uu.seUppsala University Publications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hammar, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Leroy, Prune
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Mahmutovic, Anel
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Marklund, Erik G
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Berg, Otto G
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Elf, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The lac repressor displays facilitated diffusion in living cells2012In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 336, no 6088, p. 1595-1598Article in journal (Refereed)
    Abstract [en]

    Transcription factors (TFs) are proteins that regulate the expression of genes by binding sequence-specific sites on the chromosome. It has been proposed that to find these sites fast and accurately, TFs combine one-dimensional (1D) sliding on DNA with 3D diffusion in the cytoplasm. This facilitated diffusion mechanism has been demonstrated in vitro, but it has not been shown experimentally to be exploited in living cells. We have developed a single-molecule assay that allows us to investigate the sliding process in living bacteria. Here we show that the lac repressor slides 45 ± 10 base pairs on chromosomal DNA and that sliding can be obstructed by other DNA-bound proteins near the operator. Furthermore, the repressor frequently (>90%) slides over its natural lacO(1) operator several times before binding. This suggests a trade-off between rapid search on nonspecific sequences and fast binding at the specific sequence.

  • 2.
    Hammar, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Walldén, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Fange, David
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Baltekin, Özden
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Ullman, Gustaf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Persson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Leroy, Prune
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Elf, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Transcription factor dissociation measurements using single molecule chase in living cellsManuscript (preprint) (Other academic)
  • 3.
    Hammar, Petter
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Walldén, Mats
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fange, David
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Persson, Fredrik
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Baltekin, Özden
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ullman, Gustaf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Leroy, Prune
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Elf, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation2014In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 46, no 4, p. 405-+Article in journal (Refereed)
    Abstract [en]

    Transcription factors mediate gene regulation by site-specific binding to chromosomal operators. It is commonly assumed that the level of repression is determined solely by the equilibrium binding of a repressor to its operator. However, this assumption has not been possible to test in living cells. Here we have developed a single-molecule chase assay to measure how long an individual transcription factor molecule remains bound at a specific chromosomal operator site. We find that the lac repressor dimer stays bound on average 5 min at the native lac operator in Escherichia coli and that a stronger operator results in a slower dissociation rate but a similar association rate. Our findings do not support the simple equilibrium model. The discrepancy with this model can, for example, be accounted for by considering that transcription initiation drives the system out of equilibrium. Such effects need to be considered when predicting gene activity from transcription factor binding strengths.

  • 4.
    Jones, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Leroy, Prune
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology.
    Unoson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fange, David
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Curic, Vladimir
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lawson, Michael J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Elf, Johan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology. Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden..
    Kinetics of dCas9 target search in Escherichia coli2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 357, no 6358, p. 1420-1423Article in journal (Refereed)
    Abstract [en]

    How fast can a cell locate a specific chromosomal DNA sequence specified by a single-stranded oligonucleotide? To address this question, we investigate the intracellular search processes of the Cas9 protein, which can be programmed by a guide RNA to bind essentially any DNA sequence. This targeting flexibility requires Cas9 to unwind the DNA double helix to test for correct base pairing to the guide RNA. Here we study the search mechanisms of the catalytically inactive Cas9 (dCas9) in living Escherichia coli by combining single-molecule fluorescence microscopy and bulk restriction-protection assays. We find that it takes a single fluorescently labeled dCas9 6 hours to find the correct target sequence, which implies that each potential target is bound for less than 30 milliseconds. Once bound, dCas9 remains associated until replication. To achieve fast targeting, both Cas9 and its guide RNA have to be present at high concentrations.

  • 5.
    Jones, Daniel
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology.
    Unoson, Cecilia
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Leroy, Prune
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Curic, Vladimir
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
    Elf, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Systems Biology.
    Kinetics of dCas9 Target Search in Escherichia Coli2017In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 112, no 3, p. 314A-314AArticle in journal (Other academic)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf