry, Guillaume
    Test Characterization Of Superconducting Spoke Cavities At Uppsala University2015Conference paper (Refereed)
    Abstract [en]

    As part of the development of the ESS spoke linac, the FREIA Laboratory at Uppsala University, Sweden, hasbeen equipped with a superconducting cavity test facility. The cryogenic tests of a single and double spoke cavitydeveloped by IPN Orsay have been performed in the new HNOSS horizontal cryostat system. The cavities areequipped with a low power input antenna and a pick-up antenna. Different measurement methods wereinvestigated to measure the RF signal coupling from thecavity. Results from the tests confirm the possibility to transport the cavities from France to Sweden without consequences. We present the methods and preliminary study results of the cavity performance.

  • 6.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Olry, Guillaume
    IPN Orsay, France.
    Niclas, Gandolfo
    IPN Orsay, France.
    RF test of ESS superconducting spoke cavities at Uppsala University2016In: Proceedings of  IPAC2016, 2016, p. 791-794Conference paper (Other academic)
    Abstract [en]

    The European Spallation Source (ESS) is an accelerator-driven neutron spallation source built in Sweden. It will deliver the first protons to a rotating tungsten target by 2019 and will reach the full 5 MW average beam power in the following years. The superconducting Spoke cavities are considered compact structures at low frequencies and having an excellent RF performance in both low and medium velocity regimes, therefore ESS will include a total of 26 double-spoke cavities. The testing of the double-spoke prototype cavity at high power has been conceded to Uppsala University, Sweden, where the Facility for Research Instrumentation and Accelerator development (FREIA) has been equipped with superconducting cavity test facility.

        A bare spoke cavity has been tested at the FREIA Laboratory with a self-exited loop at low power level to confirm its vertical test performance at IPNO. Similar test results as IPNO's previous test were obtained with FREIA system. In this paper we present the methods and preliminary study results of the cavity performance.

  • 7.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    ESS Spoke Cavity Conditioning at FREIA2017In: Proceedings of IPAC2017, 2017, p. 1074-1076Conference paper (Other academic)
    Abstract [en]

    The first ESS double spoke cavity installed with RF power coupler was tested in the HNOSS cryostat at the FREIA Laboratory. Power coupler and cavity conditioning have been optimized in order to reach high efficiency and high availability by reducing the time and effort of the overall conditioning process. Meanwhile, an optimal procedure for ESS conditioning is studied. This paper presents the study result and experience of the RF conditioning procedure for the first ESS double spoke cavity.

  • 8.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Goryashko, Vitaliy A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Characterization of a beta=0.5 double spoke cavity with a fixed power coupler2019In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 927, p. 63-69Article in journal (Refereed)
    Abstract [en]

    ESS, the European Spallation Source, will adopt a single family of double spoke cavities for accelerating the beam from the normal conducting section to the first family of the elliptical superconducting cavities. It will be the first double spoke cavities in the world to be commissioned for a high power proton accelerator. The first double spoke cavity for the ESS project was tested with high power in the HNOSS cryostat at Uppsala University. A pulse-mode test stand based on a self-excited loop was used in this test. The qualification of the cavity package involves a double-spoke superconducting cavity, a fixed fundamental power coupler, tuner, a low-level radiofrequency (LLRF) system and a high-power radiofrequency (RF) station. The test represents an important verification milestone before the module assembly. This cavity had unfortunately a high dynamic loss of 12W @ 9 MV/m, where potential causes for such a high value have been studied and corresponding suggestions are listed. This paper presents the test configuration, RF conditioning history, first high power performance and experience of this cavity package.

  • 9.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    First High Power Test of the ESS Double Spoke Cavity2017Report (Other academic)
    Abstract [en]

    The first double spoke cavity for ESS project was tested with high power in the HNOSS cryostat at FREIA Laboratory. This cavity is designed for 325.21MHz, a pulse mode with 14 Hz repetition rate, up to peak power of 360 kW. The qualification of the cavity package in a high power test, involved a spoke superconducting cavity, a fundamental power coupler, LLRF system and a RF station, represented an important verification before the module assembly. This report presents the test configuration, RF conditioning history and first high power performance of this cavity package.

  • 10.
    Li, Han
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    First High Power Test of the ESS High Beta Elliptical Cavity package2018Report (Other academic)
    Abstract [en]

    The first high-beta elliptical cavity for ESS project was tested with high power in the HNOSS cryostat at FREIA Laboratory.  This cavity is designed for 704.42 MHz, a pulse mode with 14 Hz repetition rate, up to peak power of 1.5 MW. The qualification of the cavity package in a high power test, involved an elliptical superconducting cavity, a fundamental power coupler, cold tuning system, LLRF system and klystron system, represented an important verification before the module assembly. This report presents the test configuration, RF conditioning history and first high power performance of this cavity package.

  • 11.
    Olvegård, Maja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Fransson, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Holz, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Nicander, Harald
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Yogi, Ruthambara
    European Spallation Source.
    PROGRESS AT THE FREIA LABORATORY2015In: Proceedings of IPAC'15, JACoW: The Joint Accelerator Conferences Website , 2015Conference paper (Refereed)
    Abstract [en]

    The FREIA Facility for Research Instrumentation and Accelerator Development at Uppsala University, Sweden, has reached the stage where the testing of superconducting cavities for the European Spallation Source (ESS) is starting. The new helium liquefaction plant has been commissioned and now supplies a custom-made, versatile horizontal cryostat, HNOSS, with liquid helium at up to 140 l/h. The cryostat has been designed and built to house up to two accelerating cavities, or, later on, other superconducting equipment such as magnets or crab cavities. A prototype cavity for the spoke section of the ESS linac will arrive mid 2015 for high-power testing in the horizontal cryostat. Two tetrode-based commercial RF power stations will deliver 400 kW peak power each, at 352 MHz, to the cavity through an RF distribution line developed at FREIA. In addition, significant progress has been made with in-house development of solid state amplifier modules and powercombiners for future use in particle accelerators. We report here on these and other ongoing activities at the FREIA laboratory.

  • 12.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Yogi, Rutambhara
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jacewicz, Marek
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Santiago Kern, Rocio
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Tests of the Spoke Cavity RF Source and Cryomodules in Uppsala: ESS TDR Contribution2012Report (Other academic)
  • 13.
    Ruber, Roger
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    The Cryogenic System at the FREIA Laboratory2015Report (Other academic)
  • 14.
    Santiago Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Bhattacharyya, Anirban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Synopsis from the Testing of the Fully Equipped ESS’ Double Spoke Cavity Romea2017Report (Other academic)
  • 15.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part I)2018Report (Other academic)
  • 16.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part II)2018Report (Other academic)
  • 17.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Eriksson, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jönsson, Åke
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Settings for Testing ofthe Fully Equipped ESS’ Double Spoke Cavity Romea2017Report (Other academic)
  • 18.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Synopsis from the Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part I)2018Report (Other academic)
  • 19.
    Santiago-Kern, Rocio
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Jobs, Magnus
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Li, Han
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Cryogenic Synopsis from the Testing of the Fully Equipped ESS' High Beta Cavity ESS086-P01 (Part II)2018Report (Other academic)
  • 20.
    Wedberg, Rolf
    et al.
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Yogi, Rutambhara A.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago-Kern, Rocio
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Power Supplies for Tetrode High Power Amplfiers at FREIA: ESS TDR Contribution2012Report (Other academic)
    Abstract [en]

    This paper select the topology of the power supplies to the RF power amplifier to one spoke cavity to be tested at FREIA Uppsala University.The power supplies are thought to fulfill the requirements of ESS in Lund.

    The amplifiers pulsed operation will have a strong impact of the choice of topology. The RF amplifier will have two tetrodes in the final stage.

    The anode power supply is studied for different topologies and number of anodes to supply.

    Storing the energy for pulse current to the anodes at high voltage or at low voltage is considered.

    The short circuit protection can be with a crowbar or a series switch. The series switch is selected for reasons of short interrupts in case of temporary short circuits.

    The grid and filament supplies are thought to be standard of the shelf power supplies.

    Cost estimate and comments on maintenance in the end of the paper.

  • 21.
    Yogi, Rutambhara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Gajewski, Konrad
    Uppsala University, The Svedberg Laboratory.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Noor, Masih
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, The Svedberg Laboratory.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, The Svedberg Laboratory.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaly
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, R J M Y
    CERN, Geneve, Schweiz.
    Uppsala high power test stand for ESS spoke cavities2012In: Proceedings of LINAC2012, 2012, p. 711-713Conference paper (Refereed)
  • 22.
    Yogi, Rutambhara
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Wedberg, Rolf
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Goryashko, Vitaliy
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Santiago-Kern, Rocio
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hermansson, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Lofnes, Tor
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gajewski, Konrad
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Dancila, Dragos
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Rydberg, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
    Ziemann, Volker
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ruber, Roger
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Selection of RF Power Source and Distribution Scheme at 352 MHz for Spoke Cavities at ESS and FREIA2012Report (Other academic)
    Abstract [en]

    The report describes selection of RF power source and distribution scheme for spoke cavities at ESS and FREIA.  The European Spallation Source (ESS) is the world’s most powerful neutron source, which contain 36 superconducting spoke cavities at 352MHz and provide power of 0.5MW to the beam. The baseline for the RF system is a point-to-point generation and distribution  from a single source to a single accelerating cavity.The RF system that has to generate this power and distribute it to the accelerating cavities, is a main resource driver for linear accelerators in form of investment, operation and maintenance. Therefore the technical alternatives are compared to minimize capital and running cost of the accelerator, without compromising its reliability. At 352 MHz and 350 kW RF power output, tetrode amplifiers are selected because of their advantages of being cheap, reliable, simple and efficient as compared to the other RF power amplifiers. The tetrodes, due to their low gain, need a pre-driver. The solid state amplifier technology is selected as a pre-driver due to its simplicity, reliability and efficiency. Half height aluminum WR2300 wave guides shall be used for RF distribution. This solution makes it possible to discard the circulator from the RF distribution chain, thus improving system efficiency.

1 - 22 of 22
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf